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a b s t r a c t   

Knowledge graph (KG) is an effective tool for knowledge management, particularly in the architecture, 
engineering and construction (AEC) industry, where knowledge is fragmented and complicated. However, 
research on KG updates in the industry is scarce, with most current research focusing on text-based KG 
updates. Considering the superiority of visual data over textual data in terms of accuracy and timeliness, the 
potential of computer vision technology for explicit relationship extraction in KG updates is yet to be ex-
plored. This paper combines zero-shot human-object interaction detection techniques with general KGs to 
propose a novel framework called Image2Triplets that can extract explicit visual relationships from images 
to update the construction activity KG. Comprehensive experiments on the images of architectural dec-
oration processes have been performed to validate the proposed framework. The results and insights will 
contribute new knowledge and evidence to human-object interaction detection, KG update and construc-
tion informatics from the theoretical perspective. 

© 2022 Elsevier B.V. All rights reserved.    

1. Introduction 

Efficient knowledge management is essential in the architecture, 
engineering and construction (AEC) industry (Kamara et al., 2002). 
However, the AEC industry is fragmented, with the information dis-
tributed among numerous and ever-changing stakeholders (Rasmussen 
et al., 2019), who may never have worked together before and may never 
again (Xue and Lu, 2020). Knowledge acquisition and reuse in such a 
fragmented and complex industry are complicated and limited. There-
fore, to manage the industry's heterogeneous, discrete and empirical 
knowledge, an effective tool is needed to enable the structured storage 
and reuse of knowledge, which is the main focus of the knowledge graph 
(KG). First proposed by Google in 2012, KGs are essentially semantic 
networks that reveal the relationships between entities. KG consists of a 
data layer and a schema layer, with the former organising knowledge in 
triplets and the latter regulating the representation of knowledge in the 
data layer through ontologies. KG has made its mark in many fields, such 
as information retrieval (Li et al., 2020), personalised recommendation 
(Wang et al., 2018) and automatic Q&A (Liu et al., 2019). 

Although researchers have investigated ontologies in many do-
mains of the AEC industry, such as knowledge retrieval (Park et al., 
2013), claims management (Niu and Issa, 2012), cost estimation (Ma 
et al., 2016), risk identification (Zhong et al., 2020), knowledge 
management (Kamsu-Foguem and Abanda, 2015), structural health 
monitoring (SHM) (Li et al., 2020) and facility maintenance man-
agement (FMM) (Chen et al., 2020), research on KG has been scarce. 
For example, Leng et al. (Leng et al., 2019) and Zhu et al. (Zhu et al., 
2017) constructed a mechanical, electrical and plumbing (MEP) do-
main KG and a geological data KG using natural language processing 
(NLP). Pan et al. (Pan et al., 2021) updated construction activity KG 
using computer vision technology. By applying the KG technology, 
Rasmussen et al. (Xue and Lu, 2020) managed interrelated project 
information, Wang et al. (Wang et al., 2020) integrated building in-
formation modelling (BIM) for fire drawing review, and Fang et al. 
(Fang et al., 2020) investigated the knowledge extraction from visual 
data and developed a hazard identification framework based on 
object detection. Although these studies mentioned above have ex-
plored KG construction and application aspects, few have explored 
the KG update issue, which is an ongoing and unavoidable issue 
when structuring KGs. 

KG updates consist of instance- and ontology-level updates, the 
former representing the update of triplet form knowledge in the 
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data layer and the latter representing the update of concepts and 
concept relations in the ontology at the schema level. In general, we 
expect to implement these two levels of updates automatically. 
However, ontology-level updates involve conceptual and logical 
updates that lead to semantic inconsistency problems (Ovchinnikova 
and Kühnberger, 2006), and this problem has not yet been suffi-
ciently addressed (Ahmeti, 2020), requiring a degree of expert in-
tervention. In contrast, instance-level updates do not involve 
conceptual and logical updates and can be performed automatically 
or semi-automatically under the guidance of the ontology. In addi-
tion, instance-level updates can provide a more reliable database for 
ontology updates, facilitating conceptual and logical generalisation. 
Therefore, we focus on instance-level updates in this paper as op-
posed to ontology-level updates. 

Relationship extraction, a subtask of knowledge extraction, is one 
of the most critical tasks in instance-level KG updates. Relationships 
between entities include explicit and implicit relationships. The 
former are generally visible associations between entities that exist 
in the dataset at the activity level, such as actional (e.g., holding), 
spatial (e.g., next to), or comparative (e.g., longer than). The latter 
generally require inferences from similar properties between objects 
at the project level, such as associations between documents (Dörk 
et al., 2011). Unfortunately, both the AEC domain's activity and 
project level contain many complex implicit relationships, and direct 
extraction of these implicit relationships is challenging, particularly 
under data-limited conditions. However, improving understanding 
at the activity level by extracting and distiling explicit relationships 
can help discover and infer implicit relationships at both activity and 
project levels (Li et al., 2021). Therefore, we concentrate on explicit 
relationships extraction in this study. 

Although many industries use textual data for relationship ex-
traction due to their convenience and easy accessibility, we still 
choose visual data (e.g., images) as our primary source of knowledge 
for the following reasons. First, this paper focuses on extracting 
explicit relationships at the activity level in the AEC industry, which 

contains many complex interactions between humans and objects. 
While textual descriptions of various construction activities exist, 
visual data provides a more intuitive and accurate record of these 
activities (Martinez et al., 2019) and avoids subjective biases and 
misinterpretations. In the case of onsite monitoring, the relation-
ships extracted from visual data can be seen as visually verified facts, 
as they record the actual actions of the workers, which may differ 
from those recorded in textual data. Second, visual data can be up-
dated automatically in a real-time manner through surveillance 
cameras, which is beneficial for onsite monitoring, while textual 
data update requires additional manual effort. Additionally, com-
puter vision has made considerable progress in visual relationship 
detection (VRD) tasks (Lu et al., 2016), particularly in the subtask of 
human-object interaction (HOI) detection, making it possible to 
extract human-to-object visual relationships. 

As computer vision-based explicit relationship extraction tasks re-
quire detecting entities (e.g., people and objects) and relationships 
between entities (e.g., holds or rides), these tasks are limited by three 
major difficulties. The first difficulty is the acquisition of training data. 
As the relationships between entities are fine-grained and related to 
specific entity classes, quadratic combinations between relationships 
and entities entail high labelling costs. In addition, these combinations 
present a long-tailed distribution, making it difficult to obtain enough 
training data for rare combinations. The second difficulty is the ac-
quisition of new knowledge. KG updates rely heavily on acquiring new 
knowledge (i.e., unknown relations), whereas both supervised and few- 
sample learning, in general, rely on training data of known classes and 
cannot identify unknown classes without the training data of known 
classes. Third, inconsistencies in action and action labels lead to 
polysemy problems (i.e., an action may correspond to multiple action 
labels, and an action label may also correspond to different actions). For 
example, a person with a steel bar may be described as holding or 
moving the bar, and the action of installing a window is not the same as 
installing a ceiling. These phenomena pose additional challenges to the 
computer vision-based KG update task. 

Fig. 1. Schematic diagram of the Image2Triplests framework. The framework can be divided into the forward process and the backward process.  
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To address the above challenges, a novel framework called 
Image2Triplets is proposed to extract explicit visual relationships 
between humans and objects at the activity level. For the first 
challenge, we believe that compositional methods (Bansal et al., 
2020) can address the combinatorial explosion and long-tailed data 
distribution problem. Compared to non-compositional methods 
(Chao et al., 2018) that directly predict the entire human-object in-
teraction (HOI) triplet (e.g., < person, ride, bike >), compositional 
methods that separately predict human, actions and objects and 
then combine them into triplets require less training data. In addi-
tion, transfer learning and data argument techniques are also 
adopted to further cope with the lack of labelled training data (Smith 
et al., 2021). As for the second challenge, we argue that new 
knowledge can be gained via zero-shot learning (ZSL) techniques. 
This technique transfers the knowledge learned from non-rare 
classes to rare or unknown classes with additional prior information, 
thus enabling the unknown class recognition. In particular, humans 
can imagine unknown HOIs from known HOIs, e.g., from < person, 
ride, bike >  to < person, sit on, elephant >  . Therefore, we detect 
novel HOIs using zero-shot object detection (ZSD) and zero-shot HOI 
(ZSHOI) models in the proposed framework. For the third challenge, 
we turn single-label forecasts into multi-label forecasts in the ZSHOI 
model so that a single action can be associated with multiple action 
labels. Besides, we introduce additional features in the ZSHOI model 
to narrow down the candidates for action labels, thus alleviating the 
problem of one action label corresponding to multiple human poses. 
In summary, our framework can properly tackle these challenges in 
the ways described above. 

As Pan et al. (Pan et al., 2021) adopted two iterative processes 
using ZSL technology for new entity extraction and achieved some 
results, we follow a similar idea for new relation extraction. Our 
framework consists of two iterative processes: a forward process 
(solid orange line) and a backward process (dotted green line), as 
shown in Fig. 1. The forward process initialises the visual relation-
ship detector (VRD), including ZSD and ZSHOI models, which detect 
novel HOI triplets from images using prior information (e.g., word 
embedding). These extracted triplets of the form < human, action, 
object >  contain AEC domain-related information that underpins the 
construction activity KG construction by integrating a general KG. 
The backward process aims to construct semantic embedding from 
the HOI graph using graph convolution network (GCN) (Fang et al., 
2020) to strengthen the prior information, where the HOI graph 
integrates the semantic relations between the updated general KG 
and word embeddings. In the next iteration, the forward process 
benefits from the better VRD initialised by the semantic embedding 
and extracts triplets. The framework incorporates the perceptual 
capabilities of computer vision and the cognitive capabilities of KG 
that can optimise the visual relationship extraction process. 

This paper addresses the computer vision-based KG update task by 
presenting a framework that can extract novel explicit HOI triplets 
from images for the data layer of construction activity KG updates. This 
paper specifically addresses the novel explicit relationship extraction 
problem in activity level by applying ZSL and HOI detection techniques. 
This paper first introduces HOI detection techniques into the computer 
vision-based KG update task to the best of our knowledge. This paper 
has also performed comprehensive experiments and discussions on the 
images of architectural decoration processes to validate the proposed 
framework. The results show that the backward process can enhance 
the prior information to improve the VRD performance and that the 
framework can iteratively extract both known and unknown HOI tri-
plets to update construction activity KG. The remainder of this paper is 
organised as follows. Section 2 reviews the research on knowledge 
management in construction, relationship extraction, ZSL and HOI.  
Section 3 introduces the Image2Triplets framework. Section 4 provides 
comprehensive experiments and detailed discussion, and Section 5 
concludes the paper. 

2. Related works 

2.1. Knowledge management in construction 

Up to now, the development and practice of knowledge man-
agement in construction has gone through four stages: the emer-
gence period, the expert system and ontology period, the semantic 
web period and the KG period. 

In the first stage, the concept of knowledge management gra-
dually emerged. In 1967, Drucker (Drucker, 2018) pioneered the 
concept of knowledge workers. In 1977, the Fifth International 
Conference on Artificial Intelligence first introduced knowledge en-
gineering, and knowledge base systems began to be applied. In 1986, 
Sveiby published The Knowledge-Based Enterprise, which used the 
term "knowledge management" for the first time and delved into 
knowledge management's fundamental issues (Sveiby and 
Risling, 1986). 

The second stage is the period of expert systems and ontologies. 
In the 1980 s, expert systems began to be applied to the construction 
industry (Mohan, 1990). In 1991, Neches proposed a framework 
using ontologies to model domain knowledge (Neches et al., 1991), 
and in the same year, ontologies were applied to building facades 
monitoring (Fazio et al., 1991). In 1995, Gruber (Gruber, 1995) pro-
posed a widely accepted definition of an ontology: "An ontology is a 
formal, explicit specification of a shared conceptualisation". How-
ever, despite their widespread use, expert systems and ontologies 
also had their shortcomings. Expert systems rely on the manual 
acquisition of knowledge by experts, and ontologies focus on the 
description of concepts and relationships and, as opposed to expert 
systems, lack a knowledge base consisting of data instances. 

The third stage is the period of the semantic web. The semantic 
web was introduced in 2001 by Berners-Lee (Berners-Lee et al., 
2001), the father of the world wide web. Combining the strengths of 
ontologies and expert systems, the semantic web represents the 
content on the Internet in the structured semantics form to build a 
semantically shared knowledge base under the specification of 
ontologies. In 2002, the semantic web represented by ifcXML (In-
dustry Foundation Classes eXtensible Markup Language) started to 
be applied to the construction industry (Cheng et al., 2002). In 2008, 
Anumba and Charles et al. (Anumba et al., 2008) published Knowl-
edge Management in Construction, which systematically proposed a 
knowledge management framework for the construction industry. 

The fourth stage is the period of KG, with Google first introducing 
the concept of KG in 2012. The KG is a typical application of the 
semantic web, which uses the knowledge base obtained from mul-
tiple data sources on the Internet to improve retrieval quality. Since 
then, as KG embedding techniques evolved (Wang et al., 2014), KGs 
have been created and successfully applied to many real-world ap-
plications in both industry and academia (Wang et al., 2017). 

2.2. Relationship extraction 

Relationship extraction is one of the most critical subtasks of 
knowledge extraction. Mostly, the relationship extraction task aims 
to extract semantic relationships between entities from un-
structured text. Thus, relationship extraction is closely related to 
entity extraction. Relationship extraction generally focuses on ex-
tracting possible relationships between entities after identifying 
them in the text. Currently, relationship extraction methods can be 
categorised as template-based methods (Flynn et al., 2007), su-
pervised learning-based methods (Miwa and Bansal, 2016; 
Kambhatla, 2004; dos Santos et al., 2015) and weakly-supervised 
learning-based methods (Ji et al., 2017; Brin, 1999). 

Most early methods for relationship extraction (Flynn et al., 
2007) were implemented based on template matching. These 
methods combine linguistic knowledge and corpus features with 
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hand-written templates made by domain experts to match specific 
textual relationships. Template-based methods can achieve sa-
tisfactory results for small-scale and limited domain relationship 
extraction problems. However, domain experts must have con-
siderable time manually constructing templates when the dataset is 
large. Besides, the portability of the template-based relationship 
extraction system is relatively poor (Moreo et al., 2013). 

Supervised learning-based relationship extraction methods 
transform the task into a classification problem. These methods train 
supervised classification models for relationship extraction based on 
a large amount of labelled data. Based on the feature extraction 
differences, these methods are typically classified into traditional 
methods (Kambhatla, 2004) and deep learning methods (Miwa and 
Bansal, 2016). While traditional methods rely on feature en-
gineering, deep learning methods do not require manual construc-
tion of various features and can be divided into pipeline methods 
(dos Santos et al., 2015) and joint methods (Miwa and Bansal, 2016). 
Pipeline methods treat entity extraction and relationship extraction 
as two separate processes, with relationship extraction based on the 
entity extraction results. Joint methods combine these two extrac-
tion processes and optimise them together in a unified model. Al-
though the joint extraction method can mitigate the pipeline 
method's error accumulation in the two processes, the pipeline 
method is more studied and even outperforms the joint method (Liu 
et al., 2020) in the VRD task. Additionally, the pipeline approach 
allows for easy replacement of different components, meaning that 
different components can be selected to adapt to real-world situa-
tions. Therefore, a pipeline-based approach is used in this paper. 

Weakly supervised learning-based relationship extraction 
methods primarily include remotely supervised methods (Ji et al., 
2017) and bootstrapping methods (Brin, 1999). Remotely supervised 
methods automatically construct training datasets by aligning the 
KG with the unstructured text, reducing the reliance on manually 
labelled data and enhancing the model's cross-domain adaptability. 
The bootstrapping method learns on an initial seed set consisting of 
a small number of instances to obtain relationship extraction tem-
plates. These templates can extract more instances and iteratively 
add these instances to the seed set. Via continuous iterating, the 
bootstrapping method can extract different relationships from 
the text. 

2.3. Zero-shot learning (ZSL) 

Most ZSL research has focused on zero-shot image recognition 
(ZSIR) tasks to recognise unseen classes with additional side in-
formation. Depending on the side information, ZSL falls into four 
types: attributes (Lampert et al., 2014), word embeddings (Romera- 
Paredes and Torr, 2015), KG (Kampffmeyer et al., 2019) and gen-
erative adversarial networks (GAN) (Gao et al., 2020). The early ZSL 
research (Kambhatla, 2004) connected the seen and unseen classes 
at the semantic level using attributes. However, considerable time 
and labour are required for attribute design and data labelling in 
attribute-based methods. Therefore, word embedding (Romera- 
Paredes and Torr, 2015) was used for the ZSL to alleviate these 
limitations. Word embedding, or word vectorisation, trained in large 
corpora, enables the measurement of semantic distance between 
different words, bridging the gap between seen and unseen classes 
at the semantic level. In addition to these methods, researchers 

distilled the knowledge from KGs (Kampffmeyer et al., 2019), con-
taining structural knowledge of many domains, and generated un-
seen classes data using GAN (Gao et al., 2020). 

Apart from ZSIR, ZSD that aims to detect novel objects with ad-
ditional side information has attracted increasing attention. ZSD is a 
crucial component for HOI detection in this study, as we follow the 
pipeline-based approach. Similarly, ZSD methods can also be divided 
into different types depending on the side information: attributes 
(Zhu et al., 2020), word embeddings (Rahman et al., 2020; Rahman 
et al., 2019), text descriptions (Zhang et al., 2020), KG (Yan et al., 
2020) and GAN (Zhu et al., 2020). Early ZSD studies used attributes 
or word embeddings as prior information to generalise the knowl-
edge learned from seen classes to unseen classes. However, Zhang 
et al. (Fazio et al., 1991) chose textual descriptions instead of word 
embeddings because word embeddings are static and may not 
consider the actual context. Yan et al. (Yan et al., 2020) used GCN to 
aggregate the prior information in the KG. Additionally, Zhu et al. 
(Zhu et al., 2020) focus on the adaptability of GANs to the ZSD task. 

2.4. Human-object interaction (HOI) Detection 

HOI detection, which detects interactions between humans and 
objects, is critical to human-centric scene understanding (Gupta and 
Malik, 2015). Early HOI works followed non-compositional methods 
and benefited from pre-trained object detectors. For example, Chao 
et al. (Chao et al., 2018) directly predicted HOI labels at the trigram 
level via non-compositional methods using a pre-train object de-
tection model, thereby simplifying the HOI detection to the HOI 
classification. However, the combinatorial explosion problem and 
the long-tail distribution of HOI annotations still limit the non- 
compositional method. Researchers used compositional methods 
and focused on verb prediction to mitigate these limitations. For 
example, Gao et al. (Gao et al., 2018) predicted action labels using 
humans and objects' respective visual and geometric features. 
Ulutan et al. (Ulutan et al., 2020) modified human and object fea-
tures using attention techniques. Xu et al. (Xu et al., 2019) in-
troduced external KGs for verb predicting. As these methods focused 
on predicting the HOI labels of seen objects, Bansal et al. (Bansal 
et al., 2020) proposed a framework for detecting the HOI labels of 
unseen objects. Tang et al. (Xu et al., 2019) and Xiong et al. (Kato 
et al., 2018) applied HOI detection techniques for construction site 
safety inspection in the AEC industry. 

Additionally, many researchers have devoted their efforts to 
novel HOI detection. Instead of improving the HOI prediction of seen 
actions, novel HOI detection aims to scale HOIs with novel objects, 
actions or combinations using ZSL techniques. For example, Kato 
et al. (Kato et al., 2018) detected novel combinations of HOI, Liu et al. 
(Liu et al., 2020) combined external KGs to predict HOIs with novel 
actions, and Wang et al. (Wang et al., 2020) detected HOIs with novel 
objects. Nevertheless, none of these studies examined the HOI de-
tection of novel objects and actions, which is critical for KG updates. 
Our framework integrates ZSD and ZSHOI models based on the pi-
peline approach that can detect HOIs with novel objects and novel 
actions. 

3. Image2Triplets 

As the novel HOI detection requires both the novel object and 
action detection, this paper uses a ZSD detector (Pan et al., 2021) for 
novel object detection and focus on novel action detection and 
construction activity KG updates. The VRD consists of a ZSD and a 
ZSHOI model designed to detect novel objects and interactions to 
form HOI triplets, as shown in Fig. 1. Specifically, as the VRD adopts 
pipeline-based methods, the VRD first utilises a ZSD detector to 
detect humans and novel objects (i.e., boxes and labels) in the image, 
then leverages the ZSHOI model to perform novel action detection 

Fig. 2. Schematic diagram of the visual relationship detection (VRD) module. The 
module follows pipeline-based methods and uses a zero-shot detection (ZSD) and a 
zero-shot human-object interaction (ZSHOI) detection model. 
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using this information, and finally outputs the triplets, as shown 
in Fig. 2. 

3.1. Problem definition 

The VRD, containing ZSD and ZSHOI models, is a critical part of 
the framework. The formal definitions of the VRD, ZSD and ZSHOI 
are given below. 

3.1.1. VRD 
HOI detection detects triplets of the form < human, action, ob-

ject >  in a given image. Formally, HOI can be defined as 
< >b b a y, , ,h 0 , where the boundary box b b,h 0

4 denotes humans 
and objects' location, action = …a A V V{ , , }n1 denotes the move-
ment performed by a person, and label = …y Y C C{ , , }n1 denotes 
the category of the boundary box (bh, b0). The goal of the VRD is to 
scale the HOI by extending the action and object categories with ZSD 
and ZSHOI models. Therefore, one can define the VRD as a function 

=F f f( ) { ( ( ))}ZSHOI ZSD , where f ( )ZSHOI and f ( )ZSD represent the ZSHOI 
and ZSD models, respectively. 

3.1.2. ZSD 
ZSD aims to localise and classify seen and unseen objects with 

additional prior information. The prior information regarding the seen 
and unseen object categories (i.e., E E,S

O
U
O q, where S denotes seen 

classes, U denotes unseen classes, O denotes objects, and q denotes the 
length of the prior information), is available in the training and testing 
phases. Let = …Y C C{ , , }S m1 and = …+Y C C{ , , }U m n1 denote the seen and 
unseen categories, respectively, and let B denote the collection of all the 
human and object boundary boxes. The intersection of seen and un-
seen category sets is empty (i.e., =Y YS U ). Given an image, the ZSD 
function f ( )ZSD aims to recognise seen and unseen object categories 

=y Y Y YS U and localise human and object boundary boxes 
b b B,h 0 with prior information E E,S

O
U
O q. 

3.1.3. ZSHOI 
Likewise, let = …A V V{ , , }S m1 and = …+A V V{ , , }U m n1 denote the 

seen and unseen actions, respectively, and let E E,S
A

U
A q denote the 

additional prior information of the seen and unseen action cate-
gories, respectively. Given an image, the human and object boundary 
boxes b b B,h 0 and action categories’ prior information E E,S

A
U
A q, 

the ZSHOI function f ( )ZSHOI simultaneously recognises the seen and 
unseen action categories =a A A AS U . 

Fig. 3. The architecture of the zero-shot human-object interaction (ZSHOI) detection model in the forward process. This model uses a convolutional neural network (CNN) to 
extract visual embeddings. 

Fig. 4. Two types of ZSHOI models are framed: the word embedding-based ZSHOI model and the semantic embedding-based ZSHOI model. Both models contain two branches: a 
visual branch and a semantic branch. 
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Fig. 5. The pipeline of HOI graph construction. (a) HOI graph contains human, action, object and triplet nodes. (b) Nodes within a triplet are connected. (c) Nodes with functional 
similarities are connected. (d) Nodes with behavioural similarities are connected. (e) Nodes with interactional similarities are connected. (f) The constructed HOI graph. 

Fig. 6. Iteration of the link between known and unknown triplets. (a) Nodes within the pink circle are known, and nodes within the green circle are unknown. (b) Nodes within 
the identical triplet are connected. (c) Nodes with functional, behavioural, or interactional similarities are connected. (d) After the forward process, the unknown triplet < human, 
hold, electric drill >  is detected and becomes a known triplet.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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3.2. Forward process 

3.2.1. The primary idea of the forward process 
The ZSHOI model, a critical part of the VRD, is first initialised by 

prior information and then used to extract the novel HOI. Due to the 
ability to evaluate semantic links between known and unknown 
actions, word embeddings are used as prior information in the 
ZSHOI model, thus enabling the transformation of the known 
knowledge to the unknown. The ZSHOI model follows a linear 
mapping approach, mapping visual embeddings directly to the se-
mantic space. Then, the inner product is applied to align features in 
semantic and visual space, i.e., aligning the word embeddings of all 
candidate labels and the visual embeddings extracted by a con-
volutional neural network (CNN), as shown in Fig. 3. We choose the 
sigmoid activation function instead of the softmax activation func-
tion to obtain the final class confidence so that single-label predic-
tion can be turned into multi-label prediction. The predicted class 
confidence is 1 when the word embedding is compatible with the 
visual embedding; otherwise, it is 0, and confidences greater than a 
specific threshold will become the action label for this HOI. 

3.2.2. ZSHOI model construction through word embeddings 
The ZSHOI model consists of visual and semantic branches, as 

shown in Fig. 4. The visual branch aims to extract visual embeddings 
from different human-object pairs, while the semantic branch fo-
cuses on the extractions of word embeddings (the orange box). Note 
that the word embedding-based ZSHOI model uses word embed-
dings rather than semantic embeddings. The pre-trained ResNet-50- 
FPN (Lin et al., 2017) model is used as the backbone network for 
visual feature extraction in the visual branch. Considering that a 
large amount of background information in the image is not related 
to HOIs, the regions related to HOIs are mainly where humans and 
objects are located. Therefore, we focus on the visual features in 
these regions and use the RoIAlign (He et al., 2020) operation to 
extract their features. The RoIAlign operation combines the ZSD 
output (human and object locations) with visual features to obtain 
human features, object features and union features, where union 
features are those where the person and object boundary boxes 
intersect. These features and space coordinates (human and object 
locations) are then combined and fed into multiple fully connected 

(FC) layers to obtain the final visual embedding V of length 768. 
While in the semantic branch, we use pre-trained word embeddings 
obtained from the BERT-wwm (Bidirectional Transformers-Whole 
Word Masking) model trained on a large-scale general corpus (Cui 
et al., 2020) as prior information. The word embedding obtained in 
this way can gauge the semantic relevance of any two words in the 
corpus, making it robust prior information. As mentioned before, the 
ZSHOI model applies a linear mapping approach to align the visual 
and semantic feature space and derive the class confidence. More 
specifically, in the training stage, only the word embeddings of seen 
classes W S of the shape 768 ×seen are available, as shown below: 

= WSeen Class Vsigmoid( )S (1)  

In the testing stage, only the word embeddings of unseen classes 
W U of the shape 768 ×unseen are available. Both seen and unseen 
word embeddings are available only in the generalised HOI detection 
(GHOID) task, which simultaneously detects seen and unseen ac-
tions. 

3.2.3. Relationship extraction and KG update 
The ZSD model can detect entities of humans and objects, and 

the ZSHOI model can identify these interactions. Thus, we can obtain 
triplets in the form of < human, action, object >  combining these 
results. Considering that general KGs, such as ConceptNet 5.5 (Speer 
et al., 2017), contain entities and relations from the AEC domain, 
such as people, bricks, hammers, holding and carrying, it is possible 
to associate the found unknown triplets with entities or relations 
that are already present in the general KG, thereby eliminating the 
need to structure a KG from scratch. For example, we can store the 
found triplets in a graph database, such as Neo4j (Anon, 2021), au-
tomatically or semi-automatic to update the KG. However, there may 
be an exception where both actions and objects are unknown, which 
inevitably requires human intervention. In this case, we need to 
determine the relationship between the unknown object and the 
most relevant object in the KG so that the detected triplet can be 
linked to the KG. 

3.3. Backward process 

Prior information is critical to the performance of the ZSL model. 
As the nature of ZSL is to transfer known knowledge to unknown, 

Fig. 7. The overall workflow of the Image2Triplets framework. The purple part of the pipe chart represents known classes, and the orange part of the chart represents unknown 
classes. The solid orange line represents the forward process, and the dash green line represents the backward process. 
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ZSL models heavily rely on the semantic link between known and 
unknown classes. Therefore, the ZSL model requires robust prior 
information to strengthen the semantic link. Considering that a 
reasonable KG can lead to more robust prior information than word 
embeddings (Kampffmeyer et al., 2019), the backward process aims 
to enhance prior information by distiling knowledge from KGs and 
word embeddings, as the enhanced prior information should im-
prove the performance of the VRD. 

3.3.1. Enhancement of prior information 
This section constructs an HOI graph by distiling knowledge in 

the updated general KG and word embeddings. Fig. 5(f) shows that 
an HOI category is represented by three entities nodes and one in-
teraction node. For example, < human, use, polisher >  and < human, 
hold, polisher >  are represented by four entities nodes "polisher", 
"human", "use" and "hold", and two interaction nodes "human hold 
polisher" and "human use polisher", respectively. We follow the 
method proposed by Liu et al. (Liu et al., 2020) to structure the HOI 
graph. This method supposes that an unknown HOI triplet can be 
generalised from the known triplets if functionally, behaviourally, or 
interactionally consistent with the unknown triplets. For example, a 
human can recognise the unknown triplets (< human, hold, rebar >) 
by using their common sense to imagine what it would be based on 
the known triplets (< human, hold, pipe > and < human, move, 
rebar >). 

The detailed HOI graph construction method involves the fol-
lowing processes. First, all entity and interaction nodes, including 
known and unknown nodes in the dataset, are added. In addition, we 

query the updated general KG to find the relevant relationships with 
those entity nodes. For those entities interconnected in KG, we an-
notate them and their interconnected relations as triplets and add 
them as interaction nodes to the graph, as shown in Fig. 5(a). Second, 
nodes belonging to the identical HOI triplet are linked together, as 
shown in Fig. 5(b). Third, the entity nodes that have a similar 
function are connected. More specifically, we use the word embed-
ding generated by the pre-trained language model BERT-wwn, 
which takes the manually labelled text triplets in the dataset as 
input, to calculate the cosine similarity of any two object nodes. 
Since word embedding can measure the semantic distance of enti-
ties, two nodes are considered semantically consistent to some ex-
tent if their cosine similarity is higher than a given threshold (e.g., 
0.5). Then, edges are added to the top-k consistent nodes, as shown 
in Fig. 5(c). Likewise, the other nodes are linked based on their se-
mantic distances among action and interaction, as shown in Fig. 5(d) 
(e). The final HOI graph is shown in Fig. 5(f). 

The HOI graph consists of the nodes of known and unknown 
objects, actions and interactions, integrating the knowledge from KG 
and word embeddings and implying rich semantic connections be-
tween known and unknown classes. The HOI graph iteration is 
shown in Fig. 6. We first add all the known and unknown nodes to 
the graph, as shown in Fig. 6(a). More specifically, for those nodes 
interconnected in KG, we annotate them and their interconnected 
relations as known triplets, and the remaining known triplets are in 
the training set. Triplets that neither exists in KG nor the training set 
are annotated as unknown. Then, as shown in Fig. 6(b)(c)), nodes 
within a triplet and semantically similar nodes are connected. Before 
the forward process, only a link between "use" to "hold" and a node 
"human" that links the known and the unknown triplets. After the 
forward process, the unknown triplet " < human, hold, electric 
drill >  " is detected, and the nodes of this triplet turn into known and 
are linked to the KG, as shown in Fig. 6(d). Additional two links 
between the known and unknown triplets are acquired, i.e., from 
"electric drill" to "metal materials" and from " < human, hold, electric 

Fig. 8. Images in the dataset.  

Table 1 
mAP comparison of ZSHOI model with word embeddings and semantic embeddings.      

Prior/Task Seen Unseen Seen + Unseen  

Word embeddings  0.60  0.41  0.41 
Semantic embeddings  0.61  0.58  0.53 
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drill >  " to " < human, transport, metal materials >  ". Therefore, as 
the iterations progress, unknown nodes are gradually identified and 
transformed into known nodes, thus enhancing the connection be-
tween known and unknown nodes. 

3.3.2. ZSHOI model construction through semantic embeddings 
As illustrated in Fig. 4, the semantic branch is the primary dif-

ference between the word embedding-based and semantic embed-
ding-based ZSHOI model. In the forward process, the semantic 

branch only extracts word embeddings, while in the backward 
process, the semantic branch aims to extract semantic embeddings. 
The backward process's semantic branch generates semantic em-
beddings using the GCN to distil knowledge from the HOI graph and 
word embeddings, where word embeddings are generated by the 
BERT-wwm model with text triplets input. Additionally, the shape of 
the semantic embedding matrix S of the shape 768 × (seen + unseen) 
is the same as the word embedding matrix W of the shape 

Fig. 9. Qualitative results of the ZSD.  

Fig. 10. Qualitative results of the ZSHOI.  
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768 × (seen + unseen), as these two models share the same visual 
branch. 

3.4. Overall process 

The overall process of the framework is shown in Fig. 7. The solid 
orange line represents the forward process, and the dotted green line 
represents the backward process. The forward process leverages the 
VRD initialised by prior information to detect triplets in images, 
while the backward process augments the prior information. All 
potential triplets fall into Known0 in the training dataset or Unknown 
outside the training dataset, where Unknown = {Unknown1, Un-
known2, Unknown3, …, UnknownN}. First, we initialise the VRD by 
Prior1, connecting Known0 and Unknown via word embeddings. Due 
to the noise in word embeddings and the limited generalisation 
ability of Known0, the VRD can only recognise a subset of Unknown 
(i.e., Unknown1), and the subset Unknown1 is then converted into 
known triplets and updated to a general KG (i.e., Known1 = {Known0, 
Unknown1}, Unknown = {Unknown2, Unknown3, …, UnknownN}). 
Next, the backward process constructs Prior2 (i.e., semantic em-
beddings) to replace Prior1 based on the HOI graph and word em-
beddings using GCN. The Prior2 then initialises the VRD, which 
detect triplets from images and recognise a new unknown subset 
(i.e., Unknown2). At this time, Known2 = {Known0, Unknown1, Un-
known2}, Unknown = {Unknown3, …, UnknownN}. As the iteration 
progresses, the Known set grows, and the Unknown set shrinks. The 
iteration should be stopped when the backward process fails to 
identify new unknown triplets. 

4. Experiments 

4.1. Experimental setup 

4.1.1. Dataset description 
As shown in Fig. 8, the ZSHOI dataset contains 13 action classes 

(10 known and 3 unknown), 42 object or material classes and 73 
HOIs. There are approximately 1000 images in total. 

4.1.2. Evaluation metric 
Mean average precision (mAP) is widely used for object detection 

and HOI detection tasks, mainly because mAP allows using a single 
number to compare the performance of different models. Although 
mAP may penalise those detection results, which are reasonable but 
not annotated as ground truth (Lu et al., 2016), in this study, we 
suppose that the ZSD model can detect both the seen and unseen 

objects correctly and, therefore, can overcome this shortcoming. In 
addition, in order to fairly compare with existing methods that use 
mAP as an evaluation metric, we need to evaluate the performance 
of the ZSHOI model using mAP. 

4.1.3. Implementation details 
A general KG, ConceptNet 5.5, is used to update construction 

activity KG. The length of the word embedding and semantic em-
bedding is 768. The GCN model contains four graph convolution 
layers in the semantic branch with output channels of 2048, 1024, 
1024 and 768. Before obtaining the visual embeddings in the visual 
branch, the concatenated feature is fed into three FC layers, whose 
output channels are 1024, 512 and 768. The length of the human, 
object and joint features is 1024, and the length of the coordinate 
features is 8. The features of known and unknown action nodes are 
utilised in the training and testing stages, respectively. We use all the 
action features only in the GHOID task. 

4.2. Quantitative analysis 

In this section, we compare the mAP of the word embedding- 
based and semantic embedding-based ZSHOI model under three 
different tasks (i.e., Seen, Unseen and Seen + Unseen), which are 
distinguished by their test categories (i.e., only contains known ca-
tegories, only contains unknown categories and contains both 
known and unknown categories). Note that we only perform one 
forward and one backward process. 

As shown in Table 1, although the mAP performance of these two 
models is similar in the seen task, the mAP performance of the se-
mantic embedding-based model is better than that of the word 
embedding-based model in the unseen and seen + unseen tasks, 
which indicates that the prior information in semantic embeddings 
is more potent than that in word embeddings. 

4.3. Qualitative results 

Fig. 9 illustrates the ZSD detection results of the human and 
object. Our framework can detect known HOIs (the second and third 
rows) and unknown HOIs (the first row), as shown in Fig. 10. 
Therefore, we can update the KG after extracting the HOI triplet. For 
example, new edges can be added between the "human" and 
"electric drill" nodes, as shown in Fig. 11. 

Fig. 11. KG updates. (a) Before updating the KG, the human node was isolated from other nodes. (b) After the KG update, two links are added between the human and electric drill 
nodes, i.e., use and hold. 
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4.4. Framework iteration 

Fig. 12 shows the results of three iterations in three unknown 
classes, namely "hold", "transport", and "lay". Here, we assume that 
the results of the top-3 classes will be considered as positive de-
tections. In the first iteration, unknown action "hold" is correctly 
detected, with a confidence level of 0.64, ranking second out of 13 

classes, as shown in Fig. 12(a.2). Then, in the second iteration, we re- 
train the framework as the unknown class "hold" becomes known 
class, and the unknown action "lay" is detected with a confidence 
level of 0.53, ranking third, as shown in Fig. 12(b.3). We also re-train 
the framework, and detection results are shown in Fig. 12(c.2 to c.4) 
in the third iteration. Although the unknown action "transport" 
confidence level slightly increased from 0.47 to 0.54, the framework 

Fig. 12. The detection results of the framework in three iterations in three unseen actions, namely "hold", "transport" and "lay".  
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still failed to detect this action. These results indicate that although 
the generalisation capability of the framework can be enhanced by 
adding known class data, this enhancement is not limitless. 

4.5. Case study 

In this section, an onsite monitoring scenario is used to reveal the 
potential application value of the proposed method. In construction 

sites, abnormal, unregulated or unsafe human behaviours are usually 
associated with specific objects that may distract workers or pose 
safety issues. The interactions between humans and these objects 
form the basis for detecting abnormal, unregulated or unsafe human 
behaviours. In order to simplify the task, we suppose these objects 
can be accurately detected using ZSD or general object detection 
models, and, therefore, the proposed method can be applied to the 
known and unknown HOI detection. In this scenario, a welding 

Fig. 12.  (continued)  
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clamp and a cell phone are considered sensitive objects, and the 
backward process is utilised to detect HOIs. As shown in Fig. 13, the 
detection results are plotted as histograms. The horizontal axis re-
presents the interactions, where the first ten interactions represent 
the known, and the last three represent the unknown, and the ver-
tical axis represents the confidence level (between 0 and 1). In the 

case of a worker using a welding clamp, the highest confidence level 
is an unknown action "hold" of more than 0.75, followed by a known 
action "use". In the case of a worker using a cell phone, the top two 
confidence levels are the known action "use" and the unknown ac-
tion "hold", both of which exceeded 0.6. These results indicate that 
although training data is limited, the backward process still can 

Fig. 13. Two cases in construction site monitoring scenarios.  

Fig. 14. t-SNE visualisations of the word embedding and semantic embedding. Different shapes of graphics represent different types of actions.  
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detect interactions regarding these sensitive objects, both known 
and unknown, which will help reduce the amount of training data 
and the effort for data labelling when there is a need to detect un-
known human-object interactions. 

5. Discussion 

5.1. A straightforward comparison between word embeddings and 
semantic embeddings 

Although we have already performed a performance comparison 
between these two types of prior information in Section 4.2, we 
expected to demonstrate the difference in their generalisation cap-
abilities straightforwardly. Therefore, we used a dimensionality re-
duction algorithm t-SNE (van der Maaten and Hinton, 2008) to 
visualise these two types of prior information, as shown in Fig. 14. 
Each marker in the figure represents an action, where the star- 
shaped marker represents an unknown action, and all others are 
known actions. It is clear that the distance between known and 
unknown actions is closer in Fig. 14(b) than in Fig. 14(a). For ex-
ample, 'hold' becomes closer to 'carry', and 'transport' becomes 
closer to 'shovel', indicating that the semantic word embedding can 
better generalise the known knowledge to the unknown. 

5.1.1. Different structures of HOI graphs 
Although the backward process, which uses the HOI graph to 

generate semantic embeddings, showed better performance than 
the forward process that uses word embeddings in three different 
tasks, we would like further to explore the impact of graph structure 
on model performance. Therefore, two different graph structures 
were adopted: the random graph and the partial fully connected 
(PFC) graph. As shown in Fig. 15, nodes in the random graph are 
randomly connected, while the PFC graph has a few nodes connected 
to all other nodes. The early stopping (Prechelt, 1998) training 
technique is adapted to avoid overfitting. The main implication of 
early stopping is to stop training when the model's performance on 
the validation set (labelled unseen class instances) starts to degrade 
so that overfitting due to continuous training can be avoided. Let the 
random graph serve as a baseline, as its mAP is close to random 
guesses, as shown in Table 2. In the unseen task, the random graph 
and PFC graph have the similar mAP, which is lower than that of the 
HOI graph, indicating that the random and PFC graphs have weaker 
generalisation ability than the HOI graph and do not well transfer 
the knowledge learned from the known class to the unknown class. 
The HOI graph also has the highest mAP in the seen task and the 
seen + unseen task. These results suggest that a well-structured HOI 
graph leads to better generalisation performance. 

5.1.2. Effect of different seen and unseen splits on the generalisation 
capability of the ZSHOI model 

The key idea of ZSL is to generalise the known knowledge to the 
unknown. However, model performance is limited by the amount of 
seen classes. Therefore, it is necessary to analyse the effect of the 
seen and unseen split on the model generalisation ability. Table 3 
shows the percentage of different category instances in the dataset, 
with 45.40%, 50.71% and 53.89% of the seen categories in the three 
different seen and unseen splits. This division in Table 3 ensures that 

Fig. 15. Two different graph structures. (a) Nodes in this graph are randomly connected. (b) Partial nodes in this graph are fully connected to all the other nodes.  

Table 2 
mAP comparison of ZSHOI model with different graph structures. Three types of 
graphs are used: random connective graph (random), partial fully connective graph 
(PFC) and HOI graph.      

Method/Task Seen Unseen Seen + Unseen  

Random  0.22  0.40  0.20 
PFC  0.16  0.38  0.16 
HOI  0.61  0.58  0.53 

Table 3 
The proportion of instances of seen categories in different seen and unseen splits.   

Note that the capital "S" represents the seen class and the capital "U" represents the unseen class. The number in the bracket represents the percentage of instances of that class in 
the dataset, e.g., "Use (35.48)" indicates that the seen class instances of "Use" account for 35.48% of all instances in the dataset.  
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the number of seen and unseen instances is close to 1:1, thus re-
ducing the interference in the results due to unbalanced training and 
testing instances and helping to mitigate the over-fitting issue. As 
shown in Table 4, as the seen and unseen split grows, the mAP in the 
unseen task and seen+unseen task also increases, which indicates 
that the increase in seen classes improves the model generalisation 
capability. The three splits have similar mAP in the seen task, mainly 
because the seen class instances used for training are pretty similar. 

5.1.3. Effect of different feature fusion styles on the performance of the 
ZSHOI model 

As mentioned in Sections 1 and 2, we introduced additional 
features to mitigate the action polysemy problem. In this section, we 
use ablation experiments to analyse this issue. As shown in Table 5, 
four types of features are used: human features (H), object features 
(O), union features (U) and space coordinate features (S). As the 
numbers of fused features increased, the mAP of these three tasks 
also increased, suggesting that multi-feature fusion improves model 
performance and may alleviate the action polysemy issue. Notably, 
when these three features (i.e., H, O, and U) were used individually, 
the human feature obtained the highest mAP in the seen task and 
had a similar mAP to the other features in the unseen task and seen 

+ unseen task, indicating that the human region may contain richer 
information. 

5.1.4. Effect of ZSD on the scope of unknown triplets 
The HOI detection of novel objects relies heavily on ZSD to detect 

novel objects. However, the ZSD, pre-trained in a public domain 
dataset, may not perform well when applied to the construction 
domain. For example, we choose the PL-ZSD model (Rahman et al., 
2020), which was proposed in 2020, to detect the novel object in the 
construction industry. More specifically, the PL-ZSD model is pre- 
trained in the Microsoft COCO dataset (Lin et al., 2014), and the word 
embeddings of unseen classes are replaced by the word embeddings 
of the construction industry objects, such as bricks, glasses and 
drills, to simulate the unseen object detection in construction con-
texts. As shown in Fig. 16, the PL-ZSD model cannot detect these 
three kinds of unseen objects, indicating that the scope of training 
data limits the generalisation ability of this model. Apart from the 
scope of training data, according to Pan (Wang et al., 2020), ZSD is 
also sensitive to prior information, and robust prior information can 
improve the performance of ZSD. Therefore, we suggest enhancing 
the prior information in the construction context to improve the ZSD 
performance, as a better ZSD can detect a more extensive range of 
novel objects and thus expand the scope of triplets. 

5.1.5. Comparison with other methods 
In this part, we compare the word embedding-based and se-

mantic embedding-based ZSHOI models with the following ap-
proaches: LDHOI (Xu et al., 2019), CLHOI (Kato et al., 2018) and 
adjusted ConSE (Norouzi et al., 2013). As shown in Table 6, the se-
mantic embedding-based ZSHOI model achieves the best perfor-
mance in these three tasks, demonstrating our approach's 
superiority. 

Table 4 
mAP comparison of ZSHOI model with different seen/unseen split.      

Seen/unseen split/Task Seen Unseen Seen + Unseen  

2:8  0.63  0.10  0.18 
5:5  0.61  0.19  0.38 
8:2  0.61  0.58  0.53 

Table 5 
mAP comparison of ZSHOI with different feature combinations. Four types of features 
are used: human features (H), object features (O), union features (U) and space co-
ordinate features (S).      

Method/Task Seen Unseen Seen + Unseen  

H  0.36  0.45  0.29 
O  0.38  0.43  0.35 
U  0.45  0.41  0.40 
H+O  0.52  0.48  0.47 
H+O+U  0.52  0.50  0.48 
H+O+U+S  0.61  0.58  0.53 

Fig. 16. The detection results of the PL-ZSD method in the construction context.  

Table 6 
mAP comparison of ZSHOI with other methods.      

Method/Task Seen Unseen Seen + Unseen  

LDHOI  0.14  0.39  0.22 
ConSE  0.59  0.40  0.16 
CLHOI  0.22  0.49  0.22 
Word embeddings  0.60  0.41  0.41 
Semantic embeddings  0.61  0.58  0.53 
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6. Conclusions 

As an efficient knowledge management tool, KG using its struc-
tural storage and logical inference capabilities, can help improve the 
efficiency in AEC industries, such as indoor scene design, project 
management and construction site monitoring. This paper is dedi-
cated to the research of KG updates based on explicit HOI extraction 
at the activity level in the AEC industry with the application to the 
interior decoration construction process. A novel computer vision- 
based explicit relationship extraction framework, called 
Image2Triplets, is proposed to update the data layer of the con-
struction activity KG. We introduce the ZSHOI technique in the vi-
sual-based KG updating to address the new relationships extraction 
issue. Considering the lack of comprehensive and large-scale data-
sets in the industry and the complexity of construction sites, per-
forming HOI detections with limited data is challenging. The 
framework alleviates this issue by introducing the ZSL technique and 
incorporating the prior information from the general KG to enable 
the migration of knowledge learnt on known classes to unknown 
classes. 

More specifically, we combine ZSD and ZSHOI detection techni-
ques to develop two iterative processes (i.e., a forward process and a 
backward process) to extract explicit HOI triplets from images. We 
use prior information to initialise the ZSD and the ZSHOI detection 
model in VRD, and these two models are used together for known 
and unknown HOI extraction. The proposed framework is tested 
using construction images of architectural decoration processes. The 
results show that the framework can detect both known and un-
known triplets and that the extracted triplets can be used to update 
the data layer of the construction activity KG. In addition, the ex-
periments verify that the HOI relationship graph can enhance the 
prior information, thus improving the performance of VRD and that 
the backward process achieves the best results in the Unseen task 
compared to existing methods. 

However, several issues still need to be addressed. For example, 
we assumed that the ZSD model could correctly detect the seen and 
unseen entities, while the actual performance of ZSD is generally 
poor, and at this stage, the performance of the ZSHOI model is not 
yet satisfactory. Furthermore, some manual intervention is still re-
quired in KG updating, and we have not yet tested our framework on 
large-scale datasets. In the future, we will further address these is-
sues and focus on the visual-based multimodal KG construction, 
ontology updates and automatic KG completion. 
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