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A B S T R A C T   

Fish mass estimation is extremely important for farmers to get fish biomass information, which could be useful to 
optimize daily feeding and control stocking densities and ultimately determine optimal harvest time. However, 
fish tail fin mass does not contribute much to total body mass. Additionally, the tail fin of free-swimming fish is 
deformed or bent for most of the time, resulting in feature measurement errors and further affecting mass 
prediction accuracy by computer vision. To solve this problem, a novel non-supervised method for fish tail fin 
removal was proposed to further develop mass prediction models based on ventral geometrical features without 
tail fin. Firstly, fish tail fin was fully automatically removed using the Cartesian coordinate system and image 
processing. Secondly, the different features were respectively extracted from fish image with and without tail fin. 
Finally, the correlational relationship between fish mass and features was estimated by the Partial Least Square 
(PLS). In this paper, tail fins were completely automatically removed and mass estimation model based on area 
and area square has been the best tested on the test dataset with a high coefficient of determination (R2) of 0.991, 
the root mean square error (RMSE) of 7.10 g, the mean absolute error (MAE) of 5.36 g and the maximum relative 
error (MaxRE) of 8.46%. These findings indicated that mass prediction model without fish tail fin can more 
accurately estimate fish mass than the model with tail fin, which might be extended to estimate biomass of free- 
swimming fish underwater in aquaculture.   

1. Introduction 

Aquatic products as a vital source of nutritious protein, make up of 
human diet all around the world (FAO, 2020). Recently, fish farming has 
been developed rapidly in food production. And fish mass estimation is 
beneficial to obtain biomass information in aquaculture, which has 
played a critical role in optimizing feed regimens to avoid under- or 
overfeeding, controlling oxygen consumption and antibiotic dose, and 
determining optimal harvest time for aquaculture managers (Lines et al., 
2001). In addition, accurate size measurements can be used to keep 
homogenous size batches in intensive fish farming, which is beneficial to 
fish welfare by reducing their aggression (Ashley, 2007). 

The conventional method to gain the information on fish mass is by 
periodic sampling and weighing (Saberioon and Cisar, 2018). Normally, 
the average weight of samples is estimated by collecting a given number 
of fish from ponds or cages. However, the manual sampling is usually 
time-consuming, labor-intensive, expensive and has an inherent error of 

15–25% (Klontz and Kaiser, 1993). Furthermore, manual sampling can 
also bring great stress to fish, affecting their growth and even resulting in 
the death (Li et al., 2020). Therefore, it is very urgent to automatically 
measure fish mass without manual handling, which is of great interest 
for aquaculture administrators. 

With the development of new information technologies, the non- 
invasive computer vision techniques have been attracting interest of 
researchers and practitioners in aquaculture communities during the 
past three decades (Costa et al., 2009; Saberioon et al., 2017; Zhou et al., 
2018; Zhou et al., 2019a; Zhou et al., 2019b; Zion, 2012). Fish size such 
as length, area and height is a vitally important parameter at different 
growth stages (Shi et al., 2020). The computer vision provides an 
automatic and effective means for remotely estimating fish size (Garcia 
et al., 2020; Monkman et al., 2020; Munoz-Benavent et al., 2018b; Puig- 
Pons et al., 2019), which makes it possible to measure fish biomass using 
fish size-weight relations. To the best of our knowledge, there is no a 
general model for mass estimation of each species, the optimal model 

* Corresponding author at: P. O. Box 121, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China. 
E-mail address: dliangl@cau.edu.cn (D. Li).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2021.106601 
Received 12 April 2021; Received in revised form 22 November 2021; Accepted 27 November 2021   

mailto:dliangl@cau.edu.cn
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2021.106601
https://doi.org/10.1016/j.compag.2021.106601
https://doi.org/10.1016/j.compag.2021.106601
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2021.106601&domain=pdf


Computers and Electronics in Agriculture 193 (2022) 106601

2

needs to be developed for each species individually. Beddow et al. 
(1996) adopted stereo camera systems to predict the weight of Atlantic 
salmon (Salmon salar L.) based on multi-parameters extracted from 
images with an error of (− 0.1 ± 9.0) %. Odone et al. (2001) used 
computer vision systems based on different subsets of 13 shapes avail-
able from top and side views to predict fish weight by Support Vector 
Machine. Dios et al. (2003) also adopted stereovision system to estimate 
fish mass by simple length-weight relations well known in aquaculture 
domain. Costa et al. (2013) developed the model based on external 
shape from fish lateral images to estimate weight of cultured sea bass 
(Dicentrarchus labrax). In addition, Saberioon and Cisar (2018) used 
RGB-D camera to estimate fish mass based on eight dorsal geometrical 
features and machine learning algorithms with the highest R2 of 0.872. 
Zhang et al. (2020) proposed principal component analysis–calibration 
factor and neural network to estimate fish mass from images with the 
mean absolute error of 0.0104, the root mean square error of 0.0137 and 
the coefficient of determination of 0.9021. Besides, Al-Jubouri et al. 
(2017) designed a dual synchronized orthogonal webcams system to 
estimate zebrafish length with average error approximately 1% and 
Rizzo et al. (2017) showed paired-laser photogrammetric approach to 
measure length of small benthic free-swimming fish and the magnitude 
of differences was ranging from 0.6% to 3.1% between direct and 
photogrammetric measurements. Manuel Miranda and Romero (2017) 
proposed a third-order regression curve approximated rainbow trout 
(Oncorhynchus mykiss) silhouette to estimate length of free-swimming 
fish by computer vision. 

However, the caudal fin of free-swimming fish underwater is 
deformed or bent for most of the time, which causes errors in size 
measurement using computer vision, further resulting in mass mea-
surement errors. In addition, the fish fin mass does not contribute much 
to total body mass (Balaban et al., 2010b). For possibly better accuracy 
of mass measurement, it is necessary to remove tail fin from fish image 
to extract shape features for establishing mass model, so that the model 
can help to better predict biomass of free-swimming fish in water. The 
earliest study proposed by Balaban et al. (2010a) showed that the R2 

values of the power equation based on view area to predict weight of fish 
with and without tail fins are the same: 0.993. Subsequently, de Verdal 
et al. (2014) performed several measurements on digital pictures of sea 
bass larvae to estimate body weight. In this study, the mass model based 
on five features without considering tail fin had higher correlation co-
efficient than in Costa et al. (2013). The reason may be that image 
processing excluded the transparent fin, which the weight is negligible. 
Subsequently, Viazzi et al. (2015) indicated that model based on area 
from fish side view without considering tail fin performed well to predict 
Jade perch (Scortum barcoo) mass with the R2 of 0.99. However, the 
proposed method of tail fin removal is not fully automated and requires 
manual intervention. Munoz-Benavent et al. (2018a) presented the 
deformable model at five predefined silhouette points of ventral 
silhouette proposed by Atienza-Vanacloig et al. (2016) to estimate 
length of bluefin tuna (Thunnus Thynnus) using stereovision system. 
The caudal fin contour was not modeled because its shape varies widely. 
In addition, Konovalov et al. (2019) showed the no-fins based Con-
volutional Neural Network (CNN) performed best to estimate Nile 

tilapia weight on test images with the MAPE of 4.28%. Fernandes et al. 
(2020) used the CNN for automatic segmentation of Nile tilapia and the 
no fish tin segmentations obtained from the best network were used to 
extract area, length, height. The predictive model included area and its 
square as predictor variables achieved R2 of 0.96. Although the CNN can 
be used to remove fish fin, it is supervised learning, which requires a 
large number of samples to be manually marked for training and 
different markers from different person could introduce errors. Since the 
fins removal would require extra work and computing time, there are 
limited literatures about the tail fin removal from fish images. Therefore, 
it is very urgent to develop an effective and automatic non-supervised 
method for tail fin removal on fish mass measurement. 

The aim of this study was to develop a new fully automatic method to 
remove the tail fin from fish image, which was useful to establish the 
more accurate model of mass prediction using computer vision. The 
specific objectives of this study were to (1) fully automatically remove 
fish tail fin based on Cartesian coordinate system and image processing, 
(2) respectively extract the different features from fish image with and 
without tail fin, (3) develop mass prediction model based on ventral 
geometrical features with and without tail fin, (4) verify the precision of 
the proposed method for mass estimation in validation set. 

2. Materials and methods 

2.1. Animals and housing 

The experiment was carried out in the B17 lab at National Innovation 
Center for Digital Fishery, China Agricultural University, China. During 
the experiment, 80 crucian carp (Carassius auratus gibelio) in different 
sizes were purchased from aquatic farm in suburban areas of Beijing. 
And then, they were farmed for near four months in a recirculating 
aquaculture system which consisted of 3 tanks. Each tank has a capacity 
of 600L and equipped with an external mechanical filter and four built- 
in filters, a nitrifying trickling filter to maintain NH3-N and NO2-N 
levels, a water pump to regularly replace half the water in the tank 
with new water during fish farming, an oxygen reactor, a pH pump, two 
heating rods (Elecro 500 w, Sunsun) and a denitrifier to maintain NO3-N 
levels. The oxygen, temperature and pH were monitored continuously 
and were kept between 7.0–8.5 mg/l, 24 ± 3 ◦C and 7.5–8.5, 
respectively. 

2.2. Data collection 

Fish were netted and mildly anesthetized with tricaine methane 
sulfonate (MS-222) in a water basin before data acquisition so as to 
minimize stress. Each fish was caught to be weighed for three replicates 
and then individually pictured. Three replicates were made for 
comparing with those estimated by non-contact method. In farming 
process, fish was pictured and weighed in five measurement sessions 
with an interval of approximately 25 days, and the number of fish left in 
each session is 80, 68, 60, 55, 52 respectively because of fish death, 
adding up to a total 315 fish. Using sterile paper to wipe the water off 
fish before weighing, these fishes were weighed manually by using 
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100cm

Recirculating aquaculture

Fig. 1. The experimental equipment system.  
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weighing scale (YHC-L01) with a precision of 0.1 g. Then, each fish was 
pictured from a distance of 60 cm using MV-EM510M CCD camera 
(Microvision, China) with a focal length of 6 mm, exposure of 12.5 ms, 
ISO of 200 and resolution of 2456 × 2058 pixels. Simultaneously, the 
background without fish were also pictured to be used for subsequent 
background subtraction. The image had three components (red, green 
and blue) with each color comprising 256 graduations. The experi-
mental equipment is illustrated in Fig. 1. 

A total 315 fish images were collected indoors under artificial 
lighting with the 315 fish images * 3 measurements of mass. The average 
mass for each crucian was obtained after 3 replicate measurements. The 
minimum measured mass of fish was 68.1 g, while the maximum 
measured mass was 298.4 g. The setup was remounted at the beginning 
of every measurement session. A was fish body surface area in cm2 (with 
or without fins), L was fish length in cm (with or without fins) and H was 
fish height in cm (with or without fins). In order to compensate small 
variations in setup of different measurement sessions, the rectangular 
reference (200 mm × 100 mm) that placed in center of tray is pictured 
each time for conversion of pixel measures to millimeters. And the area, 
length and height of the bounding-box surrounding the rectangular 
reference were then used to rescale fish size. 

2.3. Image analysis 

The image analysis which includes five steps namely a) Pre- 
processing, b) Segmentation, c) Removing the tail fin, d) Feature 
extraction, as shown in Table 1, and e) Regression algorithm, have been 
developed in MatlabR2014a (MathWorks, MA, USA) environment. Fig. 2 
shows the main procedures of image analysis. 

2.3.1. Pre-processing 
The image is too large, so it has to be reduced for image analysis. In 

addition, image quality might be affected by many factors such as noise 

during fish image acquisition. In our case, the image difference method 
proposed by Siewert et al. (2014) that can determine the rough position 
of the target is adapted to remove the influence of uneven environmental 
illumination. Additionally, the linear transformation proposed by Gon-
zalez et al. (2018) was used to increase the contrast of difference images 
to clarify the boundaries of the whole fish. And the linear transformation 
can be expressed as: 

I = Fa*C+
Fb

255
(1)  

where the Fa = 6, Fb = 55 is obtained by trial and error. C is the dif-
ferential image, I is the image obtained by the image pre-processing. 

2.3.2. Segmentation 
Image segmentation is a fundamental yet challenging task in image 

processing and computer vision, which denotes object separation from 
background. Active contour has been widely used for segmentation as it 
has the ability to find smooth and closed contour with sub-pixel accu-
racy (Kass et al. (1987), which includes edge-based model and region- 
based model. In this study, the simplest and well-known region-based 
model which is active contour without edges proposed by Chan and Vese 
(2001) (C-V) was used for fish segmentation. And the algorithm is the 
minimization of energy for segmentation. The energy function can be 
written as 

E(C) = α*L(C)+ β*Area(inside(C) )+Ein(C)+Eout(C) (2)  

where L(C) is the length of the contour C, Area(inside(C) ) is the area of 
the region inside C, Ein(C) = λ1

∫

inside|I(x, y) − c1|dxdy, Eout(C) =

λ2
∫

outside|I(x, y) − c2|dxdy, α⩾0 and β⩾0, c1 and c2 are the average gray 
value of inside and outside areas. α = 0.2, β = 0, λ1 = λ2 = 1 are 
fixed parameters. From the above energy function, when the contour C is 
located in the border of two homogeneous area, E(C) can achieve the 
minimum, and the global optimal segmentation is got. The specific 
calculation could be saw in reference (Chan and Vese, 2001). Here, a 
rectangular contour as the initial mask m(0.3*size(I, 1) : 0.7*size(I,1),
0.2*size(I, 2) : 0.8*size(I,2) ) is established, where size(I, 1) and size(I,2)
are the total row and column numbers of image I pixels, respectively. 
The above method code is as follows: Output = region seg(I,m,500,0.2). 
The output result is fish binary image F. However, a rectangular contour 
as the initial mask m and the evolution curve iterative times were not 
very well defined, this could cause error segmentation of images. In this 
study, according to this characteristic that the fish is roughly in the 
center of the image, the center pixel coordinate of image can be ob-
tained. Hence, the row range of initial mask m is defined in the 0.2* 
size(I,1) from the center of image I, that is 0.3*size(I,1) : 0.7*size(I,1). 
Similarly, the column range of initial mask m is defined in 0.3*size(I,2)

Table 1 
The relevant description and definition of each feature.  

Feature The definition of features 

Area (A1, 
A2)  

Number of pixels in fish binary image region with and without tail fin 

Length (L1)  The total length of the fish 
Height (H1)  The height of minimum bounding rectangle 
Height (H2)  The fish width passing through centroid coordinate 
Height (T2)  The fish width passing through the middle point between centroid 

coordinate and tail handle 
Height (S2)  The width is symmetric with T2 respect to centroid coordinate  
Length (L2)  The length between fish snout and tail handle  

Original image Pre-processing

Image 
reduction

Image 
difference

Linear 
transformation

Segmentation

Active contour 
model 

Image rotation

Removing tail fin

Cartesian coordinate 
system image 

processing 

Feature extractionRegression 
algorithm i i

The area length
height 

Head
detection 

Linear Regression

Fig. 2. The flowchart of the image analysis.  
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from the center of image I, that is 0.2*size(I,2) : 0.8*size(I, 2). 
Additionally, the angle between image x-axis and fish binary image F 

major axis that had the same second moment as the region was calcu-
lated as the orientation of fish binary image F. The image was rotated by 
the orientation of the fish binary image F in order to make binary image 
major axis orientation parallel to the x-axis of image, which is used for 
subsequent removal of fish tail fin. 

2.3.3. Removal of fish tail fin 
When the major axis orientation of fish image is parallel to the x-axis 

of the image, the fish head must be detected for subsequent caudal fin 
removal. We proposed an automatic method to detect fish head by the 
bounding-box, centroid coordinate D(x0, y0) and contour pixel coordi-
nate matrix Cm×2(x, y) of fish binary image. The leftmost and rightmost 
points of the fish contour can be obtained by the bounding-box. The line 
that is parallel to the x-axis of the image is passing through centroid 
coordinate. The distance Z1 of the leftmost point to the line and the 
distance Z2 of the rightmost point to the line were obtained respectively. 
The difference value between Z1 and Z2 determines the direction of the 
fish’s head. When the difference value is less than 0, the fish head is on 
the left, otherwise it is on the right. The following tail removal process is 
for the fish head on the left in the image, if the fish head detection is on 
the right, the image is rotated 180◦ to make the fish head on the left. 

Compared to the other parts of fish body, the tail fin of crucians has a 
lower specific mass that does not contribute much to the total body 
mass. Therefore, this paper proposed a fully automatic method to 
remove fish caudal fin using Cartesian coordinate system and image 
processing. The main algorithm of removing tail fins can be described 
step wise as: 

Step.1. The input image: The binary image Fr×l of fish. 
Step.2. Image attribute extraction: The centroid coordinate D(x0,

y0) and the contour pixel coordinate Cm×2(x, y) of binary image F were 
extracted in Oxy coordinate system. 

Step.3. Coordinate transformation: The centroid coordinate D(x0,

y0) was taken as image origin coordinate O’ and the fish contour 

boundary is divided into four regions in the O’x’y’ coordinate system. 
And the contour pixel coordinates C’

m×2(x’
i , y’

i) is obtained by the dif-
ference between contour pixel coordinates Cm×2(xi, yi) and the centroid 
coordinate D(x0,y0), i = 1⋯⋯m, as shown in Fig. 3. 

Step.4. Narrow fish tail fin contour range: In O’x’y’ coordinate 
system, according to fourth quadrant x’

i > 0, y’
i < 0, find out all rows i 

where pixel coordinates C’
m×2(x’

i , y’
i) simultaneously conform to x’

i ≥ 0,
y’

i ≤ 0, then keep elements in these i rows of Cm×2(xi, yi) unchanged, 
otherwise, keep these elements in these i rows of Cm×2(xi, yi) become 
Cm×2(0i, 0i), mark as Mm×2(xi, yi). Similarly, in first quadrant x’

i > 0,
y’

i > 0, find out all rows i where pixel coordinates C’
m×2(x’

i , y’
i) simul-

taneously conform to x’
i ≥ 0,y’

i ≥ 0, then keep elements in these i rows of 
Cm×2(xi, yi) unchanged, otherwise, keep these elements in these i rows of 
Cm×2(xi, yi) become Cm×2(0i,0i), mark as Nm×2(xi,yi). 

Step.5. Find the upper point of the tail fin in Oxy coordinate 
system: Firstly, find the n1Âth row where the maximum value of the 
pixel abscissa from Mm×2(xi, yi). Then, find the n2Âth row where the 
maximum value of the pixel ordinate of Mm×2(xi, yi) from first row to 
n1Âth row , mark as A1 = M(xn2 ,yn2 ). 

Step.6. Find the lower point of the tail fin in Oxy coordinate 
system: Firstly, find the n3Âth row where the maximum value of the 
pixel abscissa of Nm×2(xi, yi). Find the n4Âth row where centroid coor-
dinate x0 of Nm×2(xi, yi). Then, find the row where the minimum value of 
the pixel ordinate of Nm×2

(
xi, yi

)
fromn3Âthrowton4Âthrow, mark the 

row as (n3 + n5 − 1)Âth row, and A2 = N(xn3+n5− 1,yn3+n5− 1). 
Step.7. Fish tail pixel abscissa positioning and tail fin removal: 

The fish tail pixel abscissa x = (xn2 + xn3+n5− 1)/2. Set the grayscale 
value of pixels to be 0 when pixel abscissa is between x and l in fish 
binary image F. 

Step.8. The output image: The binary image F′ of fish without tail 
fin. The pseudo code for our proposed fish tail fins removal algorithm is 
given in Table 2. 

(x'>0, y'>0)

(x'<0, y'<0)

(x'<0, y'>0) x'

y y'

 Second quadrant

 Third quadrant

 First quadrant

O'

O
x

 Fourth quadrant

(x'>0, y'<0)

A1

A2

Fig. 3. The fish contour boundary is divided into four regions in the O’x’y’ coordinate system.  
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2.3.4. Feature extraction and performance estimation 
Feature extraction refers to extracting representative information 

from image to represent the target objects. Generally, the most used 
features include shape features, texture features and color features. 
Different types of features are extracted according to research purposes. 
In order to establish the fish mass estimation model, fish shape features 
such as length, area, perimeter, volume, width and height are often used 
to represent image information. In this paper, some features were 
automatically extracted from fish binary image respectively, including 
commonly used fish body area (A1), length (L1) and height (H1) from 
fish with tail fin and body area (A2), length (L2) and height (H2, S2,T2) 
from fish without tail fin. 

The Pearson correlation coefficient is used to reflect the degree of 
linear statistical correlation between two random parameter variables, 
which is represented by R2. The greater the R2 is, the more correlated 
these two variables are. It is well known that body weight is strongly 
correlated with morphological characteristics for many animal species. 
The correlation coefficient can be used as an optimization criterion to 
evaluate the efficiency of the different measured features to predict fish 
mass. Therefore, the estimates of Pearson’s correlation between feature 
measurements and body mass were used to compute roughly for the 
estimation of the relationship between fish features and mass. 

2.3.5. Regression algorithm for mass prediction 
Multiple linear regression models based on the Partial Least Square 

(PLS) were evaluated for fish mass prediction. In order to avoid model 
over-fitting, a 7:3 ratio (i.e. 70% for building mass estimation model and 

30% for validating mass prediction) was performed by random stratified 
sampling. And the dataset from 315 fish was divided into training set 
containing 220 samples used for fitting models and test set containing 95 
samples used for assessing the prediction accuracy of model. 

In this paper, to evaluate and compare the models in addition to the 
coefficient of determination (R2), the following root mean square error 
(RMSE), the mean absolute error (MAE) and the maximum relative error 
(MaxRE) were used in this study as follows. 

R2 = (1 −

∑N
i=1 (yi

’ − yi)
2

∑N
i=1 (yi

’ − yi)
2) (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi
’ − yi)2

N

√

(4)  

MAE =

∑N
i=1(|yi

’ − yi| )

N
(5)  

MaxRE = maxN
i=1

(
|yi

’ − yi|

yi

)

(6)  

where y′

i is predicted mass,yi is the measured mass yi is the mean value 
of yi and N is the number of samples. The goodness of fit was qualita-
tively and quantitatively inspected through a plot depicting the 
measured mass against the predicted mass. 

In addition, standardized regression coefficients are used to compare 
the effects of different feature variables on mass prediction. The 

Table 2 
The pseudo code of the software program for removing the tail fin in automatic mode.  

Algorithm of removing tail fin from fish binary image 

Input: the binary image Fr×l of fish  

Output: the binary image F′ of fish without caudal fin  
1. The extraction of centroid coordinates D(x0, y0) and contour pixel coordinates matrix Cm×2 from F  

2. C′

(x′

i ,y
′

i)←C(xi,yi) − D(x0,y0)

3. Mm×2=Nm×2 = 0 ← Init  

4. for x′

i⩾0 do  

5. if y′

i⩽0 then  
6. M(xi,yi)←C(xi,yi)

7. else 
8. N(xi,yi)←C(xi,yi)

9. end if 
10. end for 
11.[xmax1n1]←max{M(:, 1)}, 

[
ymax1n2]←max{M(1 : n1, 2)},A1←M(xn2 ,yn2 )

12. [xmax2n3]←max{N(:, 1)},[x0n4]←(N(:, 1) == x0),
[
ymin2n5]←min {N(n3 : n4,2)},A2←N(xn3+ n5 − 1,yn3+ n5 − 1)

13.x←(xn2 + xn3+ n5 − 1)/2  
14. for ‾x < j ≤ l do 
15. F(:, j) = = 0  
16. end for 
17. F′ ←F  

18. Return F′

(a) Fixed background image    (b) Current fish image    (c) Difference image    (d) Linear transformation image

Fig. 4. The results of fish image by pre-processing.  
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standardized regression coefficient is the regression coefficient obtained 
after standardized processing of independent variable and dependent 
variable simultaneously. After the standardized data processing, the 
influence of dimension, order of magnitude and other differences is 
eliminated so that different variables are comparable, which can be used 
to compare the effects of different independent variables on dependent 
variables. The greater the absolute value of the normalized regression 
coefficient is, the greater its influence on the dependent variable is. 

3. Results 

3.1. The results of image pre-processing and segmentation 

The (a) to (d) in Fig. 4 are the original fish image and the pre- 
processing fish images. Specifically, the pre-processing fish images 
include the difference image and linear transformation image. From 
Fig. 4, it can be seen that the boundaries of the whole fish were clarified 
by pre-processing, which is useful for later fish image segmentation. 

The initial contour contains part of the fish body, which is 

Fig. 5. Comparison of segmentation results. First column: Pre-processing image with initial mask. Second column: Segmentation result using C-V model. Third 
column: Fish binary image obtained. The first row: C-V model with m(0.3*size(I,1):0.7*size(I,1),0.2*size(I,2):0.8*size(I,2)) and iterative times 400. The second row: 
C-V model with m(0.1*size(I,1):0.6*size(I,1),0.2*size(I,2):0.6*size(I,2)) and iterative times 500. The third row: using our proposed approach. 

a) The original binary image              b) The image after original image was rotated

Fig. 6. Fish image rotated by the orientation between fish major axis and image x-axis.  
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highlighted in green, and the segmentation result is also highlighted in 
green. Fig. 5 showed the comparison of segmentation results. Our pro-
posed active contour model based on m(0.3*size(I,1):0.7*size 
(I,1),0.2*size(I,2):0.8*size(I,2)) and iterative times 500 had a good 
segmentation performance for all images in this study. The wrong po-
sition of initial mask and improper iterations result in error segmenta-
tion. Hence, the location of initial mask contains as many target objects 

as possible and appropriate iterative times were selected, which can 
successfully extract fish boundary. 

In addition, in order to make binary image major axis orientation 
(blue line) parallel to image x-axis (green line), the fish binary image 
was rotated by the opposite orientation as shown in Fig. 6. 

a) The fish head on the left               b) The fish head on the right

Fig. 7. The automatic detection of fish head.  

Fig. 8. Flow chart representing the automatic fish tail removal steps operated in MALAB environment on the left. The visual results of some image processing step on 
the right. 
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3.2. The results of fish tail fin removal 

There are two cases where the fish head is respectively on the left and 
right, as shown in Fig. 7. The leftmost and rightmost points (green) of 
the fish contour (white) can be obtained by the bounding box (red). In 
addition, the line (blue) passing through centroid coordinate (red) is 
parallel to the x-axis of image. The distance Z1 of the leftmost point to 
the line and the distance Z2 of the rightmost point to the line were ob-
tained respectively. The difference value between Z1 and Z2 is less than 
0 when the fish head is on the left as shown in Fig. 7 a). Otherwise, the 
fish head is on the right in Fig. 7 b). 

According to the Cartesian coordinate system and image processing, 

a fully automatic method was proposed to remove fish tail fin without 
manual intervention. Specifically, by looking for two points above and 
below caudal fin, the middle point of these two points were defined as 
the point of the fish tail fin removal. Then, the middle point of the fish 
tail fin removal was used to remove tail fins from the fish binary image. 
Fig. 8 shows main procedures and the visual results of fish tail fin 
removal. 

3.3. The results of feature extraction and performance estimation 

The relevant description and definition of each feature extracted are 
given in Table 1. In order to clearly express each feature, these features 

Fig. 9. Features extracted from the fish binary image with and without tail fin.  

Table 3 
Phenotypic correlations between all measurements (N = 315, P-value < 0.001).   

With tail fin  Without tail fin  

L1  H1  A1   L2  H2  A2  S2  T2  

L1   1.000         
H1   0.916  1.000        
A1   0.986  0.951  1.000       
L2       1.000     
H2       0.952  1.000    
A2       0.988  0.979  1.000   
S2       0.958  0.985  0.982  1.000  
T2       0.954  0.984  0.977  0.977  1.000 

Mass  0.967  0.960  0.980   0.975  0.969  0.990  0.967  0.956  

Table 4 
Comparison of selected models for fish mass prediction (P-value < 0.001).    

Training Dataset  Test Dataset 

Target Predictors R2 RMSE(g) MAE(g) MaxRE(%)  R2 RMSE(g) MAE(g) MaxRE(%) 

Mass H1   0.952  15.06  11.41  16.0   0.947  15.91  11.49  14.88 
L1   0.962  13.26  9.32  15.22   0.958  14.26  10.22  14.62 
A1   0.984  8.85  6.69  10.95   0.982  9.47  7.34  11.78 

A2
1   0.983  9.32  6.61  17.04   0.982  9.63  6.88  16.00 

A2
1 + A1   0.986  8.47  6.06  10.64   0.985  8.94  6.51  11.64 

H1 + L1   0.974  11.29  8.01  12.90   0.972  11.81  8.75  11.52 
H1 + A1   0.985  8.85  6.69  10.93   0.983  9.47  7.34  10.19 
L1 + A1   0.985  8.80  6.64  10.19   0.983  9.51  7.31  10.19 
L1 + H1 ,+ A1   0.984  8.92  6.74  11.04   0.983  9.54  7.37  10.11 
H2   0.956  14.50  11.03  13.00   0.956  14.82  11.20  11.98 
L2   0.969  12.38  9.17  12.72   0.970  12.30  9.44  10.50 
A2   0.989  7.48  5.58  9.42   0.988  8.03  6.00  9.66 

A2
2   0.990  7.29  5.31  11.06   0.989  7.68  5.75  10.59 

A2
2 + A2   0.992  6.57  4.79  8.64   0.991  7.10  5.36  8.46 

H2 + L2   0.979  10.21  7.67  11.67   0.978  10.52  8.16  9.81 
H2 + A2   0.989  7.44  5.60  9.27   0.988  8.01  6.09  9.50 
L2 + A2   0.989  7.44  5.57  9.03   0.988  7.95  5.94  9.48 
L2 + H2 + A2   0.990  7.42  5.60  9.26   0.988  7.98  6.00  9.60  
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are painted on different parts of fish as shown in Fig. 9. In addition, these 
feature values were rescaled by using constant dimension of the rect-
angular reference, which was used to convert all measurements from 
pixels to cm2 or mm. 

The Pearson correlation coefficient was carried out on fish mass and 
feature parameters from fish with tail fin and without tail fin. Table 3 
shows the estimated Pearson’s correlation between shape measurements 
and fish mass for the datasets. The phenotypic correlations between 
measured parameters and body mass are positive and high. For fish with 
tail fin, the R2 is ranging from 0.960 to 0.980. For the fish without tail 
fin, the R2 is ranging from 0.956 to 0.990. The correlation between 
parameters from fish without tail fin and measured mass was signifi-
cantly greater than that from fish with tail fin. It can be observed that 
removing fish tail fin did indeed improve the correlation between shape 
features and measured mass. 

Additionally, the results for phenotypic correlations presented in this 
study agree with previous results for fish area being the trait that ach-
ieved relatively satisfied results (de Verdal et al., 2014; Fernandes et al., 
2020; Viazzi et al., 2015). And the parameter with the greatest corre-
lation with the crucian mass was the area A2 from fish without tail fins 
with the R2 of 0.99. The features (S2, T2) have a slightly lower corre-
lation with fish mass than other features including L1, H1, A1, L2,H2 and 
A2. The L1, H1, A1, L2,H2 and A2 were only selected for mass prediction 
in this study. But these features S2, T2 could serve as a reference for 
future research. 

3.4. The results of image derived mass prediction 

Table 4 showed the error of mass prediction for fish with and without 
tail fin in training dataset and test dataset. It was observed that all the 
models were not significantly different from the manually measured 
values (P-value < 0.001). Additionally, regarding predictions of fish 
mass, it was also observed that the model that included only fish area 
(A1 or A2) as predictor variable had better performance on the training 
dataset or testing dataset than models that included length (L1 or L2) or 
height (H1 or H2) predictor variable, as shown in Table 4, which suggest 

once again that using the fish area is necessary in order to achieve better 
predicted values. Visual evaluation of fit goodness for fish mass was 
shown in Fig. 10, including 6 figures of (a)-(f). 

From the Table 4, it was also observed that the overall best predictive 
model included area and its square as predictor variables (A2

1 +A1 or 
A2

2 + A2) and achieved R2 of 0.985 and 0.991, the RMSE of 8.94 and 
7.10, the MAE of 6.51 and 5.36 and the MaxRE of 11.64% and 8.46% for 
body mass estimation of fish with tail fin and without tail fin, respec-
tively. The precision of mass prediction models can be improved by the 
removal of fish caudal fin. Scatterplots of measured mass versus pre-
dicted mass in test dataset was shown in Fig. 11. It can be seen that the 
model without caudal fin had relatively better prediction performance 
than that with caudal fin. 

Additionally, the model based on the length (L1 or L2) performed 
better than that based on the height (H1 or H2). And the prediction 
model based on the length L2 got the better performance with the R2 of 
0.970, the RMSE of 12.30, the MAE of 9.44 and the MaxRE of 10.50% 
than the mass prediction model that included length L1 with the R2 of 
0.958, the RMSE of 14.26, the MAE of 10.22 and the MaxRE of 14.62%. 
It is worth mentioning that the accuracy of the length-mass relationship 
prediction model without tail fin is better than that with tail fin. 

Moreover, Table 4 shows the linear polynomial model based on 
length, area and height performs a little worse than the model based on 
length and area as predictor variables. And the coefficients of stan-
dardized regression equation based on the three-feature prediction for 
fish with tail are Zscore (L1): 0.3183, Zscore (H1): 0.0460, Zscore (A1): 
0.6321, respectively. The coefficients of standardized regression equa-
tion without tail are Zscore (L2): − 0.1607, Zscore (H2): − 0.1236, Zscore 
(A2): 1.2684. 

4. Discussion 

4.1. The removal of fish tail fin 

Our proposed method for tail fin removal is different from the 
method proposed by Viazzi et al. (2015). In Viazzi et al. (2015) study, 
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Fig. 10. Visual evaluation of fit goodness for fish mass.  
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the distance between the pixel of contour and the centroid was calcu-
lated to obtain the points of caudal fin that can mark. The points of fish 
caudal fin were defined by looking at the first and the last peak by 
human operation. Additionally, these peaks are not obvious for tail fin 
points, and the removal of tail fin is not perfect. However, our proposed 
method is to find the midpoint between the two points above and below 

the caudal fin, and then the midpoint was used to remove the caudal fin 
completely automatically without human intervention. In addition, 
Bekkozhayeva et al. (2021) used minimum tail width to remove the tail. 
However, the 1/4 of the minimum bounding-box rectangle is artificially 
defined, and the tail fork parts and head direction interfere with finding 
the position of the vertical line connecting the upper and bottom fish 
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Fig. 11. Scatterplots of measured mass versus predicted mass in validation set data.  
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shape border with the minimal length. The article did not mention how 
to solve these problems and the detailed implementation steps of this 
algorithm are not given in this article. Our proposed method can solve 
the interference of tail fork and the fish head can be automatically 
detected for completely automatic tail fin removal. These algorithms are 
also listed in detail in this study. Table 5 shows comparison of different 
non-supervised methods. 

The current popular supervised deep learning can be used to remove 
fish tail fin. However, a large number of training samples are required to 
be manually marked and different person markers could introduce er-
rors. Since the removal of tail fins is time-consuming and laborious, 
there are no effective non-supervised methods for fish caudal fin 
removal in available literatures. As far as we know, the proposed non- 
supervised method is the original design to remove fully automatically 
fish tail fin, which not only could improve accuracy of mass prediction 
but also will help achieve full automation of aquaculture. In addition, 
the mass prediction model based on features extracted from fish without 
tail fin could be used to further accurately predict biomass of free- 
swimming fish underwater. Therefore, the removal of fish tail fin is 
highly necessary for establishing relationship model between mass and 
features without tail fin. And other fins will be considered to remove 
from fish by other methods in future studies. 

Meanwhile, the proposed methodology of tail fin removal can be 
applied to other fish species whose shape of tail fin is similar to that of 
crucians carp. Although this method is not applicable to all species of 
fish, the proposed non-supervised method can provide a reference for 
caudal fin removal. Future directions on the development of other fish 
fin removal should also consider with other methodology such as cur-
vature, which can more accurately predict the biomass of free- 
swimming fish underwater. 

4.2. Image derived mass prediction 

In order to further demonstrate the superiority of tail fin removal, we 
compare the accuracy of models between fish mass and extracted fea-
tures with tail fin and without tail fin. From Table 4, it becomes evident 
that the results of all models were better when the tail fin is removed 
from fish image, which was furthermore confirmed that removing the 
tail fin can improve the mass prediction model precision. The model that 
included fish area, length and height as predictor variables performs 
slightly worse than the model based on area and length as predictor 
variables. The coefficients of the standardized regression equation are 

Zscore (A1):0.6321 > Zscore (L1): 0.3183 > Zscore (H1): 0.0460 and 
Zscore (A2): 1.2684 > Zscore (L2): 0.1607 > Zscore (H2): 0.1236, which 
indicated area factor has highest contribution to the mass prediction and 
then it is the length factor whether the fish tail is removed or not. The 
height factor has a little contribution to mass prediction. In addition, the 
model based on area and its square as predictor variables without tail 
fins achieved the highest predictions for fish mass on the training dataset 
and test dataset. The reason may be that different parts of fish have 
different mass density. The area vary greatly whether the tail is removed 
or not and the overall mass density is relatively uniform when tail is 
removed, therefore using the on area and its square as parameters has 
the best performance. These findings have important guiding signifi-
cance to select which characteristics to estimate fish mass in future 
research. 

In addition, compared with the linear model based on length or 
height, the linear model that included the area of fish with and without 
caudal fin for mass prediction had a better performance with the R2 of 
0.982, 0.988, the RMSE of 9.47, 8.03, the MAE of 7.34, 6.00 and the 
MaxRE of 11.78%, 9.66%, respectively, which has worse performance 
than the model based on area and its square as predictor variables. 
Compared with the mass prediction model based on other features, the 
model based on area and area square perform best to predict the mass in 
test dataset as shown in Table 4. However, this study about the model 
based on area and its square to predict mass of free-swimming fish has 
not been found in existing literatures. The caudal fin of free-swimming 
fish underwater is always deformed or bent, which causes errors in 
size measurement using computer vision, further resulting in errors for 
mass measurement. Moreover, the established model based on area and 
its square without tail fins is more accurate to predict fish mass. 
Therefore, the developed mathematical model included area and area 
square as predictor variables extracted from fish without tail fin is 
necessary to be applied for mass estimation of free-swimming fish un-
derwater. In future works, this established mass prediction model based 
on area and area square as predictor variables can be used to estimate 
mass of free-swimming fish in water with binocular camera, which 
provides a reference for mass estimation of free-swimming fish in future. 

5. Conclusion 

This paper proposed a fully automatic method of tail fin removal 
based on Cartesian coordinate system and image analysis, which is of 
great significance for meeting the precision and level of intelligence in 
intensive aquaculture. The features respectively extracted from fish 
images with and without tail fin were used to develop fish mass pre-
diction model by the PLS. The experimental results showed that this 
proposed method of caudal fin removal is very helpful for more accurate 
estimation of fish mass. In addition, the model with fish area and its 
square area as variables extracted from fish without considering tail fin 
showed a better performance in test dataset (R2 = 0.991, RMSE = 7.10 g, 
MAE = 5.36 g, MaxRE = 8.46%). The performance of the model based 
on area and area square can be improved by removing the tail fin, which 
illustrated automatic tail fin removal is very necessary to accurately 
estimate the mass of crucians from fish image. Finally, the mass pre-
diction model based on area and length extracted from fish without tail 
fin perform best, which could be used to further predict biomass of free- 
swimming fish underwater more accurately in future research. 
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Table 5 
The comparison of different non-supervised methods.  

Methods  The theory Head 
direction 
determined 

Human 
intervention 

Universality 

Viazzi et al. 
(2015)  

The distance 
between fish 
contour and 
centroid 
coordinate 

No By looking 
at the first 
and last 
peak for the 
tail points 

Jade perch 
S. barcoo 

Bekkozhayeva 
et al. (2021)  

The 
localization 
of the point 
with the 
minimal 
height based 
on last ¼ of 
the fish 
body 

No Manually 
define last ¼ 
of the fish 
body 

Sumatra 
barb 

Ours  Cartesian 
coordinate 
system, fish 
contour and 
centroid 
coordinate 

Yes No Fish species 
whose 
shape of tail 
fin is similar 
to that of 
crucians 
carp  
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