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H I G H L I G H T S  

• Visual perception and evaluation of landscapes are important in large-scale river analysis. 
• A new approach using UAV oblique imagery and computer vision. 
• A comprehensive perception study of riverscapes with bifurcated experiments. 
• The method is automated and scalable in other geographies. 
• The open dataset supports future studies.  
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A B S T R A C T   

Traditional approaches for visual perception and evaluation of river landscapes adopt on-site surveys or as
sessments through photographs. The former is expensive, hindering large-scale analyses, and it is conducted only 
on street-level or top-down imagery. The latter only reflects the subjective perception and also entails a laborious 
process. Addressing these challenges, this study proposes an alternative: a novel workflow for visual analysis of 
urban river landscapes by combining unmanned aerial vehicle (UAV) oblique photography with computer vision 
(CV) and virtual reality (VR). The approach is demonstrated with an experiment on a section of the Grand Canal 
in China where UAV oblique panoramic imagery has been processed using semantic segmentation for visual 
evaluation with an index system we designed. Concurrent surveys, immersive and non-immersive VR, are used to 
evaluate these photos, with a total of 111 participants expressing their perceptions across multiple dimensions. 
Then, the relationship between the people’s subjective visual perception and the river landscape environment as 
seen by computers has been established. The results suggest that using this approach, rivers and surrounding 
landscapes can be analyzed automatically and efficiently, and the mean pixel accuracy (MPA) of the developed 
model is 90%, which advances state of the art. The results of this study can benefit urban planners in formulating 
riverside development policies, analyzing the perception of plans for a future scenario before an area is rede
veloped, and the method can also aid relevant parties in having a macro understanding of the overall situation of 
the river as a basis for follow-up research. Due to simplicity, accuracy and effectiveness, this workflow is 
transferable and cost-effective for large-scale investigations of riverscapes and linear heritage. We openly release 
Semantic Riverscapes—the dataset we collected and processed, bridging another gap in the field.   

1. Introduction 

Human development is closely related to river landscapes world
wide, and therefore it is necessary to consider how people perceive, 

value, and interact with river landscapes in various ways (Garau, Tor
ralba, & Pueyo-Ros, 2021; Verbrugge & van den Born, 2018; Portela 
et al., 2021; Gottwald & Stedman, 2020; Guo, Fu, Wang, Xu, & Liu, 
2021). As one of the most important means for the public to perceive the 
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landscape, vision accounts for 76% on environment satisfaction (Krause, 
2001; Jeon & Jo, 2020). Visual perception and evaluation have become 
the mainstay for researchers, practitioners, and governments to under
stand the landscape quality of urban streets, parks, scenic spots, and 
rivers (Qi et al., 2020; Jin & Wang, 2021). River visual perception and 
evaluation refers to the analysis of the characteristics and functions of 
the research area based on specific purposes, combined with qualitative 
and quantitative approaches. Traditional visual analysis methods of 
river landscapes involve on-site visits and field photography, which are 
labour-intensive, time-consuming, and often restricted by factors such as 
obstacles, topography and climate (Mouratidis & Hassan, 2020). Some 
visual studies use 2D images for virtual perception (Sun et al., 2021; Li 
et al., 2021), but such an approach has limitations in terms of inter
activity, virtual immersion and field of view, and it is often a tedious 
process. Therefore, objective visual evaluation and efficient perception 
of large-scale linear river landscapes remain underexplored and chal
lenging, especially in locations where field experiments are impossible 
or dangerous. 

With the rapid development of unmanned aerial vehicle (UAV) 
technology, UAV has been widely used in large-scale landscape analysis 
including the field of riverscapes (Woodget, Austrums, Maddock, & 
Habit, 2017; Rusnák, Sládek, Kidová, & Lehotský, 2018; Torgersen et al., 
2021; Rivas Casado, Ballesteros Gonzalez, Wright, & Bellamy, 2016; 
Mǐrijovsky ̀ & Langhammer, 2015). In comparison with the small sensing 
range of the traditional ground view and the limitation that the satellite 
perspective is on the nadir, UAV offers middle ground with an optimal 
perspective—it can take oblique panoramic images at different heights 
in addition to taking ordinary photos in three modes of the oblique, top 
view and horizontal (Brumana, Barazzetti, Oreni, & Roncoroni, 2013), 
and it overcomes the limitation of ground view and satellite nadir, as 
cameras capture images from different angles and can obtain both the 
top information and facade textures of the research area in the same shot 
(Lyu, Vosselman, Xia, Yilmaz, & Yang, 2020). According to recent pa
pers, UAV oblique panoramic images are now entrenched as novel 
geospatial data characterized by the superiority of full perspective, 
virtual reality (VR), and high realism (Li, Karim, & Qin, 2022; Zhang 
et al., 2020). The direction of large-scale landscape visual perception is 
moving towards the use of UAVs combined with a variety of cutting- 
edge technologies (Harknett et al., 2022; Meng et al., 2022). For 
example, the combination of UAV panorama images and VR technolo
gies allows visualizing the surroundings of the landscape, which is more 
beneficial to the public’s omnidirectional perception of a location (Lan 
et al., 2016; Santos, Henriques, Mariano, & Pereira, 2018). The VR 
technologies are particularly useful in areas where fieldwork is impos
sible, dangerous, or expensive. VR can further improve the interactive 
experience in the process of visual evaluation and bridge the gaps of 
limited shooting angle and poor interactivity of traditional photos (Feng, 
2021; Birenboim et al., 2019). Meanwhile, virtual landscape perception 
through UAV and VR is proliferating on the internet with multiple social 
media (Facebook, Twitter, DJI Forum, etc.) and video platforms (e.g. 
YouTube, TikTok, BiliBili).1 This virtual aerial tour and visual percep
tion type have developed into a crucial tool for displaying a location’s 
overall landscape qualities and as a vital basis for determining if a 
location is worthwhile for travel. Thus, such an approach allows the 
extensive visual perspective of the landscape, with favourable aerial 
positions that cannot be obtained by satellite or ground observers 
(Papadopoulou, Papakonstantinou, Zouros, & Soulakellis, 2021). 
Therefore, the combination of UAV and VR has clear advantages in the 
research of visual perception of large-scale landscapes. 

In parallel, coupling the UAV oblique photography and computer 
vision (CV) has become an important method for quantifying vast urban 
landscapes (Lyu et al., 2020). Thanks to the fast development of CV, such 
as semantic segmentation and object detection, studies on visual quality 

evaluation based on such trending techniques are proliferating (Wu, Li, 
Hong, Tao, & Du, 2021; Garg et al., 2021; Wilkins et al., 2022; Wu & 
Biljecki, 2021; Ito & Biljecki, 2021). CV can process the profusion of 
images automatically, objectively and efficiently, and it is not entirely 
new to riverscapes either (Sharma, Isha, & Vashisht, 2021). For 
example, the study by Li et al. (2021) has used semantic segmentation to 
evaluate visual qualities of urban rivers from an on-water perspective. 
Wawrzyniak and Stateczny (2018) and Ming, Ya-duan, Lin-kai, Peng, 
and Qi-mei (2017) have used object detection to identify vessels on 
rivers. However, there is no existing study on visual perception or 
evaluation of riverscapes that combines CV and UAV, which is a gap we 
seek to bridge in this paper. 

Apart from that, studies employing CV on various types of urban 
imagery at the ground level (e.g. street view imagery and photos taken 
by tourists and residents) have relied on general datasets such as MS- 
COCO (Lin et al., 2014), Cityscapes (Cordts et al., 2016), and Pascal 
VOC (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010; 
Shetty, 2016) to train deep learning models to visually evaluate the 
environment (Biljecki & Ito, 2021; Hosseini, Miranda, Lin, & Silva, 
2022; Seiferling, Naik, Ratti, & Proulx, 2017; Verma, Jana, & Ram
amritham, 2019; Ibrahim, Haworth, & Cheng, 2020). However, for our 
studies, these datasets may fall short, and there is no openly available 
processed UAV oblique dataset for the river landscapes by the time of 
writing this paper, which indicates the importance of our study to fill in 
such a gap. 

Considering the developments in computer vision and virtual reality 
and the convenience of UAV oblique photography, we believe that 
research marrying the three is needed and timely. In this study, we aim 
to build a visual analysis workflow for large-scale river landscapes based 
on UAV oblique panoramas. By using CV and VR, we seek to assess 
people’s subjective visual perceptions and the proportion of physical 
environment elements effectively. Taking the Tianjin section of the 
Grand Canal in China as a case study, this study proposes an objective 
visual evaluation approach to river landscapes based on the combination 
of UAV oblique photography and CV so as to achieve flexible and effi
cient visual analysis of rivers and surrounding areas. In the subjective 
visual perception study of this research, the UAV panoramic photos are 
displayed through two VR experiments. One is the immersive virtual 
reality (IVR) approach using head-mounted displays, while the other 
one relies on non-immersive virtual reality (nIVR), which uses tablets, 
smartphones and so on. In both, study participants can have a remote 
virtual experience of the river landscapes and will provide how they feel 
about the tranquillity, pleasure, beauty and other dimensions of the 
study area. We validate the virtual experience outcomes by cross- 
validation of the two experimental results. The research questions are 
as follows:  

• How to construct a workflow for a visual analysis of large-scale river 
landscapes based on UAV oblique panoramas?  

• Taking the south canal and the north canal in China as examples, 
how are their objective visual characteristics different, and what are 
the differences in people’s subjective perception of various 
riverscapes?  

• What is the relationship between objective visual analysis results and 
subjective visual perception results? 

2. Background and related work 

2.1. The way of oblique: UAV photos compared with satellite images and 
SVI 

UAV, aerial/satellite, and street view imagery (SVI) are essential for 
understanding landscapes (Meinen & Robinson, 2020; Rouse, Tabaldiev, 
& Matuzeviciute, 2021; Hritz, 2014; del Río-Mena, Willemen, Tesfa
mariam, Beukes, & Nelson, 2020; Kim, Lee, Hipp, & Ki, 2021; Biljecki & 
Ito, 2021; Li, Ratti, & Seiferling, 2018; Luo, Liu, & Cao, 2022). These 1 Example link: https://www.youtube.com/watch?v=L_tqK4eqelA. 
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three types have their own characteristics, and each plays an instru
mental role in spatial information sciences, producing significant vol
umes of data contributing to a wide range of domains and use cases 
(Fig. 1). The increasing production of imagery can be partly explained 
by the democratization of UAVs and SVI due to the decreasing cost of 
exploitation (Sun & Scanlon, 2019), the increase in the number of 
deployed satellites (Ghamisi et al., 2019), and the growing coverage of 
commercial services such as Google Street View, Baidu Maps, and vol
unteered geographic information (Yan et al., 2020; Ito & Biljecki, 2021). 

Satellite images have high temporal and global coverage; however, 
they are not without limitations (Pettorelli et al., 2018; Sheffield et al., 
2018). One shortcoming of satellites is that their viewing angle is fixed, 
as they can only acquire nadir imagery without clear facade information 
of the study areas; thus, it may not be suitable for visual perception of 
scenery (Emilien, Thomas, & Thomas, 2021; Ding, Zhou, Meng, & Long, 
2021; Tian, Shao, Ouyang, & Shen, 2021). In contrast, a camera 
mounted on a UAV can record flexibly, obtaining oblique, nadir, and 
even panoramic imagery (Brumana et al., 2012; Che et al., 2020), 
including video footage (Sun et al., 2021). UAV oblique and panoramic 
imagery can include the side textures of the viewing area, with a wider 
field of vision and richer content, facilitating field perception and 
evaluation (Santos et al., 2018). Other shortages of satellites are control 
and the lack of general flexibility—one cannot launch their own satel
lite, and the spatial data cannot be acquired easily on specific dates or at 
a specific time, as the data acquisition depends upon the satellite’s 
revisit or temporal resolution (Bhardwaj, Sam, Martín-Torres, & Kumar, 
2016). In comparison with satellite remote sensing, UAV allows a flex
ible flight schedule, its entry barriers are low (it is low-cost and easy to 
use), and the interval of repeated access may be shorter (Shao et al., 
2021), which makes it possible to quickly analyze the landscapes of 
specific locations during particular time (Ashilah et al., 2021; Hervouet, 
Dunford, Piégay, Belletti, & Trémélo, 2011). Image resolution is another 
limitation of the satellites (Khaliq et al., 2019; Iizuka et al., 2018). The 
flight altitude of UAVs is low and flexible (barring local flight regula
tions), meaning that it is generally below clouds (Watkins et al., 2020), 

and allows a very high ground resolution of imagery and video (Guerra- 
Hernández, Díaz-Varela, Ávarez-González, & Rodríguez-González, 
2021; Miraki, Sohrabi, Fatehi, & Kneubuehler, 2021; Qu et al., 2021). 
Therefore, we believe that it is not only more suited with respect to the 
perspective, but also it is visually clearer, and thus, more appropriate for 
accurate and reliable analysis in this particular context. 

In the same environment, UAV also has many advantages over the 
other end of the spectrum—SVI, which has been increasingly seen as a 
useful resource that enables researchers to measure urban landscapes 
precisely and thus examine the effects of the environment on residents’ 
well-being more effectively (Biljecki & Ito, 2021; Li, Santi, Courtney, 
Verma, & Ratti, 2018; Seiferling et al., 2017; Zhou, He, Cai, Wang, & Su, 
2019). However, despite the growing coverage of data, many off-road 
places, such as riversides, parks, villages, and other areas with rugged 
ground conditions, remain out of reach in street view surveys (Verma 
et al., 2019) and many of those urban objects that are captured remain 
obscured (cf. Fig. 1) (Pang & Biljecki, 2022). Further drawbacks include 
seasonal and time variability, and infrequent updates (Kim et al., 2021). 
In contrast, drones can collect data almost anywhere, and the shooting 
time is virtually unlimited (Nex et al., 2022), enabling a focused study 
and ensuring proper attention to capturing the required data. The 
operating height is another advantage as UAV can fly at different alti
tudes to provide a more suitable perspective and appropriate sight 
coverage. Flying higher, UAV can observe a wider range of scenes, which 
is conducive to large-scale scene perception (Lytkin & Syromyatnikov, 
2021; Schenone et al., 2021); while operating closer to the ground, more 
details can be observed, an unparalleled benefit. Therefore, UAV has 
become an important research tool in the fields of environmental 
detection (Youme, Bayet, Dembele, & Cambier, 2021), building facade 
inspection (Chen, Reichard, Xu, & Akanmu, 2021), agricultural moni
toring (Kerkech, Hafiane, & Canals, 2020), disaster rescue (Erdelj & 
Natalizio, 2016) and it also has been applied to city traffic, cultural 
heritage, and other disciplines (Ahmed, Ngoduy, Adnan, & Baig, 2021; 
Beg, Qureshi, Sheltami, & Yasar, 2021; Cai, Fang, Zhang, & Chen, 2021; 
Castrignanò et al., 2021; Baranwal, Raghvendra, Tiwari, & Pande, 2021; 

Fig. 1. Comparison of the three key types in sensing landscapes. The objects seen by the three types are outlined in different colours (e.g. two buildings – A and B, 
and a bridge over the river – C). Satellite imagery can only provide an understanding from nadir, while the street view perspective may not be able to fully perceive 
the riverscape. Source of the satellite image (top right) and SVI image (bottom right): Baidu Maps. 
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Karthik et al., 2021; Munawar, Ullah, Qayyum, & Heravi, 2021). Small, 
low-cost, and portable UAV will likely remain the key instrument of 
many data acquisition campaigns in the future, and this paper explores 
their usability for evaluating riverscapes. 

2.2. Role of CV and the landscape of UAV data 

With the continuous development of deep learning, especially the 
improvement of CV, techniques such as semantic segmentation have 
been gradually introduced into the research of landscape visual evalu
ation (Ma et al., 2021; Fong, Ong, & Nee, 2009; Song, Ning, Ye, Chan
dana, & Wang, 2022). CV has improved the ability to automatically and 
efficiently process a large volume of imagery for quantitatively analysis 
(Hu, Zhang, Gong, Ratti, & Li, 2020; He, Páez, & Liu, 2017). At present, 
there are some open segmentation datasets that can be used for a variety 
of studies in analysing the urban environment (Cordts et al., 2016; Lin 
et al., 2014). However, such datasets have not been developed specif
ically for UAV oblique scenes and there are only few semantic seg
mentation datasets of UAV aerial imagery (Lyu et al., 2020), a challenge 
that hampers a variety of studies relying on UAV as training CV models 
(Nex et al., 2022). Training datasets obtained with UAV would be 
beneficial, as in comparison with nadir photography, oblique counter
parts have a broader perspective, contain a variety of objects, and may 
have more complex semantic information. 

In this section, to understand related work that may support our 
study, we provide an overview of UAV open semantic segmentation 
datasets available so far to the extent of our knowledge (Table 1). These 
mainly include nadir data: ICG Drone Dataset (Sun, Yang, Zhang, & 
Zhang, 2021), FloodNet (Rahnemoonfar et al., 2021), and the Urban 
Drone Dataset (UDD) (Chen, Wang, Lu, Chen, & Wang, 2018). The ICG 
Drone Dataset focuses on semantic understanding of urban scenes for 
increasing the safety of autonomous drone flight and landing procedures 
(Sun et al., 2021). The imagery depicts more than 20 houses from nadir 
views acquired at an altitude of 5 to 30 meters above the ground. 
FloodNet dataset focuses on the post-disaster damage assessments, and it 
poses several challenges, including detection of flooded roads and 
buildings and distinguishing between natural water and flooded water 
(Chowdhury & Rahnemoonfar, 2021). UDD is collected by DJI-Phantom 
4 UAV at altitudes between 60 and 100 m and contains most part of 
nadir imagery and a few oblique imagery (Chen et al., 2018). It has 160 
images and contains 4 semantic classes: vegetation, building, car and 
free space for urban scene understanding (Wei, Wang, Yi, Chen, & Wang, 
2020; Xiang, Xia, & Zhang, 2018). 

Apart form that, UAV oblique datasets mainly include Aeroscapes 
(Nigam, Huang, & Ramanan, 2018) and UAVid (Lyu et al., 2020). The 
Aeroscapes semantic segmentation dataset includes imagery captured 
from an altitude range of 5 to 50 m using a commercial UAV. This 
dataset provides 3269 720p imagery and labels for 11 classes: person, 
bike, car, drone, boat, animal, obstacle, construction, vegetation, road 
and sky. The UAVid dataset has 300 oblique imagery. It is an urban 
street scene semantic segmentation dataset, and it has 8 object 

categories considered: building, road, static car, tree, low vegetation, 
human, moving car and background clutter. There are also some UAV 
aerial datasets, including video datasets that can support the analysis of 
the urban environment (Sun et al., 2021), understand the transportation 
problems (Mandal, Kumar, & Vipparthi, 2020), detect vehicles (Zhang, 
Liu, Chang, & Song, 2020) and so on, but most of them are not available 
openly and cannot be used for river scene segmentation. 

2.3. UAV and virtual reality 

Virtual reality technology is frequently employed in built environ
ment studies, allowing users to gain a comprehensive awareness of 
environmental aspects (Van Leeuwen, Hermans, Jylhä, Quanjer, & Nij
man, 2018). Immersive virtual reality and non-immersive virtual reality 
perception modalities can be distinguished (Okeil, 2010; Isaacs, Gil
mour, Blackwood, & Falconer, 2011). The IVR simulated environments 
typically completely surround the participant through the use of VR 
glasses (head-mounted display), while nIVR environments can be 
viewed directly on smart phones, iPads or computer screens (Paes, Iri
zarry, & Pujoni, 2021; Xu, Oberman, Aletta, Tong, & Kang, 2020). Both 
approaches have their own set of benefits and drawbacks. Using VR 
glasses to create an IVR experience will make participants feel more real 
than nIVR perception; however, some participants experience after long 
exposures to IVR glasses may have some negative side effects (or “VR 
sickness”), such as nausea, headache, and disorientation (Birenboim 
et al., 2019). In contrast, additional equipment, such as head-mounted 
displays, is not required for a nIVR experience. The realism of nIVR 
will be less than immersive perception, but the negative side effects will 
be minimal. 

People can have a large-scale immersive landscape environment 
perception experience with the combination of UAV panoramas and 
virtual reality technology, especially in locations with terrible ground 
conditions. In addition, UAV oblique photography modelling can be 
used to render 3D real-world scenes, which can then be coupled with 
virtual reality (Schmohl, Tutzauer, & Haala, 2020). These have been 
widely employed in news and sports event broadcasting, environmental 
monitoring, urban space management and so on (Keil, Edler, Schmitt, & 
Dickmann, 2021; Bakirman et al., 2020; Pavlik, 2020; Esposito, Mas
trorocco, Salvini, Oliveti, & Starita, 2017). The first benefit of combining 
the two is that it is easy for individuals to view the landscapes and 
monitor buildings (Kikuchi, Fukuda, & Yabuki, 2022; Bacco et al., 
2020). With the help of VR and drones, people can get a comprehensive 
view of the study area. The broad viewpoint allows urban planners, 
governments, journalists, and residents to gain a macro understanding 
of places (Pavlik, 2020). When compared to earlier means of observing 
large-scale landscape elements from many angles from high-rise build
ings, observation platforms on high mountains, or employing helicop
ters, UAV marrying VR is unquestionably more convenient. The second 
distinguishing aspect is the high level of interactivity (Elghaish et al., 
2020). Viewers can enjoy these UAV panoramic photographs or videos 
based on their preferences and even enlarge some areas of interest to 
learn more about the research region in more detail. High-precision geo- 
tagged data is the third characteristic. The UAV’s panoramic image in
cludes high-precision longitude, latitude, and altitude information, and 
it enables people to create map-based immersive imagery. People can 
clearly know their specific location and height details when they 
remotely perceive these panoramic pictures with geographical labels, 
which has become an important data source for them to watch and 
understand the research location information, which is conducive to 
people understanding and analyzing the spatial characteristics of a 
specific place. The fourth feature is the ability to achieve augmented 
reality (AR) visualization (Kikuchi et al., 2022; Lindner, Ortwein, Staar, 
& Rienow, 2021). The advancement of 3D modelling technology based 
on UAV oblique photography has greatly improved people’s ability to 
virtual perceive landscapes, and it is now widely used in the fields of 
cultural heritage protection, landscape perception, building inspection 

Table 1 
Overview of existing open UAV datasets and our newly introduced contribution.  

Datasets Classes Images Shooting 
height 

Shooting 
angle 

Aeroscapes 11 3269 5–50 m nadir, 
oblique 

UAVid 8 300 unknown oblique 
FloodNet 9 2343 60 m nadir 
ICG Drone Dataset 20 400 5–30 m nadir 
UDD 5 160 60–100 m nadir  

Semantic Riverscapes (our 
contribution) 

14 400 30–60 m oblique       
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and so on (Liu, Xia, Chen, & Li, 2021; Smaczyński & Horbiński, 2021; Al- 
Bahri, Al Kishri, & Dharamshi, 2021). 

3. Methods and materials 

3.1. Study area 

China’s Grand Canal is one of the most famous man-made rivers in 
the world. Its length is 1794 km, it flows through 21 major cities 
(including Tianjin, Beijing, and Hangzhou), and connects five major 
rivers (Qiantang, Huai, Yangtze, Yellow, and Hai) (Wen, Xiao, & Zhang, 
2017; Li, Zhang, & Sun, 2020). The study area is located in the Tianjin 
section of the Grand Canal, which is composed of the north canal and the 
south canal, with a total length of about 24 km (Fig. 2). The main rea
sons for choosing this particular section of this nationally important 
river as the research area are as follows. First, it has played a monu
mental role in the local economic and cultural development, and the 
Chinese government is preparing to build the Grand Canal National 
Cultural Park, which has attracted much attention worldwide (Li et al., 
2021; Zhao, Yan, & Hou, 2021), and which encompasses the study area. 
The landscape visual evaluation and perception of this river section can 
provide information support for the construction of the National Cul
tural Park. Second, this river connects the southern and northern sub
urbs and the downtown of Tianjin, intersecting the daily life of residents, 
including providing open spaces for citizens for leisure activities and 
others. However, the visual characteristics of different areas are not 
clear at present, which is worth investigating. Third, there are no light- 
drone flight restrictions in this area, which enables us some flexibility 
and experiment with different scenarios of data acquisition. In addition, 
there is no complex electromagnetic interference in this urban area, 
which ensures the flight safety of UAVs, so we can use small drones 
easily for aerial oblique photography. 

3.2. Data collection 

In this study, a DJI Mavic Air 2 UAV (Lan & Lee, 2021) was used to 
obtain geo-tagged aerial oblique imagery for objective visual analysis 

and subjective visual perception (Fig. 3). This drone is equipped with an 
image sensor with 1/ 2-inch CMOS, an angle of view of 84◦, an equiv
alent focal length of 24 mm, and an effective resolution of 48 million 
pixels. We checked the clarity of this configuration and found that we 
can distinguish people, vehicles, shrubs, and other minor objects on the 
ground at a height of 60 m. As a result, we believe that this drone meets 
the requirements of this research. The aerial photography data collec
tion took place over four days from 10 am to 6 pm during the period 
from July to September 2021 under stable light conditions. We set photo 
acquisition points every 300–500 m in the 24 km long linear research 
area, take panoramic oblique pictures, and number them successively 
from south to north (Fig. 2). 

With the change of UAV flight altitude, the shape and size of objects 
will change roughly in proportion (Xiang et al., 2018). The increase of 
the observation height brings a broader vision, but vehicles, people, 
vegetation and other objects in aerial images will become smaller, which 
brings challenges to the recognition of semantic information (Lyu et al., 
2020). In addition, low flying altitude also means a smaller field of 
vision. In some complex scenes, there may be potential safety hazards, 
such as electric towers, wires and branches, which may affect the flight 
(Watkins et al., 2020). Therefore, after comparing the data of four 
heights of 30 m, 60 m, 90 m and 120 m, we chose 60 m height as a 
compromise among safety, large field of vision and ground clarity. 

3.3. Semantic Riverscapes dataset 

To address the first research question, we start by describing the 
steps carried out to construct the Semantic Riverscapes dataset. After 
our literature review, we found that there is no openly available UAV 
oblique imagery semantic segmentation dataset that focuses on the river 
environment. Therefore, we acquire a large dataset containing UAV 
oblique images and segment them, which is tailored for the semantic 
segmentation of river scenes and can support applications such as the 
comprehensive visual analysis in river landscapes. In addition to col
lecting oblique panoramic imagery required for visual perception and 
evaluation, we also took a series of oblique photos along the river to 
construct a dataset for imagery semantic segmentation. After data 

Fig. 2. Study area and data collection points. Field panoramic oblique photographs of the four selected mapping points show the surveyed river landscapes. Source of 
the base map: Amap. 
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acquisition and processing, we derived the dataset with 400 high- 
resolution images spanning the river and surrounding areas, each with 
a size of 1800 x 1480 pixels. When creating this dataset, we took careful 
consideration of the shooting conditions and referred to the character
istics of other datasets in order to make it more universal (Nigam et al., 
2018; Sun et al., 2021). In terms of height, the shooting height of these 
images has changed from 30 m to 60 m, which is similar to the height 
coverage of several other UAV semantic segmentation datasets (Nigam 
et al., 2018; Sun et al., 2021), in order to meet more research needs in 
the later stage, and it also contains the data of 60 m height that we use 
for visual perception and evaluation. We also consider the lighting 
conditions, and the pictures in the dataset include cloudy days and 
sunny days. Each image was manually labelled. We labelled the imagery 
into 14 categories, namely: building, cottage, under construction place, 
tree, grass, water grass, soil, hard ground, water, sky, human, car, boat, 
and void, a relatively comprehensive segmentation (cf. Table 1), which 
will be applicable to the river landscapes in most parts of the world. 
According to the characteristics of river landscapes, we have decided to 
break down greenery into trees, grass, and water grass, to distinguish the 
water plants and the vegetation around the river. Similarly, we regard 
multiple groups of buildings: regular buildings, cottages, and construc
tion sites. Our aerial images have been labelled at pixel level with EISeg 
software (Xian, Xu, Cheng, Zhang, & Ding, 2016; Hao et al., 2021), 
which was developed based on PaddlePaddle (Ma, Yu, Wu, & Wang, 
2019), which covers the majority of high-quality segmentation models 
in different directions, namely general scenarios, portrait, remote 
sensing, medical treatment, etc., providing convenience to the rapid 
annotation of semantic and instance labels with reduced cost (Hao et al., 
2021). 

3.4. Objective visual analysis 

3.4.1. Automated image segmentation 
The manually annotated dataset is used to develop a CV model for 

image segmentation. Many ready-to-use models, such as FCN, SegNet, 
U-net, PSP-net, and SegFormer, can detect objects and perform seg
mentation of an image (Badrinarayanan, Kendall, & Cipolla, 2017; Zhao, 
Shi, Qi, Wang, & Jia, 2017; Xia, Yabuki, & Fukuda, 2021). Considering 

the characteristics of UAV data and operability in river landscapes, we 
select SegFormer, a cutting-edge Transformer framework for semantic 
segmentation that jointly considers efficiency, accuracy, and robustness 
for image semantic segmentation (Xie et al., 2021). To ensure the 
robustness of the reported model, we have adopted the common practice 
of randomly splitting the dataset into two portions: training (90%) and 
validation (10%). Two metrics were used to evaluate the training and 
validation process: mean pixel accuracy (MPA) and mean Intersection 
over Union (mIoU). The former is the ratio of correctly predicted pixels 
to the total pixels, the latter is a common and effective evaluation metric 
used for image semantic segmentation tasks, and it is the ratio of the 
intersection area of the predicted pixels and ground truth pixels to their 
union area. It is also commonly used in urban analytics and spatial in
formation sciences (Wu & Biljecki, 2022). After using the UAV river
scapes dataset to train the SegFormer model, we classify the 14 types of 
elements in the panoramic oblique imagery at the pixel level and can 
objectively analyze the proportion of these types of landscape elements 
in different imagery. 

3.4.2. Index system—characterising the view 
Both the natural elements (e.g. greenery, water, and sky) and the 

artificial elements (e.g. building and hard ground) have a considerable 
impact on the visual quality and aesthetic cognition of landscapes 
(Jahani & Saffariha, 2020). In work engaging image segmentation to 
extract indicators of the built environment, researchers often computed 
one or more indexes to quantify the view from the semantic point of 
view (Ki & Lee, 2021; Li et al., 2015; Li, 2021). Based on the previous 
research experience of visual landscapes and combined with the char
acteristics of river environment (Li et al., 2021), we extend existing 
indexing approaches for river landscape visual evaluation, adopting the 
green visibility index (GVI), water visibility index (WVI), and sky visi
bility index (SKVI), and introducing two new measures: the hard ground 
visibility index (HVI) and building visibility index (BVI) (Table 2). 
Among them, vegetation is one of the most important landscape ele
ments in the river landscapes (Xin, Xiangrong, Liang, & Danzi, 2021), 
and the GVI includes trees, grass and water plants, which affect the 
ecology and natural degree of the river space. Water is the main element 
in riverscape; thus, WVI plays a substantial important role in vision. 

Fig. 3. Overview of the workflow. Step 1: generating the original sample data. Step 2: visual evaluation and perception methods. Step 3: visualization of evaluation 
and perception results and their correlation analysis. 
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SKVI can measure the openness of river space, and also has a great 
impact on people’s vision. HVI and BVI are significant indicators 
reflecting the intensity of artificial construction in a river channel and 
surrounding areas. These two indicators, which are different from those 
in previous studies (Li et al., 2021; Gong et al., 2018), are the contents 
viewed from UAV oblique perspectives, and contain a wider range of 
semantic information. Among them, the HVI includes not only hard 
pavement, driveway and sidewalk, but also bridges and community 
squares, and it can reflect the hard condition of the ground in an area. 
Buildings (apartments, office buildings, residential buildings, etc.), tiny 
cottages, and rural dwellings, as well as under-construction places, etc., 
are all included in the BVI, which is useful for portraying the percentage 
of buildings in an area in three-dimensional panoramas. 

Atotal i is the total number of pixels in image i, Atr i is the number of 
tree pixels in image i, Agr i is the number of grass pixels in image i, Awg i 

is the number of water grass pixels in image i, Awa i is the number of 
water pixels in image i, Ask i is the number of sky pixels in image i, Ahg i 

is the number of hard ground pixels in image i, Abu i is the number of 
building pixels in image i, Aco i is the number of cottage pixels in image i, 
Auc i is the number of under construction place pixels in image i. 

3.5. Subjective visual perception 

Although UAV aerial photography has been widely used recently, 
most of the relevant research focuses on ordinary photos taken from a 
single perspective, which cannot fully display all the characteristics of 
the shooting area in combination with advanced virtual interactive 
equipment such as VR glasses. The panoramic image shows the sur
rounding environment centred on the position of the UAV itself and can 
provide participants with an immersive virtual feeling by using VR 
glasses (Newman, Gatersleben, Wyles, & Ratcliffe, 2022). It can also 
provide non-immersive virtual perception through iPads, smartphones 
with gyroscopes and accelerometers and other devices so as to achieve 
remote virtual display and reproduce the real environment. So the UAV 
panoramic images effectively bridge this defect. Compared with the 
traditional image-based evaluation methods, the use of both IVR and 
nIVR technologies for landscape visual perception can bring more 
intuitive experience (Birenboim et al., 2019). 

A previous UAV-related landscape perception study used pleasure, 
tranquillity, colour, complexity, etc. as indicators (Yang, Gao, Li, & Van 
Eetvelde, 2020). Relevant urban environmental studies have analyzed 
the types of human perception, such as safety, beauty, colour, liveliness, 
boredom and depression (Ma, Hauer, Xu, & Li, 2021; Dubey, Naik, 

Parikh, Raskar, & Hidalgo, 2016; Yao et al., 2019; Yao et al., 2021; 
Zhang, Fan, Kang, Hu, & Ratti, 2021). Adopting the previous experience 
in the state of the art of visual perception and the characteristics of river 
landscapes, this study takes beauty, pleasure, tranquillity, colour, 
complexity and liveliness as perception indexes, and uses these six in
dexes to analyze the subjective visual perception of river landscapes. 
Beauty estimation is a common way for landscape visual quality 
assessment and can describe public aesthetic preferences (Sun, Shao, Li, 
Huang, & Yang, 2018; Li, Shen, & Ding, 2020). Pleasure, tranquillity, 
and liveliness are also used as the landscape perceptual analysis contents 
(Yang et al., 2020; Ma et al., 2021). The colour richness and visual 
complexity, as perceptual quality indexes, are related to the affective 
appraisal of the landscape (Berlyne, 1970; Cavalcante et al., 2014; Yang 
et al., 2020). Assessing these perception types can help understand 
participants’ feelings about the river environments. 

The ethical aspects of this study have been reviewed, and the 
experiment was approved by the Institutional Review Board of the Na
tional University of Singapore. The survey was divided into two groups: 
immersive virtual perception group and non-immersive perception 
group, and the data obtained from the two groups of experiments can be 
cross-verified. It took place in January and April 2022. The immersive 
virtual environment was presented via the lenses of a Pico Neo 3 head- 
mounted display, and the non-immersive virtual environment was pre
sented via iPads, smartphones, and PCs. The participants were students 
and staff from the National University of Singapore and Tianjin Uni
versity, adding diversity to the demographics and including also par
ticipants who are not residents of Tianjin. The immersive VR perception 
group of participants who took part in the experiment comprised 21 
individuals with a mean age of 27.1, 16 (76.2%) were females, and 15 
(71.4%) were students, and the non-immersive VR perception group of 
participants who took part in the experiment comprised 90 individuals 
with a mean age of 25.6, 53 (58.9%) were females, and 78 (86.7%) were 
students. Participants who took part in the nIVR experiment were 
involved in this visual perception process through a web questionnaire. 
The 720 yun platform was used for virtual display of panoramic photos, 
so the participants could conduct nIVR experience online. 

For participants to fully understand the content of each panoramic 
image, each participant needed to look around each scene and browse 
for no less than 40 s. To avoid the negative side effects (or “VR sick
ness”), such as dizziness and nausea, caused by the long exposures to 
head-mounted displays and the influence of fatigue on the score, we 
divided the panoramic images of 48 mapping locations into 3 groups 
using an equal difference sequence, and each group experienced 16 lo
cations. Both the two perception groups of participants only watched 16 
panoramic pictures, and their experience time was no more than 20 min 
(Park & Lee, 2020; Birenboim et al., 2019). Therefore, each mapping 
point (cf. Fig. 2) has IVR scores of 7 participants and nIVR scores of 30 
participants. After experiencing each panoramic image, participants 
rated it through multiple dimensions: beauty, pleasure, tranquillity, 
colour, complexity, and liveliness using the 7-point Likert scale (Likert, 
1932) (e.g. with 1 referring to ‘It is not tranquil at all’ to 7 indicating 
that it appears to be very much tranquil). The final score of each scene is 
the average of the participants’ scores of the two groups. 

4. Results 

4.1. Objective visual evaluation results 

4.1.1. Proportion of visual elements 
With an MPA of 90% and a mIoU of 47%, our trained SegFormer 

model under the Transformer framework performs well in the imagery 
semantic segmentation task, meeting the experimental conditions. Fig. 4 
shows the results of successfully segmenting 14 elements of river 
landscapes. 

The findings of pixel-level semantic segmentation of panoramic 
oblique images of 48 mapping points we obtained using this model are 

Table 2 
Description of the objective indexes.  

Dimension Parameter Parameter description Parameter 
equation 

Natural Green Visibility 
Index (GVI) 

The proportion of vegetation 
pixels (tree, grass, water 
grass) in the image 

GVI = (Atr i +

Agr i + Awg i)/ 
Atotal i 

Water Visibility 
Index (WVI) 

The proportion of water pixels 
in the image 

WVI = Awa i / 
Atotal i 

Sky Visibility 
Index (SKVI) 

The proportion of sky pixels in 
the image 

SKVI = Ask i / 
Atotal i  

Artificial Hard ground 
Visibility Index 
(HVI) 

The proportion of hard 
ground pixels (includes not 
only carriageways and 
sidewalks, but also bridges, 
community squares, etc.) in 
the image 

HVI = Ahg i / 
Atotal i 

Building 
Visibility Index 
(BVI) 

The proportion of building 
pixels (high-rise residential 
buildings, cottage, 
commercial office buildings, 
buildings under construction, 
etc.) in the image 

BVI = (Abu i +

Aco i + Auc i)/ 
Atotal i  
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helpful in analyzing river sceneries from various perspectives. After 
counting the 14 semantic segmentation contents in all panoramic im
ages, we discover that, in general, the proportion of sky, water and tree 
is 75%, which forms the leading skeleton of the river landscape. Among 
them, the sky accounts for 38%, the water accounts for 23%, and the tree 
accounts for 14%. This part of the Grand Canal’s vision is dominated by 
these features, which form the primary visual style. Hard ground, 
buildings, and grassland make up a smaller percentage of the total, with 
9% of hard ground, 7% of buildings, and 6% of grassland. The pro
portions of soil, cottage, automobile, boat, and other components, on the 
other hand, are tiny, with the proportion of soil being 3% and the pro
portion of other elements being less than 1%. 

4.1.2. Evaluation results 
To answer the second research question, we compared the objective 

and subjective visual characteristics of 48 locations of the two rivers by 
classifying and counting pixel ratios of landscape elements in the 
panoramic images (Fig. 5). The geographical distribution of water, trees, 
and grass is noticeably unequal. The distribution of buildings, hard 
ground, and other objects, on the other hand, is rather uniform, whereas 
the variation in sky is smaller. Specifically, the visible area of the water 
shows the characteristics of more in the middle, less on both sides, and 
less in the south part of the studied portion of the canal than in the 
northern one. The visible area of the water at the canal intersection is 
substantially larger than the south canal and the north canal. The 
observable surface of water between mapping locations 19–26 is very 
large, whereas the average water area between mapping points 26–50 is 
higher than that of mapping sites 1–18, based on the placement of 
mapping points. In some locations, the distribution of trees reveals the 
characteristics of considerable changes. The visible area of the tree is 

higher between mapping locations 11–18 than it is in other regions, 
whereas the visible area of mapping points 32–38 and 6–10 is slightly 
lower than that of mapping points 1–5 and 40–48. The overall spatial 
alteration of the building elements is minor. As a total, the proportion of 
buildings indicates a slight declining tendency from south to north. 
Among them, the proportion of buildings between mapping points 14 
and 19 of the south canal is relatively high, while the proportion of 
buildings between 1 and 10 is fairly low. The proportion of buildings in 
the north canal, on the other hand, is lower overall. 

By adding the proportions of different landscape elements, we ob
tained the spatial distribution of five indexes. GVI is composed of trees, 
grass and aquatic plants, and it presents the characteristics of less in the 
middle and more on both sides in space. Specifically, the GVI of mapping 
sites 19–24 is particularly low, whereas the GVI of locations 1–18 and 
32–48 is relatively high. The spatial green visibility of this part of the 
Grand Canal is directly proportional to the distance from the mapping 
locations to the central urban area, indicating that the higher the green 
visibility, the further away from the urban centre. BVI is composed of 
building, cottage and under construction place, and it changes little in 
space. Locations 12–21 have a slightly higher BVI, while locations 22–40 
have a comparatively low BVI. SKVI, WVI and HVI are separately 
composed of sky, water and hardground, so they are consistent with the 
spatial distribution characteristics of these three elements. 

4.2. Subjective visual perception results 

We cross-verified the results of the immersive VR and non-immersive 
VR perception experiments, and analyzed the correlation between them. 
The scores from the immersive VR experiment were highly correlated 
with non-immersive VR experiment scores in six perceptual indicators: 

Fig. 4. UAV panoramic oblique images and their semantic segmentation results.  
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beauty (Pearson correlation coefficient r = 0.841, p < 0.01), pleasure (r 
= 0.822, p < 0.01), tranquillity (r = 0.890, p < 0.01), colour (r = 0.731, 
p < 0.01), complexity (r = 0.757, p < 0.01), and liveliness (r = 0.675, p 
< 0.01). 

Six types of visual perception indexes of UAV panoramic 

photographs were quantitatively studied in 48 sites in this study (Fig. 6), 
the values of the six indexes were the average of the immersive VR and 
non-immersive VR experiments. On the whole, the average value of 
beauty of river landscape in the research region is relatively high, which 
is 3.949, the maximum value is 5.920, which appears at point 14, and 

Fig. 5. Visual evaluation of the results: the top images portray the segmentation results of panoramas at two locations in the sequence. The middle image indicates 
the sequential distribution of visual elements throughout the observed points (the most common 6 classes are included). The bottom image illustrates the results 
characterised by the index system (derived from the classes visible in the middle plot). The indexes, which are mutually exclusive, do not add up to 100% because not 
all classes are part of them. 

Fig. 6. Visual perception results throughout the linear study area, visualized as a streamgraph.  
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the minimum value is 2.170 at point 32. We observe that points in the 
range 1–14 and 37–41 have greater ratings, whereas points 26–35 have 
lower values. The mean value of notion of pleasure is the lowest, 
standing at 3.648, while the maximum value is 5.910, which occurs in 
location 5. The minimum value is 1.925, which appears at point 32. The 
average value of tranquillity is 3.657, the maximum value is 5.980 
(location 2), and the minimum value is 1.425 (location 18). Overall, the 
tranquillity score of the south canal is slightly higher than that of the 
north canal, while the score of the middle position (16–24) is lower. The 
average value of colour is 3.893, the maximum value is 5.725, which 
occurs in point 2, and the minimum value is 2.175 at location 32. The 
average value of complexity is the highest, 4.350, the maximum value is 
5.970, which appears in point 19, and the minimum value is 2.620, in 
position 44. The average value of liveliness is 3.826, the maximum value 
is 6.125, which occurs at position 2, and the minimum value is 2.130, 
which occurs at position 35. 

4.3. Correlation analysis 

To answer the third research question, we quantitatively explored 
the relationship between five visual evaluation indexes and six visual 
perception indexes based on the selected river landscape assessment and 
visual perception results. 

The relationships, visualised in Fig. 7a, indicate that the GVI and 
beauty, pleasure, tranquillity, colour and liveliness are all significant, 
and the correlation coefficient values are 0.55, 0.52, 0.64, 0.38 and 0.4, 
respectively, all of which are positive and in the moderate range, indi
cating that there is an association between the green vegetation and 
these five perception indexes. Simultaneously, the correlation coeffi
cient between GVI and complexity is close to 0, showing that GVI and 
complexity do not exhibit a relationship. The correlation coefficient 
between SKVI and tranquillity is 0.32, which means there is a positive 
correlation between sky and tranquillity. In contrast, the correlation 
coefficient between SKVI and beauty, pleasure, colour, complexity and 
liveliness is around 0, indicating no relationship between sky and these 
indexes. There is a significant correlation between BVI and complexity, 
and the correlation coefficient is 0.47, which means that there is a 
positive correlation between buildings and complexity. However, the 
correlation coefficient between BVI and beauty, pleasure, tranquillity, 
colour and liveliness is close to 0, indicating that there is no clear cor
relation. The correlation coefficient between HVI and tranquillity and 
complexity is significant. Specifically, the correlation coefficient be
tween HVI and tranquillity is − 0.49, indicating a significant negative 

correlation between hard ground and tranquillity. Between HVI and 
complexity, the correlation coefficient is 0.41 and shows the significance 
of a 0.05 level, which shows a significant positive correlation between 
the two indexes. In addition, the correlation between HVI and beauty, 
pleasure, colour and liveliness is not significant (p > 0.05), which means 
no correlation between hard ground and these four indexes. The WVI 
and beauty, pleasure, tranquillity, colour and liveliness all show a sig
nificant correlation, and the correlation coefficient values are − 0.46, 
− 0.46, − 0.44, − 0.39 and − 0.45, respectively, all of which are less than 
0, which means a moderate negative correlation between the water and 
beauty, pleasure, tranquillity, colour and liveliness. At the same time, 
there is no significant relationship between WVI and complexity, and the 
correlation coefficient is close to 0, suggesting no correlation between 
water and complexity. It can be seen that the water conditions in the 
study area are not pleasant, which will produce negative emotions for 
people. Finally, Fig. 7b indicates the correlations among the indexes. 
HVI and BVI, the two new indexes introduced in this paper, are not 
strongly correlated with any other index, affirming their uniqueness and 
contribution, and thus, we propound that they complement existing 
indexes. 

5. Discussion 

5.1. UAV perspective and the Semantic Riverscapes dataset 

River-related landscape design and construction continue to account 
for a significant portion of the overall environmental development. 
Therefore, it is crucial to investigate the current characteristics of river 
landscapes, and understanding this issue visually remains central to both 
the government and research institutions. However, most existing ap
proaches heavily rely on field survey workflow, including the investi
gation of riversides on the ground, which is time-consuming, labour 
intensive and costly; therefore, these means could benefit from intro
ducing new technologies (Yamashita, 2002; Sun et al., 2021). During our 
literature study, we discovered that neither satellite imagery nor SVI is 
optimal for visual perception and evaluation of large-scale riverscapes. 
The UAV, on the other hand, offers significant benefits for these oper
ations, but we discovered that no research had been done on river 
subjective visual perception using drone oblique imagery and VR and 
objective visual evaluation utilizing CV. In this study, we proposed to 
use UAV oblique photography to assess river landscapes, which can 
obtain a larger perspective and more content than a human viewpoint, 
and has become an important auxiliary tool and method for overall 

Fig. 7. Correlation coefficients among (a) the visual perception results and evaluation results; and (b) the indexes.  
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understanding of large-scale landscapes (Meng et al., 2021). We used an 
immersive sensing device (head-mounted display) and non-immersive 
sensing equipment (iPad, PC, etc.) to achieve the remote perception of 
river landscapes from a UAV perspective. The immersive VR perception 
brings people a high-quality sense of presence, while non-immersive VR 
perception can enable more individuals to participate in this visual 
perception experiment remotely. We cross-verified the perception re
sults of IVR and nIVR experiments and found a high correlation between 
them, and we believe these remote visual evaluation approaches can 
provide a reference for the follow-up study of UAV-based VR perception. 

The Semantic Riverscapes dataset is created in this study as a novel 
semantically annotated dataset of UAV oblique photography to aid in 
the comprehension of large-scale river landscapes and enrich the land
scape of open UAV datasets which are scarce, and none of these hitherto 
includes rivers and the surrounding context. The 14 categories that have 
been regarded in the semantic segmentation (e.g. building, cottage, tree, 
grass) can be detected by training the deep learning model, with MPA 
reaching 90 percent, compensating for the current research flaws in this 
domain. We can accurately batch process river landscape photos of both 
urban and rural locations with this dataset and semantic segmentation 
model, and it is applicable. On this basis, the workflow we proposed can 
quickly obtain evaluation results for the general condition of river 
landscapes, as well as analyze and compare GVI, BVI, HVI, and other 
river indexes, allowing environmental management institutions and 
relevant public bodies to better understand the environmental charac
teristics of rivers and provide data support for improving the spatial 
quality of river scenery. We have released this dataset openly for public 
use, together with documentation. The dataset has been released under 
the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 In
ternational license (CC BY-NC-SA 4.0) on Github,2 filling the afore
mentioned void in the field and complementing existing datasets (cf. 
Table 1). With this open dataset, practitioners and researchers can use it 
to conduct a large number of river scene-related studies, which we hope 
will promote the development of this field. Further contributions of this 
open dataset are: (i) it is a linear dataset and one that is focused on 
heritage, potentially benefiting research on other linear landscapes and 
types of heritage; (ii) it represents a study area in Asia and it contains 
oblique imagery, while existing open UAV datasets (Section 2.2) are 
mostly focused on other locations and other perspectives; and (iii) it 
contains a relatively large number of classes benefiting other types of 
research. 

5.2. Riverscape characteristics 

The environment features in most river landscapes remain ambig
uous, and there is a rising conflict between the needs of riverside envi
ronment understanding and river visual perception and evaluation. This 
is the first study to associate subjective VR perceptions of large-scale 
urban riverscapes from UAV oblique imagery in conjunction with a 
computer vision technique. Through the classified statistics of the pixel 
proportion of different landscape elements in the oblique photography 
panoramic pictures of dozens of locations in the research area, we 
accurately analyzed the proportion of different landscape elements in 
different areas and obtained the visual evaluation results. The physical 
setting of a place will affect people’s subjective visual perceptions of the 
site (Tabrizian, Baran, Van Berkel, Mitasova, & Meentemeyer, 2020). 
Using the common perception indexes of beauty, pleasure, tranquillity, 
colour, complexity, and liveliness, the subjective VR perceptions of river 
scenery were quantitatively examined to produce the visual perception 
findings, which is in line with related work examining other dimensions 
of urban landscapes. After analyzing the correlation between objective 
visual evaluation results and subjective visual perception results, we 

found that GVI exhibited an obvious positive correlation with beauty, 
pleasure, tranquillity, colour and liveliness, which is similar to the re
sults of street-level GVI analysis (Zhang et al., 2018; Ma et al., 2021). 
Therefore, it can be proved that the influence of GVI on people’s 
perception is not only applicable to urban street landscapes but also 
applicable to riverscapes from the oblique viewpoint, like the perspec
tive of UAV. The HVI had a negative correlation with tranquillity, and 
HVI, BVI and complexity showed a positive correlation, similar to 
related research conclusions (Li et al., 2021; Kerebel, Gélinas, Déry, 
Voigt, & Munson, 2019). In other words, plants are conducive to 
improving the visual quality of river landscapes, while artificial objects 
such as buildings and roads will affect and reduce people’s perception of 
beauty and pleasure. However, this study found that there is a negative 
correlation between water and beauty, pleasure, tranquillity, colour and 
liveliness, which is different from the previous research results (Li et al., 
2021), as the cited research highlights that the water quality in different 
regions and other influencing factors will affect the overall visual quality 
of river landscapes. To understand why the water body is negatively 
correlated with the perception indicators (beauty, pleasure, etc.), we 
examined the water body in these panoramic photographs and discov
ered that the colour of the water is not a pleasant blue, but rather a dark 
grey, making it unappealing. We further consulted the water quality 
information of these rivers and found that there is a lack of water re
sources in Tianjin, accompanied by severe water pollution (Cao et al., 
2021). Therefore, poor water quality can have a negative impact on 
people’s visual experience, which is also confirmed by previous research 
conclusions (Li, Chen, Hu, & Cho, 2021). The overhead viewpoint of 
high-rise residential buildings is comparable to that of UAVs. Li et al. 
(2021) has found a link between the visual characteristics (water visi
bility rate, green visibility rate, etc.) of urban rivers and housing values. 
The high green viewing rate of urban high-rise residential buildings and 
the river view with good water quality can raise house prices, whereas a 
low-quality river environment will lower house prices and affect peo
ple’s environmental perception, which is similar to our correlation 
conclusion. 

5.3. Limitations, challenges and future directions 

Although we demonstrate that we can engage UAV oblique 
photography data and deep learning to analyze the characteristics of 
river landscapes instead of manual analysis, there are still some issues to 
be solved and this work leaves opportunities for further investigations.  

• Firstly, image semantic segmentation can be more accurate with 
further efforts. At present, our dataset can identify green plants, but 
in higher latitudes, most of the vegetation in winter lacks green 
leaves and mostly exists in the form of branches, so it can not be 
identified as vegetation. In follow-up research, we plan to mark more 
images in different seasons, and then use it to train the existing 
model to obtain improved image segmentation.  

• Secondly, while we had experimented with a few heights (Section 
3.2), we chose 60 m as the altitude of UAV to obtain data, which 
maintains the consistency of data, but we have not studied the data at 
other altitudes extensively. Therefore, more data at different heights 
will be considered in the future to deepen the understanding of 
spatial features.  

• Thirdly, we used manual flight to obtain data; thus, the number of 
UAV aerial survey locations is still relatively limited. The survey 
areas can be further expanded to lay a foundation for larger quan
titative analysis studies of visual perception and evaluation. In the 
later stage, we will consider using a full-automatic program (e.g. 
GeoAI-empowered approaches (Liu & Biljecki, 2022)) to control the 
UAV to obtain spatial data so as to further expand the research area 
and reduce the workload and shorten the time interval for obtaining 
data. 

2 The dataset is available at https://github.com/ualsg/semantic-riverscapes- 
dataset. 
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• Finally, in the age of ‘Metaverse’ and digital twin, perceptions using 
UAV and virtual reality are widely adopted. The best way for humans 
to view these bird-eye-level scenes is via virtual and distant methods 
because it is practical in this study and future landscape evaluation 
and perception works (Pavlik, 2020). However, it is worth noting 
that the evaluation based on the means of virtual reality may not 
reflect the ratings in the real world. Compared with the real-world 
visual perception, the remote virtual rating may face bias. There
fore, our proposed method of remote visual perception can only 
provide a reference for future studies which adopt the same ap
proaches as ours. Additionally, we adopted six common perceptual 
indexes (beauty, pleasure, tranquillity, etc.) according to our study 
aims. Future works can explore more specific indicator systems for 
visual perception analysis. 

With the further development of UAV autopilot technologies, the 
efficiency of acquiring research data will be improved in the coming 
years. The accumulation of drone oblique photographic images and the 
assistance of automatic analysis technologies such as CV, UAV-related 
data will become a useful tool for large-scale spatial analysis and 
monitoring. Furthermore, without the need for surveyors to study the 
river environment, extensive data can be gathered. As a result, it has a 
great potentiality in regions with poor field conditions. Through the 
standardized UAV data processing process, the results of this study can 
not only facilitate promotion in different regions, but also meet the 
needs of iterative data updates in the same area, and it will also help to 
analyze the dynamic change characteristics of landscapes on a time 
scale, so as to improve the refinement and efficiency of spatial man
agement, which will be used by urban planners, environmental man
agers and other researchers. 

This study can be used to investigate large-scale river landscapes, 
provide a reference for the authorities to formulate riverside develop
ment policies, and can also be used to guide river planning projects. At 
the same time, the results of this study can benefit the construction of the 
National Cultural Park of the Grand Canal, and the methods can also 
help the government (and others leading similar projects elsewhere) to 
have a macro understanding of the overall situation of the river as a basis 
for follow-up works. For future work, we also plan to investigate 
whether we can render simulated scenarios of future redevelopments 
and predict the perception of each of these proposed scenarios to assist 
in decision-making. In addition, we intend to investigate the application 
of segmented 3D city models to enrich our approach, e.g. using other 
openly released datasets, complementing ours (Gao, Nan, Boom, & 
Ledoux, 2021), and to infuse soundscape into the models to better un
derstand the built environment (Edler, Kühne, Keil, & Dickmann, 2019; 
Hruby, 2019). For future instances of the dataset, we also plan to include 
an additional urban area. 

6. Conclusion 

We developed a visual analysis workflow based on UAV oblique 
panoramas for understanding macro river landscapes by combining 
subjective visual perceptions and objective visual evaluation through 
automated CV approaches, a novelty in this domain. Our method relies 
on concurrent experiments involving immersive and non-immersive 
experiences, a rarity. Satellite imagery has dominated related analyses 
in the built environment, and the rise of street view imagery has been 
pivoting and revolutionary. Still, these two types are often out of 
reach—in terms of coverage, clarity, access to the data, and acquisition 
flexibility. We show that UAVs are the middle ground with unique ad
vantages, and they provide a new perspective that cannot be rivalled by 
the aforementioned types. By introducing UAV oblique photography, a 
standardized workflow of UAV mapping, oblique image semantic seg
mentation, immersive VR and non-immersive VR experiences are con
structed to achieve the automatic landscape evaluation and people’s 
perception effectively and remotely. Besides a novel application of UAV 

oblique imagery in this research line, there are several key contributions 
of this study. First, we generated Semantic Riverscapes, an open se
mantic segmentation dataset of UAV oblique photography images based 
on river landscapes. Using this dataset and CV algorithms, rivers and 
surrounding landscapes can be analyzed automatically and efficiently, 
which overcomes the shortcomings of the state of the art. Second, we 
obtained 48 oblique panoramic images and quantitatively analyzed the 
proportion of 14 landscape elements such as buildings, trees and water 
in different locations of the river by using computer vision. The index 
system of river visual evaluation was extended with two novel instances, 
presenting a versatile set of several indexes. According to five of them, 
the river landscape was visually evaluated, and the evaluation results of 
the research area were obtained. Third, we used VR to visualize pano
ramic images, and had more than a hundred of participants in a non- 
immersive VR remote virtual experience and in an immersive VR 
perception of the river landscapes, and obtained their subjective visual 
perception of six dimensions (beauty, pleasure, tranquillity, colour, 
complexity and liveliness) through a systematic questionnaire. Also, we 
compared the two approaches, discovering their relationships. Fourth, 
we analyzed the correlation between the visual evaluation data of image 
semantic segmentation and human perception data and found the 
relationship between people’s visual perception and landscape envi
ronment; further, we explored the possible reasons for the correlation 
findings, which indicate that the variables ‘vegetation’ exhibited a 
positive correlation with beauty, pleasure, tranquillity, colour and 
liveliness, consists with the results of the street-level analysis. Our re
sults also indicate that the variable ‘water’ had a negative correlation 
with these perceptual indicators, which is different from the previous 
research results, and we explored the possible reasons. Therefore, our 
findings and proposed workflow can help planners to gather a macro 
understanding of the overall situation of the river and prompt author
ities to formulate riverside development policies, which are beneficial to 
the river-related environment. 
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