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A B S T R A C T

We devise a universal global adaptive filtering layer, GAFL, capable of ‘‘learning’’ optimal frequency filter for
each image in a dataset together with the weights of the base neural network that performs some computer
vision task. The proposed approach takes the source image in the spatial domain, selects the best frequencies
in the Fourier domain for the benefit of the global task, and prepends the inverse-transform image to the
main neural network for a joint training. Remarkably, such a simple add-on layer, capable of optimizing the
frequency content of an input for a specific task, dramatically improves the performance of the main network
regardless of its design. We observe that the light networks gain a noticeable boost in the performance metrics;
whereas, the training of the heavy ones converges faster when GAFL is prepended to the main architecture.
We showcase the performance of the layer in four classical computer vision tasks: classification, segmentation,
denoising, and erasing, considering popular natural and medical data benchmarks.
. Introduction

In recent years, computer vision (CV) algorithms have advanced
ignificantly thanks to the advent of artificial neural networks (ANN)
nd to the development of the computational resources capable of
orking with them (Szeliski, 2011). At the same time, the constantly
rowing volumes of data instigated a wave of research efforts involving
arge neural networks with a colossal number of parameters (Shazeer
t al., 2017), triggering the development of approaches for efficient
ata processing, model optimization, and training. One promising trend
s not to keep complicating the architectures, but to develop efficient
odules that allow one to look at computer tasks from a different angle,
xtracting semantics from the images and ultimately demanding less
ffort (Guo et al., 2016; Rhu et al., 2016). What could be done with
he images even before they enter a certain neural network is generally
oncerned with the task of image preprocessing (Bow, 2002) and will
e the leitmotif in this work. Particularly, we are interested in devel-
ping a ‘smart’ preprocessing module to the following four classical CV
roblems: segmentation, classification, erasing, and denoising.

The segmentation task is one of the most popular tasks in the field
f CV, as it allows to localize the object of interest in the image.
hen image segmentation is concerned, one naturally starts with the
-Net encoder–decoder like models (Ronneberger et al., 2015). At the
oment, there are various modifications that prove more accurate

han the baseline U-Net in various scenarios: Attention U-Net (Oktay
t al., 2018), U-Net++ (Zhou et al., 2018; Zhou et al., 2020), U-Net
+ (Huang et al., 2020), etc. Although much heavier and slower in
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training, ResNet and DenseNet models are also frequently employed for
the purpose of segmentation (Huang et al., 2016; He et al., 2015). One
naturally looks for lighter models that would reach the performance
level of the heavier models with dozens of millions of parameters (He
et al., 2015; Szeliski, 2011).

Image classification is frequently defined as the task of categorizing
images into one of several predefined classes, and it is another popular
problem in CV (Rawat and Wang, 2017; Szeliski, 2011). Binary clas-
sification is a precursor problem to many other CV challenges, and is
an analogy to the segmentation, with the output being a single pixel.
The same segmentation encoders can be employed for the classification
problem to obtain an embedding, and then, linear layers would predict
the class (Rawat and Wang, 2017).

Denoising is another important task in imaging which covers exten-
sive range of domains and applications (McCann et al., 2017). Popular
approaches, such as DnCNN (Zhang et al., 2017; Zuo et al., 2018),
already became classic and can restore blurred, damaged, and noisy
images exceptionally well. Naturally, denoising is also the problem
where frequency decomposition of an image becomes a particularly
important entity for a computer scientist (Zhang et al., 2011; McCann
et al., 2017). It is interesting how the frequency spectra change in
the denoising tasks. For example, one can cut out an area from an
image and see how a denoising model would paint over the area in
the presence of frequency filtering. Such erasing (Szeliski, 2011) task
will be also briefly considered in this work and is adjacent to another
popular problem of super-resolution in CV, where the missing pixels are
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processed to minimize the damage to the image or to maximize a value
function such as the resolution.

The problem of frequency filtering for denoising has been studied
very thoroughly in the signal processing and in the imaging physics
communities (Chowdhury et al., 2017). In fact, the filtering is at the
core of one of the most frequently used clinical imaging modalities —
the ultrasound (Ihnatsenka and Boezaart, 2010). Its typical high/mid-
range (5–15 MHz) and low (2–5 MHz) frequency probes provide either
good resolution or good penetration, but not both at once. The resulting
images, therefore, are extremely sensitive to the frequency tuning,
with various phenomena such as reverberation, shadowing, excessive
absorbance, reflection, and echo, giving the images the distinct grainy
look (Song et al., 2019; Wang et al., 2019).

What operators of the medical ultrasound do with their knobs on
the machine’s panel to enhance the appearance of the images in real
time has motivated us to mimic the similar ‘live’ filtering for the
CV problems. Specifically, we asked ourselves, what if a pre-training
block of a neural network would be capable of learning the optimal
frequencies for each image in the dataset live during the training,
effectively maximizing a value function of interest for the entire model?
Can we design a universal adaptive layer that would provide the
necessary frequency filter for any input image regardless of the network
architecture or the CV task at hand? Herein, we present such a solution.

Using the direct and the inverse Fourier transforms, we can switch
from the representation of the image in the spatial domain to that
in the frequency domain and vice versa. In the frequency spectrum,
particular frequencies are responsible for different properties of the
image (Szeliski, 2011), which can be either enhanced or suppressed
with filtering, depending on the value function of interest in one of the
four CV problems described above. For example, the high-pass filter,
used for the edge detection, can enhance edges and details, effectively
holding promise for improving the segmentation performance if it
partook in the training routine along with the main segmentation
network. In this article, we devise a simple adaptive add-on layer that
improves the quality and efficiency of popular neural networks in CV.
The layer learns to automatically find a global filter that will leave
only those frequencies that could boost the target metric in the entire
dataset (for example, Dice score in the segmentation, or F1-score in the
classification problem).

The rest of the paper is structured as follows. After covering the
work related to learning in the Fourier domain in Section 2, we describe
the algorithm behind the global adaptive layer in Section 3. We then
describe the datasets in Section 4.1: two medical (ultrasound, which
has motivated our work) and four natural image data benchmarks,
hypothesizing that the wave nature of the ultrasonic data would cor-
respond to a more efficient filtering than that of the natural images.
However, the rest of Section 4 reports a likewise enhancement of the
baseline performance for the natural images as well. Section 4 also
reports faster training convergence for the majority of models and tasks
and summarizes the results of a controlled and a large-scale studies.
Sections 5 and 6 conclude the paper.

Contributions of this paper are the following:

∙ The first adaptive layer to be trained alongside the main neural
network to boost its performance by finding globally optimal
filtering frequencies.

∙ A simple, universal, flexible, and intuitive solution for improving
and accelerating neural networks.

∙ We show at least 6 % increase in Dice score for light U-Net-
like architectures, and accelerate convergence of heavier models
(such as ResNet and DenseNet).

∙ We report 88 experimental scenarios, 5 variations of the adap-
tive layer, adding them on to 5 popular architectures, and testing
the outcomes on 6 (4 natural and 2 medical) dataset benchmarks
in 4 CV tasks.

∙ Careful control and large-scale studies are reported.
2

Fig. 1. Diagram of the proposed method. Global Adaptive Filtering Layer is trained
together with the weights of the main neural network until the prediction is maximized
in a given CV task.

2. Related work

Adoption of the learning algorithms from the non-image domains to
improve either the target metric or the efficiency of neural networks is
a rather recent trait. The Fourier space is one of such domains, where
there are several works reporting the spectral transforms with conse-
quent feature extraction to train their models (Pratt et al., 2017; Liu
et al., 2018; Lin et al., 2019). Fourier analysis has also been successfully
used for dynamic structure segmentation problems, where dynamic
structures were distinguished using only the phase spectra (Li et al.,
2009). We obviously omit a long list of works here, where the frequency
data was used for feature engineering or for some domain-specific
machine learning applications.

In 2020, however, there appeared a relevant work reporting se-
mantic segmentation with domain adaptation (Yang and Soatto, 2020),
where the spectral amplitudes of the source and the target images
were combined to boost the performance of the model. High-frequency
low-dimensional regression problems (where Fourier features improved
the results of the coordinate-based multi-layer perceptions for im-
age regression), 3D shape regression, MRI reconstruction, and inverse
rendering tasks are also some very recent results (Tancik et al., 2020).

These aforementioned works have shown their effectiveness by
proving that some information could be lost if one relies merely on
the spatial image domain. The difficulty, however, is that the manual
selection of the correct frequencies for optimizing an ANN is not
a simple task. Remarkably, none of the algorithms makes effort to
optimize the frequency spectra during the training routine of the main
architecture. Therefore, our solution is to automate the search for the
optimal weights in the frequency spectrum until the desired metric of a given
network is maximized for each CV task. Despite being rather intuitive,
such a solution has not been reported in the literature, motivating our
study herein.

3. Proposed method

Data preprocessing is an essential part of any CV algorithm (Szeliski,
2011), primarily done in the image space (Buslaev et al., 2020). Propos-
ing the same in the Fourier space, we want to dismiss the meaningless
features associated with spectral frequencies brought to the scene by
the image acquisition systems (an ultrasound machine or a photo
camera, in our case). As such, the method we look for belongs to
the class of minimum features inductive bias algorithms (Gordon and
Desjardins, 1995). The desired ‘smart’ spectral preprocessing method
should automatically distill the meaningful frequencies, being aware of
the entire model and ‘adapting’ to the entire dataset.

We propose the concept of such a globally adaptive neural layer
(see Fig. 1), which could be trained together with a model of interest to
solve a given CV problem. By placing this layer in front of the baseline
model, the algorithm should automatically select the weights for the
frequency components of all images sent in as the input to carry out
filtering with one purpose only: improve whatever the main architecture

attempts to do.
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Algorithm 1: Global Adaptive Filtering Layer

Input: 𝐼 – Initial image.
 – Fast Fourier Transform operator.

1: 𝑊1, 𝑊2, 𝐵1, 𝐵2 = ReLU( 𝑊1, 𝑊2, 𝐵1, 𝐵2);
2: 𝐹 = 𝐼 ;
3: 𝑆 = 𝑊2 ∗ 𝜎

(

𝑊1 ∗ |𝐹 | + 𝐵1

)

+ 𝐵2;
4: 𝑆 = 𝑆 ∗ 𝐹∕|𝐹 |;
5: 𝐼 ′ = −1𝑆;

Output: 𝐼 ′ – Image after global frequency filtering.

Theoretically Blackledge (2005), Klette (2014) and Brunton and
utz (2019), while performing the Fourier transform, it is possible

o move from the frequency domain to the spatial one (and vice
ersa) without a loss of information. The Fourier transform has the
roperty of linearity, preserving the accuracy of signal approximation
Parseval’s theorem Blackledge, 2005), which is valid when the signal
s represented using discrete vectors. Define the Fourier transform as

𝐼(𝚞, 𝚟) =
𝑛−1
∑

𝚡=0

𝑚−1
∑

𝚢=0

𝐼(𝚡, 𝚢)
𝑛𝑚

exp
{

−2𝜋𝑖𝚡𝚞
𝑛

−
2𝜋𝑖𝚢𝚟
𝑚

}

, (3.1)

where 𝐼(𝚡, 𝚢) is the original image (spatial description) of size 𝑛 × 𝑚
and pixel coordinates (𝚡, 𝚢), and 𝐼(𝚞, 𝚟) is the frequency domain
image, with (𝚞, 𝚟) being the coordinates of the image in the frequency
domain. If the image has multiple channels, we transform each channel
separately by the same formula.

For the visual analysis of Fourier transform, one usually works with
the spectrum,2 i.e., the coordinate-wise absolute value |𝐼|, or the
energy spectrum |𝐼|2. To filter image in the frequency domain, we
choose to take a function that modifies spectrum |𝐼| in a specific way.
There is flexibility in designing filtering functions (Klette, 2014). For
example, one can independently select the frequencies to suppress or
enhance; however, due to the wide variety of options and the specifics
of each task, it is very difficult to select them manually. In contrast,
the proposed design of the filtering layer shown in Fig. 1 is capable of
automatically forming a more sophisticated and a task-specific filter.3

To approximate an arbitrary nonlinear function that performs the
desired filtering, a neural network with just one hidden layer is enough,
yielding the General configuration of GAFL:

|𝐼| ← 𝑊2 ∗ 𝜎
(

𝑊1 ∗ |𝐼| + 𝐵1

)

+ 𝐵2, (3.2)

where 𝑊1 and 𝑊2 are the weight matrices with non-negative elements,
𝐵1 and 𝐵2 are the bias matrices with non-negative elements, 𝜎(⋅) is some
nonlinear activation function, and ‘‘∗’’ denotes element-wise multipli-
cation. Algorithm 1 describes the complete function of the proposed
global adaptive filtering layer.

Handling small frequency values. When a base neural network is cho-
sen, the proposed layer is pre-pended to it and, then, evaluated with
several variations to experiment with the small values of non-central
frequencies. These variations were studied to ‘boost’ the appearance of
the smallest frequency pixel values in the spectra, as the intensity of
a typical central frequency often ‘overwhelms’ the smaller values on
the periphery (see insets in Fig. 3 below to see the typical spike-shaped
learnt spectra). For example, the General log configuration

|𝐼| ← 𝑊2 ∗ 𝜎
(

𝑊1 ∗ log (1 + |𝐼|) + 𝐵1

)

+ 𝐵2 (3.3)

2 We do not centre our discussion around phase, which could also prove
useful for some applications. See Supplementary material.

3 Basic Fast Fourier Transform (FFT) and the element-wise multiplication
functions in modern software packages are suitable.
3

learns the GAFL weights after the logarithmic function intensifies the
high-frequency tails of the spectrum.

Similarly to General Eqs. (3.2) and (3.3), one can also experi-
ment with a basic Linear configuration (a simple single-layer neural
network):

|𝐼| ← 𝑊 ∗ |𝐼|, (3.4)

nd its corresponding logarithmic version, Linear log :

𝐼| ← exp
[

𝑊 ∗ log (1 + |𝐼|)
]

− 1, (3.5)

here the exponential function ‘undoes’ the effect of the logarithm to
reserve the linearity in the layer.

umber of parameters. The complex values of Fourier transform are
ackled by the operation |𝐼|. Yet, the important symmetry property
𝐼(𝑛 − 𝑢, 𝑚 − 𝑣) = 𝐼(−𝑢,−𝑣) = 𝐼(𝑢, 𝑣)∗ helps to compute the number
f parameters added by the adaptive layers. Namely, each matrix of
eights is a tensor of size

(

𝐶, 𝑛, ⌊𝑚∕2⌋ + 1
)

, where 𝐶 is the number
f channels, (𝑛, 𝑚) is the image size. Thus, the number of learnable
arameters of the proposed adaptive layer is equal to the number of
eight matrices multiplied by the product of the matrix dimensions (as

he operations in the frequency space are element-wise).

omputational complexity. The computational complexity for the base
odels is calculated using the ptflops software package (Sovrasov,
019). To compute the number of operations in the direct and the
nverse Fourier transforms, the Split-radix (Duhamel and Hollmann,
984; Duhamel and Vetterli, 1990) algorithm is used. In total, the 2D
iscrete Fourier Transform of size (𝑛, 𝑚) and the element-wise product
f the GAFL weight matrix (size (𝑛, ⌊𝑚∕2⌋+1)) with the frequency image
dd up, yielding the following MAC operations:

ACs ≃ 4𝑛𝑚 log2 (𝑛𝑚) − 12 𝑛𝑚 + 8
[

𝑛 + 𝑚
]

+ 𝑛 ⋅
[

⌊𝑚∕2⌋ + 1
]

(3.6)

q. (3.6) can be easily generalized to multidimensional images, tak-
ng into account the linearity of the computational complexity w.r.t.
imensions. For those configurations of Eqs. (3.2)–(3.5) where the
xponential or the logarithmic operations are employed, an upper
stimation of the computational complexity is reported.

. Experiments and results

In this section, we compare the performance of renowned neural
etworks with and without the proposed trainable layers. In all four
asks, we always choose the most popular models, common initializa-
ion strategies, and only the well-known activation and loss functions.

e aim to make the existing network architectures more efficient.
Hyperparameters common to all tasks. All models are trained

etting the input size to (256, 256), batch size 4, and using Adam
ptimizer (Kingma and Ba, 2014) with learning rate 0.001.

.1. Datasets

We validate efficiency of our adaptive layer on two medical and on
our natural image benchmarks.

The medical benchmarks comprise ultrasonic datasets, popular in
edical vision community: Breast Ultrasound Images (BUSI Al-Dhabyani

t al., 2019, 1578 images of three classes: normal (266), benign (891)
nd malignant (421) tumours, as well as ground-truth segmentation
asks) and Brachial Plexus Ultrasound Images (BPUI BPUI, 5635 images

nd masks).
The natural benchmarks were selected to represent well-known

atasets of various scales: from the small Caltech Birds (Caltech-UCSD
irds-200-2011 Wah et al., 2011, 11,788 images of 200 classes with
round-truth segmentation masks), to medium Dogs vs. Cats (kaggle
ataset, 25k images for binary classification), to large-scale CIFAR-10
Krizhevsky and Hinton, 2009, 50k images of 10 classes) and a part of
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Table 1
Segmentation results.

Model BUSI BPUI Birds

U-Net 0.70 0.59 0.84
+ GAFL Linear 0.72 0.64 0.85
+ GAFL Linear log 0.71 0.64 0.86
+ GAFL General 0.75 0.74 0.86
+ GAFL General log 0.75 0.74 0.86

DenseNet 0.77 0.74 0.94
+ GAFL Linear 0.79 0.77 0.94
+ GAFL Linear log 0.80 0.77 0.94
+ GAFL General 0.81 0.74 0.95
+ GAFL General log 0.77 0.75 0.94

ResNet 0.80 0.71 0.93
+ GAFL Linear 0.81 0.72 0.94
+ GAFL Linear log 0.81 0.72 0.94
+ GAFL General 0.81 0.74 0.94
+ GAFL General Log 0.81 0.75 0.94

Validation Dice score for different models on medical (BUSI and BPUI)
and natural (Caltech Birds) datasets. The best performance is highlighted
in bold.

mageNet (‘Tiny’ ImageNet Le and Yang, 2015, 110k images of 200
lasses).

We considered medical imaging datasets separately because the ul-
rasound signal is known to have particular frequency bands needed for
he optimal image contrast in live imaging (Ihnatsenka and Boezaart,
010), making us hypothesize that the filtering effect would be more
ronounced in these data. Dataset details and descriptions are given in
he Supplementary material.

.2. Segmentation

To test the proposed method, three different networks were studied
s the base models: U-Net (Ronneberger et al., 2015), DenseNet (Huang
t al., 2016), and ResNet (He et al., 2015).

For the learning process, we used the Combined Loss function of
ice and Cross Entropy, weighted as 0.6 and 0.4 respectively. The
uality of segmentation is evaluated with the Dice coefficient (Milletari
t al., 2016), which, in essence, measures the overlap between the
redicted and the ground-truth masks.

The following hyperparameters were used. For U-Net, init_features
32 (number of parameters in initial convolution), depth = 3 (number

f downsteps). For DenseNet (as for densenet-121), init_features = 32,
rowth_rate = 32 (number of filters to add to each layer), block_config

6, 12, 24, 16 (number of layers in each pooling block). For ResNet
as for resnet-18), blocks: 2, 2, 2, 2 (number of layers in each pooling
lock).

We observe improvement of the segmentation performance in all
hree base models. One can notice a significant increase of the metric
alues for the light models and an accelerated convergence for all
rchitectures in Fig. 2. The metrics, summarized in Table 1, reveal a
otable gap between the base models with and without the adaptive
ayer. Remarkably, these improved values originate from the images
hat have actually lost their clean appearance after the pre-processing
tep (see Fig. 3). Notice how the non-essential features and the textures
isappear and how the look of the images is altered by the filters
earnt by the GAFL. Ultimately, this ‘ruined’ look does not matter for
he target task, because the quality of the segmentation task is still
aximized. Fig. 3 also shows the difference in the small-value boosting

onfigurations (Ref. Eqs. (3.2)–(3.5)), where the insets show the learnt
pectral filters after the training. Comprehensive results for each dataset

nd each model are given in the Supplementary material.

4

Table 2
Classification results: Binary.

Model BUSI BUSI D vs. C
norm vs. ben ben vs. mal

CNN 0.88 0.76 0.82
+ GAFL Linear 0.89 0.78 0.83
+ GAFL Linear log 0.89 0.77 0.82
+ GAFL General 0.90 0.76 0.82
+ GAFL General log 0.92 0.77 0.83

𝐹1-scores for different models on BUSI validation set (normal vs. benign and
benign vs. malignant classes), and Dogs vs. Cats datasets. The best performance
is highlighted in bold.

4.3. Classification

To verify the suggested algorithm for the classification problem,
a typical Convolutional Neural Network (CNN) with several convolu-
tional blocks and fully-connected layers is used. Namely, the encoder
blocks include Conv, Batch Normalization, ReLU, Average Pooling, and
two fully-connected layers (using init_features = 8 and depth = 4). The
training process is similar to the one above, with using the weighted
Cross Entropy Loss (Ho and Wookey, 2019) combined with the 𝐹1-score
evaluation.

The results, presented in Table 2 and Fig. 4, demonstrate critical
improvement not only in the classification task between the normal and
the tumour tissues, but also in the task of distinguishing the normal tis-
sue from the benign, and the malignant tumours. The addition of GAFL
makes the prediction more sensitive to detecting these sub-classes,
which can be of interest in the clinical practice (BPUI; Tuluptceva et al.,
2020). Likewise, the overall quality enhancement is also evident on
the natural data, where the classification experiments were performed
on the large-scale datasets CIFAR-10 and ImageNet (see Table 3 and
Fig. 6).

4.4. Denoising and erasing

For the problem of denoising and erasing, we considered popular
model DnCNN (Zhang et al., 2016) as the baseline, the main task of
which is to restore the noise, in contrast to the standard feedforward
models, which restore the image. To assess the success of denoising
and erasing, we used Combined Loss function of MS-SSIM and 𝐿1 Loss
with weights 0.8 and 0.2 respectively (Zhao et al., 2016) along with
the FSIM and PSNR metrics (Zhang et al., 2011). We used the following
hyperparameters for the architecture: init_features = 64, num_layers = 17
(number of layers).

For this task, we introduce the regular Gaussian noise and the
rectangular erasing corruptions (Zhong et al., 2017) to the images, with
the consequent image recovery yielding the outcomes summarized in
Fig. 5. Note that despite the popularity of PSNR and FSIM metrics,
they are oftentimes not representative of the true image quality. Herein,
we resort to using these metrics merely to compare with the baseline
models in a standard way.4

4.5. Control and large-scale experiments

To gauge the impact of the added layer on the base model precisely,
a fine control of the total number of trainable parameters is desirable.
Therefore, additional studies were performed for each CV problem,
assuring that the number of parameters in base models was either greater
or nearly equal of that with the pre-pended adaptive filtering layer
(Table 3 and Fig. 6). In this sub-study, all experiments were run using
the Linear configurations of the adaptive layer.

For the segmentation task, U-Net with init_features = 32 (467,842 pa-
rameters) was compared against U-Net with init_features = 16 prepended

4 The search for the proper metrics is beyond the scope of this work.
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Fig. 2. Segmentation results. Average Dice coefficients on validation sets of different datasets: medical (BUSI) and natural (Birds). Top row: U-Net, middle: DenseNet, bottom:
ResNet.
1
i
p

5

w
i
r

Fig. 3. Segmentation results. Examples of ‘learnt’ filters and their effect on the
segmentation. Top left: original image and ground-truth mask; top right: Linear filter;
bottom left: General filter; bottom right: General log filter. Corresponding ‘learnt’ spectra
are shown in the insets in the corner. It does not matter if the learnt filter ruins the
appearance of the original image; what matters is that it enhances the segmentation

performance by preserving only the important frequencies.

c

5

by GAFL (248,994 parameters for BUSI with image_size = (512, 512)
and 216,770 parameters for Caltech Birds with image_size = (256,
256)), which corresponds to a reduction of the number of model
parameters by (467,842 – 248,994)/467,842 = 46.7% and (467,842
– 216,770)/467,842 = 53.7 % respectively.

For the classification task, ResNet-20 was compared with the same
model pre-pended by the adaptive layer for CIFAR-10 with image_size =
(32, 32) and Tiny ImageNet with image_size = (64, 64), corresponding
to a reduction of the number of model parameters by (276,026 –
274,394) / 276,026 = 0.6% and (293,080 – 286,744) / 293,080 = 2.2%,
accordingly. For these experiments, SGD optimizer with the weight
decay of 0.0001, the momentum of 0.9, and the learning rate of 0.1
was used.

For the denoising and the erasing tasks, DnCNN with init_features
= 32 and num_layers = 20 was compared to itself with init_features =
6 and num_layers = 17 and with the pre-pended GAFL for BUSI with

mage_size = (512, 512), also roughly preserving the number of model
arameters with (168,225 – 167,169) / 168,225 = 0.6%.

. Discussion

Table 3 demonstrates the advantage of training the base model
ith the proposed adaptive layer. GAFL allows for both a reasonable

mprovement/preservation of performance in all tasks and datasets and
equires fewer parameters, significantly reducing the computational
omplexity. The latter allows us to train the models (up to several
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Fig. 4. Classification results: Binary. Left: Initial and filtered images using our layer in General log configuration. Insets show the ‘learnt’ optimal spectra. Right: 𝐹1-scores on
USI validation sets (normal vs. benign and benign vs. malignant). Despite the ruined appearance of the input image, GAFL allows to boost classification scores and accelerates
onvergence.
Fig. 5. Denoising/Erasing results. Plots on the right show FSIM metrics for denoising and erasing corruptions of BUSI dataset for different models. First and second row images,
left to right: base DnCNN model results, the model with Linear, and with General adaptive filters on BUSI dataset. Third and fourth rows, left to right: base model and model with
Linear adaptive filtering layer on the Dogs vs. Cats dataset. Note how addition of Fourier-based layer corrects for the corruptions better (for example, dog images in the third vs.
he fourth row).
o
i
a
d
s
d

imes) faster and demands less time for the inference, which favourably
ositions GAFL for the future deployment in various applications.

Remarkably, in the controlled experiments, we observed that the
umber of parameters in the base model could be reduced by half;
et, the global adaptive filtering layer allows to ‘catch up’ with the lost
arameters and to reach the level of the base models that have twice
s many parameters. The result generalize well across different datasets
 l

6

f various scales and across CV tasks. We did not observe a stunning
mprovement in the denoising problem built around DnCNN model —

result we attribute to the way the noise is handled in the Fourier
omain, making our metric choice somewhat sub-optimal. Additional
tudies are required with the DnCNN to understand the enhancement
ynamics; however, the same very model is well improved by our
ayer when there is a notable corruption (the erasing problem). We can
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Table 3
Control experiments results.
Model Segmentation Classification Denoising Erasing

MACs, 109 BUSI Birds MACs, 106 CIFAR-10 Tiny ImageNet BUSI MACs, 109 BUSI

Base model 28.79 0.64 0.86 44.4 0.782 0.345 30.69 44.26 23.28
+ GAFL Linear 7.30 0.69 0.86 32.0 0.792 0.348 30.42 9.41 22.91
+ GAFL Linear log 7.31 0.70 0.86 32.5 0.796 0.336 30.66 9.42 23.92

Comparison between different models for segmentation (Dice score), classification (Accuracy, in %), and Gaussian denoising and erasing corruptions (PSNR, in dB). The number
of parameters in all experiments is controlled not to exceed the number of parameters in the corresponding base models. MACs (the same for denoising and erasing) are provided
to compare the computational complexity across all models and tasks. The best performance is highlighted in bold.
Fig. 6. Control and large-scale experiments. Metrics on validation sets for different models. Top row: Dice score for segmentation problem on medical (BUSI, left) and natural
Caltech Birds, right) datasets. Middle row: Prediction Accuracy (in %) for classification problem on CIFAR-10 (left) and Tiny ImageNet (right) datasets. Bottom row: PSNR (in
B) metric for Gaussian denoising (left) and erasing corruption (right) problems on BUSI dataset.
isually confirm that our adaptive configuration denoises and ‘heals’
he corruptions better than the base DnCNN model alone.

ctivation functions. The activation function used in the general con-
iguration of proposed global filtering layer is a hyperparameter that
eeds to be selected depending on the problem being solved and the
ataset. In the provided algorithm, the function receives a non-negative
atrix as input; it is since the frequency with negative weight has no
hysical interpretation. Therefore, several popular activation functions
ave been selected and investigated. As can be seen in the results in
he Supplementary material, the activation function plays an important
ole. The average difference between the best and worst activation
7

functions in some cases can lead to about 10 % gain by metric. It should
be noted that the activation functions Mish and ReLU have shown
themselves well on all datasets. So, Mish and ReLU are good for using
our algorithm out of the box. Note that all the experiments reported in
the main text were carried out using ReLU activation function.

Medical vs. Natural datasets. In datasets collected using ultrasound
imaging, there are a lot of negative examples (with a zero or an empty
mask). Unlike the Caltech Birds dataset, such data require more focus,
dedication, and expertise to annotate them with labels. But, as with all
human-tagged data, one should expect artefacts and potential errors
in the markings: for example, the BPUI data have been annotated
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Fig. 7. Training efficiency as a function of model complexity for all 88 experiments. The bubble size encodes the gain in the corresponding metrics. Left: all experiments; right:
zoomed-in areas. Colours correspond to different types of 4 CV tasks considered. Vertical and left-leaning arrows correspond to 18 control experiments run with precise control
of the number of parameters in the models. The arrows indicate the correspondence of pairs (basic model → the most training-efficient model with the proposed adaptive Fourier
layer). Birds: Caltech Birds (2011) dataset; DvsC: Dogs vs. Cats dataset; CIFAR: CIFAR-10 dataset; ImageNet: Tiny ImageNet dataset. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
by pseudo-experts (people who have been trained and instructed by
experts).

Several important observations and conclusions can be made from
the results in the figures herein and from those in the Supplementary
material:

• The observed improvement of Dice score on the ultrasound datasets
depends on the number of parameters of the base model: the larger
the architecture size, the less noticeable the increase in the metric
when using the adaptive layer.

• In the natural images dataset, there is a faster convergence of all
models when the proposed filtering layer is added, than in any of
the base models.

• The proposed log operation applied to the spectra allows for the small
pixel values and eliminates fluctuation artefacts otherwise appearing
from the truncation.

• Addition of the adaptive filter to the natural images provides
‘‘smoother’’ convergence of the training curves. We believe this trait
could be instrumental for accelerating many state-of-the-art mod-
els where predicting the behaviour of the model is important; for
example, in reinforcement and/or active learning (Fig. 7).

Erasing metric choice. At the moment, there are a lot of metrics for
assessing the quality of denoising of various types. However, there is
no universal one that would accurately correspond to the assessment
with the naked eye and is well interpreted in all cases (Ding et al.,
2020). The most suitable for our task was the FSIM metric, which uses
the structure of the Fourier components of the image. However, on a
large number of examples (including those provided to you in Fig. 5), it
was noticed that the difference in metric between the base model and
the model with the proposed trainable layer should have a larger gap,
since filling the inside of the cropped rectangle has greater importance
than just averaging. Our experiments with other metrics, such as PSNR,
present a sound but still sub-optimal alternative.

6. Conclusions

The method proposed in our work proved to be efficient on all
datasets and all classical model architectures that we have considered.
In all cases, the use of simple adaptive frequency filtering layer has led
to faster convergence of the training process than in the case of the
stand-alone model, having shown higher segmentation quality both on
train and on test samples. A rather important finding is the increase
of Dice score for the case of simple U-Net by around 6 % when the
adaptive global filter is added. This promises an opportunity for the
areas, such as medicine, where getting marked data is an acknowledged
challenge, causing one to attempt learning on small datasets. In these
8

cases, the use of heavy models with a large number of parameters is
one possible solution which frequently leads to a fast overfit; whereas,
addition of simple adaptive filtering layers ‘‘trims’’ unnecessary fre-
quencies in the Fourier domain and makes the model learn only the
vital frequencies along with the weights of the main neural network.
All of this is accomplished while optimizing the targeted advantage
function of interest to a particular application (for example, Dice score
or 𝐹1-score).

We believe the proposed layer can be a good add-on for a number
of powerful modern preprocessing tools, including those that exist in
various AutoML pipelines (Cubuk et al., 2019). In fact, there are many
recently devised methods of augmentation and data preprocessing (for
example, see Buslaev et al., 2020) that still await for the ‘smart’
frequency filtering capability. Currently, some configurations of the
proposed adaptive layer could be preferred over the others, according
to the data distribution and the problem being solved. Straightforward
merging of these variants into a single universal configuration could
be of particular practical value and will be published elsewhere. In the
meanwhile, we propose to use the General log configuration of GAFL,
as it shows consistently reliable performance in the majority of datasets
and tasks and preserves the physical meaning of the Fourier filtering.
We propose it for an approbation in the computer vision community as
a simple add-on to a variety of modern deep learning models.5

The convergence speed of models plays an important role too. Areas,
such as ultrasound imaging, entail big amounts of data, the labelling
of which takes a lot of time and requires the involvement of highly
qualified experts. Hence, the relevant methodology of active learn-
ing (Shelmanov et al., 2019) is frequently employed, requiring efficient
retraining of the models and, thus, creating a welcoming setting for the
adaptive pre-processing with GAFL. Same applies to the tasks that entail
unsupervised segmentation and the pertinent optimization (Bespalov
et al., 2020).

Initially, we anticipated that our adaptive layer would improve
the convergence and the quality primarily in the ultrasound data (the
echogenic nature of which is known to be prone to high sensitivity
to the frequency knobs). But we were surprised to find out the im-
provement in the natural images as well. This expands the possible
areas of application of the proposed approach and opens up a new
direction of research of adaptive layers (for example, in more complex
multi-layer architectures (Chowdhury et al., 2017), in generative and
image translation models (Prokopenko et al., 2019), in learnable fre-
quency kernels (Lazareva et al., 2020), in iterative anomaly detection
models (Tuluptceva et al., 2020), etc. Lightening of these models via a
simple adaptive filtering layer will be rather valuable, promising a fast
and accurate solution to a variety of computer vision applications.

5 GAFL code is available at https://github.com/cviaai/GAFL/

https://github.com/cviaai/GAFL/
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