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a b s t r a c t

Due to the absence of any specialized drugs, the novel coronavirus disease 2019 or COVID-19 is
one of the biggest threats to mankind Although the RT-PCR test is the gold standard to confirm
the presence of this virus, some radiological investigations find some important features from the
CT scans of the chest region, which are helpful to identify the suspected COVID-19 patients. This
article proposes a novel fuzzy superpixel-based unsupervised clustering approach that can be useful
to automatically process the CT scan images without any manual annotation and helpful in the easy
interpretation. The proposed approach is based on artificial cell swarm optimization and will be
known as the SUFACSO (SUperpixel based Fuzzy Artificial Cell Swarm Optimization) and implemented
in the Matlab environment. The proposed approach uses a novel superpixel computation method
which is helpful to effectively represent the pixel intensity information which is beneficial for the
optimization process. Superpixels are further clustered using the proposed fuzzy artificial cell swarm
optimization approach. So, a twofold contribution can be observed in this work which is helpful
to quickly diagnose the patients in an unsupervised manner so that, the suspected persons can be
isolated at an early phase to combat the spread of the COVID-19 virus and it is the major clinical
impact of this work. Both qualitative and quantitative experimental results show the effectiveness of
the proposed approach and also establish it as an effective computer-aided tool to fight against the
COVID-19 virus. Four well-known cluster validity measures Davies–Bouldin, Dunn, Xie–Beni, and β
index are used to quantify the segmented results and it is observed that the proposed approach not
only performs well but also outperforms some of the standard approaches. On average, the proposed
approach achieves 1.709792, 1.473037, 1.752433, 1.709912 values of the Xie–Beni index for 3, 5,7, and
9 clusters respectively and these values are significantly lesser compared to the other state-of-the-art
approaches. The general direction of this research is worthwhile pursuing leading, eventually, to a
contribution to the community.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Automated computer-aided systems prove their effectiveness
nd real-life applicability in various scenarios. Automated sys-
ems have a diverse domain of applications and sometimes, these
ystems are inevitable to perform certain jobs efficiently and in
cost-effective and highly time-bound manner. This domain is
volving day-by-day and continuous effort can be observed from
arious researchers to enhance this domain. Computer-assisted
ystems can be categorized in two ways. The first one is the
upervised approach in which some properly annotated data are
equired to perform the classification and interpretation job [1,2].
herefore, these automated systems are dependent on the ground
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truth data typically produced by some domain experts. But, it
may not be always possible to acquire the properly annotated
ground truth data due to the involvement of human experts [3].
Sometimes, some cases are not well-defined or not seen earlier,
and therefore, it is very difficult to get some ground truth data
for those cases. Unsupervised systems can be helpful in this
context because these systems are not dependent on the ground
truth data and can automatically explore some patterns from the
underlying dataset by utilizing the surrounding knowledge [4–7].
So, the unsupervised approaches are helpful in those situations
where a sufficient amount of properly annotated ground truth
data are not available. The unsupervised computer-aided sys-
tems are widely applied in different domains of research [8,9].
Biomedical image analysis is no exception and exploits the ad-
vantages of unsupervised automated systems in various phases.
Radiology is one of the important and frequently used parts of
the biomedical imaging domain which is serving as an important
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Fig. 1. Type 2 fuzzy system.
tool for noninvasive diagnostic systems. X-ray, CT Scan, etc. are
widely used nowadays, to study the internal functionalities and
the present state of the different organs [10–12]. Automated
systems are helpful to analyze and diagnose different patients
automatically and automated radiological image analysis systems
are also helpful in preparing precise and timely reports by reduc-
ing the human intervention and also reducing some unintentional
human-made errors. Physicians, radiological technicians, and all
other concerned domain experts can be significantly benefitted
from the advancement in the field of computer-aided radiological
image analysis systems. Apart from the automated analysis of
the radiological images, computer-assisted systems can be helpful
in parameter tuning of the image acquisition hardware, image
preprocessing, quality control, selecting the appropriate level of
radiation, and many more. Therefore, automated systems can act
as a helping hand in the decision-making process.

In Table 1 some of the related biomedical image segmentation
works of literature are discussed which is helpful in a better
understanding of the current trend and status of the same. Apart
from these works, some comprehensive studies can be found
in [13–17].

Apart from these works, some of the most recent and rel-
evant works can be found in [28–32] that can be referred to,
to understand the further advancements of this domain. In this
context, it is worth mentioning here that the active contour
model is an effective way of image segmentation. There are
several variations available of this approach. The traditional active
contour approach was proposed in 1988 [33]. A modified version
of the traditional active contour approach is proposed in [34]
and it is known as geometric active contours. This approach
uses gradient information of an image to construct the edge
stop function. A region information-based approach is proposed
in [35]. This approach is developed by Chan and Vese and this is
a parametric representation. Some deep learning approaches are
developed that use the loss function of the active contour model
as their loss function [36]. Some recent developments like the
MAC model [37], SBGFRLS model [38], LSAC model [39], etc. can
also be observed in this domain.

The highly infectious coronavirus disease 2019 or COVID-19
creates a worldwide pandemic scenario. Although the mortality

rate is not very high, the highly infectious nature of this virus is
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the main threat to society. Due to the absence of any specialized
drug, it is very difficult to restrict the drastic spread of this virus.
Apart from using various protective equipment, early detection
and isolation can be very effective to combat the spread of this
highly infectious virus. In the middle of this pandemic scenario,
some vaccines are invented and are being applied to the people
and it is a ray of hope to fight against this virus. As per the
report of the world health organization, 239,437,517 numbers of
confirmed cases can be observed in 216 countries and 4,879,235
people are already expired due to this disease as of 15th October
2021, 4:32pm CEST [40]. From these statistics, it is clear that
the worldwide mortality rate is approximately 2.0378% which is
not a very large value. The major risk factor lies in the highly
infectious nature of this virus. Hopefully, 6,495,672,032 vaccine
doses have already been administered worldwide which may be
helpful in reducing the mortality rate. Many countries are not
prepared with the appropriate infrastructures to support COVID-
19 infected patients. Moreover, many people from remote areas
are not even able to arrange protective gear like masks, sani-
tizers, etc. The reverse transcription-polymerase chain reaction
test i.e., RT-PCR test is the only test available to date to confirm
the presence of the COVID-19 virus. Some researches show that
CT scan images of the chest region are showing some signs of
the early COVID-19 infection [41]. It is a quite inspiring finding
because CT scan images can be used to isolate some suspected
patients at an early phase and therefore, the drastic spread of
this virus can be stopped to some extent. The CT scan images
cannot replace the RT-PCR test because some false negatives
are reported in [42,43]. The screening of the COVID-19 positive
patients using the CT scan images are recommended in [44]. The
presence of some prominent features like ground-glass opacities,
crazy paving, etc. (which are given in Table 2) helps us to trace
the initial presence of this infection, and image segmentation is
an essential task to automate the screening process. Typically,
the absence of properly annotated data makes the automated
biomedical image analysis job difficult. These are the basic moti-
vation behind proposing a novel radiological image segmentation
approach SUFACSO (SUperpixel based Fuzzy Artificial Cell Swarm
Optimization). As the name suggests, the proposed approach is
based on the superpixels and type 2 fuzzy systems where the

type 2 fuzzy objective function is modified to incorporate the
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Fig. 2. Dependency of the number of superpixels on the size of the disk structuring element (a)–(h) superpixel images obtained using the disk structuring element
of size 3 to 10 respectively, (i) Size of the structuring element vs. the number of superpixels.
advantages of superpixels to efficiently process a large amount
of spatial information. The fuzzy objective function is optimized
with the recently developed metaheuristic procedure i.e., artificial
cell swarm optimization. The proposed method allows automated
and efficient analysis of the CT scan images which is beneficial to
enhance the computer-aided diagnostic systems to act as a tool
against the COVID-19 virus.

To summarize, the major contributions are as follows: (1) A
novel superpixel-based image segmentation technique is
proposed that reduces the incurred computational cost for pro-
cessing a high amount of spatial information, (2) Type-II fuzzy
system is incorporated with the superpixel-based approach, (3) A
recently developed metaheuristic procedure ACSO is further en-
hanced, (4) The conventional fitness function of the FCM cluster-
ing approach is enhanced to exploit the advantages of superpixel
(5) The cluster centers are updated with the help of the proposed
fuzzy ACSO approach.
3

The remaining article is prepared in the following way: Sec-
tions 2 and 3 describes the artificial cell swarm optimization
method and the type 2 fuzzy clustering framework respectively.
Sections 4 and 5 describe the proposed SUFACSO approach and
the obtained results respectively. Section 6 discusses some of the
relevant points and a brief conclusion is presented in Section 7.

2. A brief overview of the artificial cell swarm optimization
procedure

This is a recently developed metaheuristic procedure that is
inspired by the artificial cell division procedure. The artificial cell
swarm optimization procedure mimics the artificial cells as the
search agents. The actual artificial cell division approach [46]
is slightly modified to design the optimization procedure. The
incorporated modifications are listed below [47]:
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Fig. 3. Dependency of the number of superpixels on the size of the square structuring element (a)–(h) superpixel images obtained using the square structuring
element of size 3 to 10 respectively, (i) Size of the structuring element vs. the number of superpixels.
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i The artificial cells are not depending on the current state
to participate in the cell division process.

ii The artificial cells only take part in the cell division process

The hierarchical tree structure is formed throughout the gen-
erations due to the artificial cell division process. Swarms of
artificial cells are considered in the optimization process to take
part in the artificial cell division process. No communication is
allowed between any pair of artificial cells. Lifespan of the kth
artificial cell at a certain timestamp ts is an important parameter
and it is directly dependent on the fitness value fitnessk as given
n Eq. (1).

Stsk ∝ fitnessk (1)

A huge number of swarms can significantly increase the fitness
evaluations and a small number of swarms can increase time to
converge and therefore, is essential to decide the swarm count
moderately. In this work, the swarm count is considered is a fixed
4

parameter. One artificial cell can produce some new cells and
the production of new cells occur at a certain distance which
is inversely dependent on the fitness of the producer cell as
expressed in Eq. (2).{
dist tskl ∝ 1/fitnessk.

dist tskl ∝ LSts−1
k

(2)

The distance between the kth cell and any of the lth cell, which
re produced from the same parent cell, must be same. Therefore,
f a cell is near to global optima, then it can generate some other
ells at a smaller distance and vice-versa. Smaller steps help to
earch the nearest portions of the global optima cautiously so that
he global optima may not be missed accidentally. A cell does
ot have any effect on the population once its lifespan is over.
his property helps to maintain the size of the population and
revents getting overpopulated. The successor cells of a cell can
roduce some other cells by the cell division process to maintain
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Fig. 4. The flow diagram of the proposed SUFACSO method.
the population. The life span of a cell can belong it belongs to the
near-optimal area. The quality of a population is evaluated using
the lambda function which is given in Eq. (3).

λ

(∑
k

fitnesstsk

)
, R → [0, 1] (3)

The tentative population at timestamp ts + 1 can be deter-
mined using Eq. (4) where ψ denotes the productivity.

P (ts + 1) = ψ · λ

(∑
fitnesstsk

)
· P (ts) (4)
k

5

Algorithm 1 illustrates the artificial cell swarm optimization
approach in brief [47].

3. Fuzzy C-means clustering based on type 2 fuzzy system

The proposed approach adopts the type 2 fuzzy logic-based
clustering approach to effectively model and handle the random
uncertainties. In most real-life applications, the uncertainty can-
not be predicted in advance. A wide range of input types can
produce random uncertainties. Hence, it is essential to cope up
with the random uncertainties in real-life scenarios. The fuzzy C-
means clustering approach is one of the widely used clustering
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Fig. 5. The CT scan images and their histograms.
pproaches which is suitable to various problems of different do-
ains [48–51]. The main reason behind the increasing popularity
f fuzzy systems is the suitability of this approach in different
6

scenarios where the crisp clustering approaches do not perform
well. A single point can be a member of more than one cluster
at the same time with some membership values. The total sum
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Fig. 6. A comparative study of different approaches using Test01 for different number of clusters.
f all membership values for a certain point must be one. So, the
alue of the membership can be anything between 0 and 1. The
issimilarity function which is optimized by the fuzzy C-means
lustering approach is given in Eq. (5).

bjψ =

nPts∑
k=1

nClstrs∑
l=1

µ
ψ

kl ∥xk − cl∥2 , where 1 ≤ ψ < ∞ (5)

The value of the membership (µψkl ) can be computed using
q. (6) and ψ denotes the fuzzifier. The cluster centers can be
pdated using Eq. (7).

kl =
1∑nClstrs

(
∥xk−cl∥

) 2
ψ−1

(6)
t=1 ∥xk−ct∥

7

cl =

∑nPts
k=1 µ

ψ

klxk∑nPts
k=1 µ

ψ

kl

(7)

The type 2 fuzzy logic systems use separate sets of member-
ship values that are also fuzzy in nature. This approach allows
efficient modeling of dynamic input uncertainties by providing
additional degrees of freedom. In this work, the type 2 fuzzy
logic-based clustering approach is adopted to overcome some
of the common problems of type 1 fuzzy systems like noise
sensitivity, relative membership values, etc., and also to handle
uncertainties well [52]. It is essential to improve the outcome
of the segmentation process. The uncertainty of a point must be
decided depending on the membership value i.e., if a point has a
membership value of 1 then its uncertainty will be certainly nil.
So, a lower membership value indicates higher uncertainty and
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Fig. 7. SUFACSO based segmented outcomes.
ice-versa. Some of the basic reason behind the adoption of type
fuzzy system in this work is listed below [53]:

a A point with higher uncertainty has a lesser impact on the
overall clustering process and vice-versa. It helps to achieve
more realistic results.

b Better noise handling capability can be achieved

The membership value in type 2 fuzzy systems can be cal-
ulated using Eq. (8) and the cluster centers can be updated
sing Eq. (9). The proposed approach does not require Eq. (9)
nd can update the cluster centers. The artificial cell swarm opti-
ization process will guide the proposed approach to determine

he optimal cluster centers. The accuracy clustering process can
e determined by a small threshold value ϕ. The type 2 fuzzy
lustering system can be easily understood from algorithm 2
nd the schematic diagram of the type 2 fuzzy system can be
isualized from Fig. 1.

˙ kl = µkl −
1 − µkl

2
(8)

ċl =

∑nPts
k=1 µ̇

ψ

klxk∑nPts ψ
(9)
k=1 µ̇kl

8
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Fig. 7. (continued).

Fig. 8. Performance comparison of different algorithms for different cluster validity indices (a) Davies–Bouldin, (b) Xie–Beni, (c) Dunn, and (d) β index. In X-axis the
number of clusters and in the Y -axis, the values of the corresponding validity index are plotted.

9
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Fig. 9. Convergence analysis (a) modified GA, (b) modified PSO, (c) improved Bat, (d) modified CS, and (e) proposed SUFACSO.
. Proposed SUFACSO approach for CT scan image explication

.1. Proposed method of superpixel computation

The ever-growing technology allows us to increase the quality
f the image acquisition hardware. High-quality biomedical im-
ges can be acquired from various biomedical image acquisition
evices and it is helpful in a precise analysis of the biomedical
mages. Automated biomedical image analysis devices are fac-
ng some challenges due to the increasing quality of biomedical
mages. A high amount of spatial information creates severe
roblems for automated and computer-aided diagnostic systems
ecause medical diagnostic systems demand quick and accurate
esults. Image segmentation plays a vital role in many automated

omputer-aided image analysis systems. It is essential to generate

10
precise reports within the stipulated amount of time to provide
accurate treatment to the patients. To handle this situation ef-
fectively and to accelerate the screening process of the COVID-19
infection, a superpixel-based novel approach is proposed in this
work to segment the CT scan images. Superpixels are useful to
represent a set of pixels in a computation-friendly manner.

Different approaches can be found in the literature to find
the superpixel image from an input image [54–56]. Some su-
perpixel computation methods like mean shift [54] and water-
shed [56] produce irregular superpixels and some methods like
SLIC [55] generate regular superpixels. Meanshift and watershed
approaches are more useful due to the capability to generate
irregular superpixels. The watershed approach is simpler to im-

plement compared to the mean-shift approach but it is sensitive
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Table 1
Some of the related literatures and their brief overview.
Reference/ Source Method Type of the

biomedical image
Comments

Jentzen et. al. [18] Iterative
thresholding

Positron Emission
Tomography
volumes

This approach is used to segment the PET volumes based on
varying source-to-background (S/B) ratios which are collected
from the phantom of a body. The calibrated
source-to-background curves are used to determine the
volume using the iterative thresholding procedure. One major
drawback of the system is that it cannot effectively measure
small volumes.

Wiemker et. al. [19] Thresholding CT scan images This approach segments the CT scan images to easily interpret
and study the lung nodules. This work proposes a divergence
theorem and histogram-based Ct image segmentation
approach. This approach is can effectively and optimally
isolate the lung nodules from the CT scan images. In this
context, the optimality is defined in terms of the mean
gradient of the iso-surface and the sphericity.

Asari et. al. [20] Thresholding and
differential region
growing

Endoscopic images This work is targeted to extract gastrointestinal lumen from
the endoscopic images. This algorithm is consisting of two
stages where the first stage employs a global thresholding
approach and in the second phase, the differential region
growing is used to extract the gastrointestinal lumen from the
endoscopic images. The dynamic hill-clustering approach is
used to ascertain the effectiveness of the termination criteria
and to look after the growth process.

Yu-qian et. al. [21] Edge detection CT scan images This work is addressing the problem of edge detection in the
presence of noise. Traditional gradient-based edge detection
approaches are susceptible to noise and therefore, this
approach proposes a novel approach to detect edges of the
lung CT scan images using mathematical morphology. This
approach is tested on the CT images which are corrupted with
the salt-and-pepper noise and its efficiency is proved by
comparing this approach with some of the other standard
approaches. It is observed that this approach can efficiently
reduce the effect of noise and also can generate precise edges.

Falcao et. al. [22] Shortest-path
based method

MRI images This work is based on the computation of the shortest path
using Dijkstra’s algorithm. This approach is highly dependent
on the user intervention to efficiently determine the
segmented regions and to define the objects. This approach is
found to be 3 to 15 times faster compared to manual tracing.
This approach can be applied almost independently to the
applications. One main problem associated with this method
is the difficulties associated with the choice of slabs and
orthogonal slices which has a serious impact on the efficiency
of this approach.

Pan et. al. [23] Edge detection Cellular image This work proposes a novel edge detection approach which is
based on the bacterial foraging algorithm. The proposed
approach addresses the problem of discontinuous edges and
dependency on the initialization which are associated with the
traditional edge detection approaches. In this work, the
intensity of the gradient images is modeled as the
concentration of the nutrients and the property of the bacteria
Escherichia coli. The edges are highlighted as the paths of the
bacteria. Although this approach performs well and
comparative study shows the effectiveness of the proposed
approach still, one problem of this approach is not very robust
to noise. Noise can lead to crumpled edges. This approach is
not also suitable to handle overlapped cells.

Ji et. al. [24] Fuzzy C-means
clustering

Synthetic, MR
images, natural
images

This work proposes a modification to the traditional fuzzy
C-means clustering by addressing some of the problems.
Traditional fuzzy C-means clustering approach does not
consider the spatial information and less robust to noise. This
work proposes a modification which is known as the weighted
image patch-based FCM. In this work, pixels are replaced with
the weighted patches which is helpful to incorporate spatial
information in the segmentation process. It is helpful to
increase the reliability of the overall segmentation process but
it also increases the computational overhead drastically.

(continued on next page)
to the noise which is not at all desirable for the image seg-
mentation approaches. In this work, the noise sensitivity of the
watershed approach is removed with the help of the gradient
11
image, which is generated using the approach, proposed in [57].
The obtained gradient image is processed using the morpholog-
ical erosion and dilation-based reconstruction operations, which
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Table 1 (continued).
Reference/ Source Method Type of the

biomedical image
Comments

Agrawal et. al. [25] Optimum
boundary point
detection

MR images This approach is devoted to segment the intracranial region
from the magnetic resonance images. This work proposes a
novel hybrid approach which is based on the genetic
algorithm and the bacterial foraging algorithm. The
combination of these two approaches is used to optimize the
objective function of the fuzzy c-means clustering. The final
cluster centers are obtained using a method called optimum
boundary point detection. This approach cannot determine the
optimal number of clusters automatically and produces
inaccurate results if the predefined clusters and the actual
number of clusters differ.

Chaira [26] Fuzzy C-means
clustering

CT images This work proposes a new approach to segment CT images.
This approach is based on intuitionistic fuzzy set theory and it
is known as the intuitionistic fuzzy C means clustering. In this
work, a novel objective function which is known as
intuitionistic fuzzy entropy is incorporated with the traditional
fuzzy C-means clustering. This approach is applied to different
CT scan images to prove its efficiency.

Miao et. al. [27] Dictionary
learning and
Improved fuzzy
C-means clustering

Synthetic, MRI, CT
Scan

In this work, a noise-resistant version of the fuzzy c-means
clustering algorithm is proposed and applied to segment the
images. This approach can be divided into two phases where
the first phase incorporates a dictionary learning method to
handle the noise. In the second phase, this dictionary learning
approach is hybridized with the Improved fuzzy c-means
clustering approach. The proposed approach is not efficient for
medical images with inhomogeneous intensity distribution.
T
t
a
i

Table 2
Significant properties which are found in the CT scan images of the chest region
of COVID-19 positive patients [45].
Finding Percentage of the

observed samples

ground-glass opacities (GGO) 100%
Multilobe and posterior involvement 93%
Bilateral pneumonia 91%
Subsegmental vessel enlargement (>3 mm) 89%

are given in Eqs. (10) and (11) respectively.

RO
img

(
img ′

)
= Rγ

(
Rλ
)

(10)
υ
img

(
img ′

)
= Rλ (Rγ ) (11)

In these equations, γ and λ denotes the morphological dilation
nd the erosion respectively which are expressed in Eqs. (12) and
13).
τ
img

(
img ′

)
= λ

(
λτ−1 (img)

)
∨ img ′ (12)

γ τimg

(
img ′

)
= γ

(
γ τ−1 (img)

)
∧ img ′ (13)

In the above equations, img and img ′ denotes the original
mage and the marker image and the img ′ can be expressed by
qs. (14) and (15). ∨ and ∧ are the two operators to compute the
oint wise maximum and the minimum values.

mg ′
= γse (img) (14)

mg ′
= λse (img) (15)

Here, se is the structuring element and it is an important
arameter that controls the segmented outcome. The size of the
tructuring element is subjective and depends on the image under
onsideration. Practically, it is not possible to determine different
tructuring elements which are of various sizes, depending on
he image. Therefore, the pointwise maximum value is computed
using Eq. (16)) from the gradient images, which are generated by
pplying more than one structuring elements where the number
f structuring elements is decided as per the range of the size

[ ] +
ontrolling parameter φ i.e., φl, φh ∈ N and φl ≤ φ ≤ φh.

12
he number of superpixels is inversely dependent on the size of
he structuring elements. It can be easily understood in Figs. 2
nd 3 and, Figs. 2(i) and 3(i) graphically depicts this fact. The
mage considered in these two figures is the Test01 image [58]
(please refer to Table 3). Figs. 2(i) and 3(i) plots the count of the
superpixel in the y-axis and the size of the structuring element is
plotted in the x-axis

R̂O
img

(
img ′, φl, φh

)
= max

{
RO
img

(
img ′

)
seφl
, RO

img

(
img ′

)
seφl+1

,

RO
img

(
img ′

)
seφl+2

, . . . .., RO
img

(
img ′

)
seφh

}
(16)

A very small lower bound is not desirable because it will
produce very small regions and some essential edge information
can be lost. A small threshold value ϕ is used to control the
error rate and the upper threshold value as given in Eq. (17). A
higher value of ϕ indicates a higher error rate but, a smaller upper
bound that helps to achieve lesser computational overhead. So,
the threshold value can be adjusted as per the requirement and
depending on the available resources.{
R̂O
img

(
img ′, φl, φh

)
− R̂O

img

(
img ′, φl, φh + 1

)}
≤ ϕ (17)

4.2. Proposed superpixel coupled fuzzy ACSO approach-based seg-
mentation

The conventional fuzzy C-means clustering approach often
overlooks some important spatial information that can be costly
in terms of the segmentation performance. Some approaches try
to solve this problem by considering and blending some local
spatial information in the objective function but it increases the
computational cost and therefore not suitable on many occasions.
Superpixels can help in this context by over-segmenting an image
in many small, perceptually uniform, and homogeneous regions.
In this work, the CT images are first processed to determine
the superpixels using the proposed approach and then the fuzzy
artificial cell swarm optimization approach is used to determine
the segmented image by finding the optimal clusters. As dis-
cussed earlier, the type 2 fuzzy system is used to perform the
segmentation. The fuzzy objective function which is given in
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Eq. (5), is optimized by the artificial cell swarm optimization
algorithm. To incorporate the advantages of the superpixel, it
is necessary to modify the fuzzy objective function. The fuzzy
objective function which is given in Eq. (5) deals with the pixel-
wise spatial information. The concept of superpixel represents a
group of a pixel using a single value Zω , as given in Eq. (18) where,
ntPixω is the count of the pixels in the ω region and cntω number
of such regions exists. The representative value is used in the
objective function, and the modified objective function is given in
Eq. (19) to completely exploit the advantage of the superpixels. In
this modified objective function, one superpixel is considered as
a single unit and the value Zω is used to represent the superpixel.

Zω =
1

cntPixω

∑
z∈Rm

pixz (18)

bjψ =

cntω∑
t=1

nClstrs∑
u=1

cntPixωµ
ψ
tu ∥Zt − cu∥2 , where 1 ≤ ψ < ∞ (19)

The value of the membership µtu can be computed using
q. (20) and the corresponding type 2 fuzzy membership value
an be computed using Eq. (21).

tu =
1∑nClstrs

v=1

(
∥Zt−cj∥
∥Zt−cv∥

) 2
ψ−1

(20)

µ̇tu = µtu −
1 − µtu

2
(21)

The cluster centers can be updated and guided by the artificial
ell swarm optimization and therefore, no equation is required
o compute the updated positions of the cluster center. This
pproach is not dependent on the selection of the initial cluster
enters. Cluster centers are initialized in a random order Cnk =

l + rand (0, 1) · (ih − il) where, k = {1, 2, 3, . . . ..., nClstrs} and ih
nd il denotes the highest and the lowest intensity values. The
roposed procedure is given in algorithm 3 and the schematic
low diagram is given in Fig. 4.
13
. Experimental results

The performance evaluation and comparison of the proposed
UFACSO approach are presented in this section. As discussed ear-
ier, the properly annotated ground truth segmented images may
ot be available always, and therefore, some standard intrinsic
luster evaluation methods are used here to evaluate the pro-
osed approach quantitatively. Davies–Bouldin index [59], Xie–
eni index [60], Dunn index [61] and β index [62] are some of
he popular and frequently used intrinsic cluster validity indices
hich are used in this work for the evaluation purpose and these

ndices are defined in Eqs. (22) to (25) respectively.

BIndex =
1
c

nClstrs∑
i=1

max
(
dw (ai)+ dw (ak)

db (ai, ak)

)
, i ̸= k (22)

XBIndex =

∑nClstrs
p=1

∑cntω
q=1 µ

2
pq

Cp − Xq
2

dmin
Cp − Cq

2 (23)

In = min
1≤i≤n

(
min

1≤j≤n, j̸=i

(
dist

(
ci, cj

)
max1≤k≤m Υk

))
,

Υ is themean dist. of the pairwise clusters (24)

=

∑nClstrs
u=1

∑cntPixu
v=1 (Iuv − x)2∑nClstrs

u=1
∑cntPixu

v=1

(
Iuv −

1
pxu

∑cntPixu
p=1 Ipu

)2 (25)

5.1. Dataset description

200 CT scan images of the chest region are collected from the
COVID-19 positive patients from different geographic regions. The
proposed methods are applied to the 200 images and the test
results are demonstrated with the 10 CT scan images that are
randomly selected which are obtained from different countries of
the world. Table 3 gives a brief overview of the test images and
the test images along with their histograms are given in Fig. 5.
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Table 3
Details of the CT scan images under test.
Image Id View Source Gender Age Observed properties Comments

Test01 Coronal [63] F 50 ground-glass opacities (GGO) Case courtesy of Dr Bahman Rasuli,
Radiopaedia.org, rID: 75329Test02 Axial

Test03 Axial [64] M 75 ground-glass opacities (GGO) crazy paving enlarged
mediastinal lymph nodes

Case courtesy of Dr Fabio Macori,
Radiopaedia.org, rID: 74867Test04 Coronal

Test05 Axial
[65] F 70

ground-glass opacities (GGO) crazy paving air space
consolidation

Case courtesy of Dr Ammar Haouimi,
Radiopaedia.org, rID: 75665Test06 Coronal

Test07 Sagittal

Test08 Sagittal
[66] M 50 ground-glass opacities (GGO) Case courtesy of Dr Ammar Haouimi,

Radiopaedia.org, rID: 76295Test09 Axial
Test10 Coronal
5.2. Experimental results

The experiments are performed in the MatLab R2014a on
computer that is equipped with an Intel i3 processor and
GB main memory. The proposed method is compared with

ome metaheuristic optimization-based image segmentation ap-
roaches like modified genetic algorithm [67], modified PSO [68],
mproved bat algorithm [69] and modified cuckoo search method
70] in both qualitative and quantitative manner. The visual com-
arison is presented in Fig. 6 where the Test01 image is con-
idered. The segmented output images which are obtained by
pplying the proposed SUFACSO approach, are reported in Fig. 7.
he quantitative comparative study is reported in Tables 4 to
for the Davies–Bouldin index [59], Xie–Beni index [60], Dunn

ndex [61] and β index respectively. The acceptable values are
ighlighted in boldface. The comparisons and evaluations are
erformed for different numbers of clusters.
From the qualitative and quantitative results, it can be ob-

erved that the proposed SUFACSO approach outperforms some
tate-of-the-art works and can produce realistic outputs that are
ertainly helpful for the interpretation of the real-life CT scan
mages and therefore, this approach can be helpful for the early
creening purposes. At the end of each table, the average per-
ormance of the five approaches is reported which is beneficial
o understand the overall performance of these methods for the
ifferent number of clusters and different cluster validity indices.
n the case of average, the column-wise optimal values are high-
ighted instead of highlighting the row-wise optimal values. The
ow-wise highlighted values talk about the performance of the
ndividual algorithm for the different number of clusters whereas
he column-wise highlighted values help to understand the per-
ormance of the individual algorithms. It can be observed that
he proposed approach outperforms other approaches for most
f the number of clusters as well as for most of the validity
ndices. For example, on a total of 16 occasions (i.e., 4 validity
ndices x 4 different number of clusters), the proposed approach
s found to perform better 11 times. These comparative results
re graphically presented in Fig. 8.
The experiments are carried out for the different numbers of

lusters. A particular approach may perform well for a particular
luster count. That is why the average values of all experiments
re reported at the end of each table for better interpretation.
t can be observed that the proposed approach can optimize
ifferent objective functions effectively.
Actually, the experiments are carried out on 200 CT images

in the first phase) and 100 CT images (in the second phase). It is
lready mentioned in Section 5.1. Results that are obtained from
ll images are not possible to report in this stipulated amount of
pace. Therefore, only some results that are obtained from some
elected images are reported.
Apart from these tests, the proposed approach is also com-

ared with some of the active contour models based on some
14
standard parameters like accuracy, precision, and recall. This
comparison is performed by using the database that is available
at [71]. This dataset contains 100 CT scan images with dimensions
512 × 512. This dataset is created by collecting sample im-
ages from 49 patients with age range 32–86 years. The obtained
average results are reported in Table 8.

5.3. Study of the convergence rate

The rate of convergence is an important parameter to be
studied. The performance evaluation remains incomplete without
studying and comparing the convergence of different algorithms.
The convergence analysis gives a clear view of the comparative
performance of different algorithms for the different numbers of
clusters. The graphical analysis of the convergence is presented
in this subsection using the image Test01 for the Dunn index.
In Fig. 9, five different plots are given for five different meth-
ods. In a single plot, four separate curves are indicating four
different clusters. These curves show that the proposed approach
can efficiently segment the images for a higher number of clus-
ters. Moreover, the proposed approach also outperforms some
other methods in terms of convergence besides quantitative and
qualitative performance.

5.4. Analysis of the complexity

The time complexity is an important aspect that is to be
analyzed. From the detailed discussion of the proposed approach,
it can be noticed that the proposed approach can be viewed
as a two-phase procedure where the watershed-based computa-
tion approach is used to determine the superpixel image from
the underlying image in the first phase and the optimal seg-
mented outcome is computed in the second phase. The task of
optimization is performed using the proposed fuzzy ACSO ap-
proach. The gradient information of an image is used to avoid the
noise sensitivity of the water-shed based superpixel computation
process.

The watershed-based technique is a simple method to com-
pute the superpixel and the implementation follows linear com-
plexity [56]. It is quite inspiring and lucrative to adopt this
approach on different occasions. In the optimization part, the
fuzzy objective function is optimized by using the proposed fuzzy
ACSO method. The ACSO approach is an effective and efficient ap-
proach that can be executed in linear time [47]. So, the proposed
approach is efficient enough and can be effectively used in various
real-life problem-solving scenarios.

The proposed SUFACSO approach is basically an unsupervised
clustering approach that is used for image segmentation pur-
poses. This approach can effectively process high-quality images
with the help of the proposed superpixel-based approach that
is an essential quality for the real-life application of an image
segmentation approach. This approach removes the dependency
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Table 4
Performance evaluation of different approaches using Davies–Bouldin index (The highlighted values indicates acceptable values).
Image Id Algorithm No. of clusters

3 5 7 9

Test01

Modified GA [67] 1.86584742 1.61460503 2.69209816 1.304904075
Modified PSO [68] 2.09295114 1.7359144 3.05856523 2.229535441
Improved bat algorithm [69] 1.35287627 1.36387305 1.40832302 1.108907756
Modified cuckoo search [70] 1.58199898 2.02814534 0.974299 1.703961167
SUFACSO (Proposed) 1.28304876 1.29860785 0.35589432 1.599078823

Test02

Modified GA [67] 1.39788549 1.45133568 1.97603615 1.370013142
Modified PSO [68] 1.85414187 2.18529178 2.58492807 2.136995116
Improved bat algorithm [69] 3.10724251 2.66195475 1.7057778 1.867289304
Modified cuckoo search [70] 1.34880474 1.94983352 1.90233167 1.402923743
SUFACSO (Proposed) 1.19992132 0.45088804 1.64597558 3.274084532

Test03

Modified GA [67] 1.75525773 1.28954652 0.96810401 1.765996322
Modified PSO [68] 1.83804559 0.885364 1.46845261 1.291006832
Improved bat algorithm [69] 1.2224943 1.58971282 2.1118608 1.403310624
Modified cuckoo search [70] 0.39924806 1.02010397 1.97474717 0.732671578
SUFACSO (Proposed) 1.85686562 1.81425356 1.20802862 0.773390662

Test04

Modified GA [67] 1.49768809 2.22471509 2.53418354 2.076878291
Modified PSO [68] 1.86280434 1.99813187 1.19928665 1.975251471
Improved bat algorithm [69] 1.21320589 0.79335734 1.39040461 1.26235423
Modified cuckoo search [70] 2.6355689 1.31235843 0.91071336 1.200023593
SUFACSO (Proposed) 2.3975922 1.00000983 1.53597861 2.067019973

Test05

Modified GA [67] 2.67026072 2.75041206 1.01972937 1.266064054
Modified PSO [68] 1.08407809 1.21148564 1.58120106 2.311991584
Improved bat algorithm [69] 1.39770697 2.21840957 1.6674289 2.491662115
Modified cuckoo search [70] 1.34711644 3.37239332 2.07076657 2.61350541
SUFACSO (Proposed) 2.04173746 1.78749134 1.00293836 2.336563232

Test06

Modified GA [67] 1.14407002 0.8558867 1.45143493 0.967437358
Modified PSO [68] 2.1524943 0.86263141 1.97503062 2.487489141
Improved bat algorithm [69] 1.21570639 1.68270465 1.6537568 1.929386654
Modified cuckoo search [70] 0.65588248 1.16358238 0.74008845 0.535067402
SUFACSO (Proposed) 0.97577794 0.37941419 1.38515164 1.017070307

Test07

Modified GA [67] 1.27095014 1.42037496 1.88658717 2.134948536
Modified PSO [68] 1.13014017 1.54172159 1.58374098 2.563958302
Improved bat algorithm [69] 1.96180911 2.27564752 1.97477736 1.510621551
Modified cuckoo search [70] 1.94227926 2.0013939 1.64493496 2.165952402
SUFACSO (Proposed) 1.03525582 2.30911574 1.69824132 1.694770985

Test08

Modified GA [67] 3.14476829 2.90657776 3.02099019 2.970142044
Modified PSO [68] 2.00603483 1.2287868 1.46660046 1.677585176
Improved bat algorithm [69] 1.2673086 2.03443635 1.82230286 1.603203068
Modified cuckoo search [70] 2.10154073 1.24852691 1.09036684 1.547007181
SUFACSO (Proposed) 0.98142573 1.8202628 2.09927614 1.412921426

Test09

Modified GA [67] 1.1048728 2.32169382 1.61516281 2.870691045
Modified PSO [68] 1.51613946 1.77132325 0.97941648 3.149959004
Improved bat algorithm [69] 1.09725692 2.48519353 2.18876069 1.719651032
Modified cuckoo search [70] 2.23161974 1.45663775 1.12820426 2.349557482
SUFACSO (Proposed) 0.49099032 0.47506478 1.88269133 2.806088962

Test10

Modified GA [67] 1.86584742 1.61460503 2.69209816 1.304904075
Modified PSO [68] 2.09295114 1.7359144 3.05856523 2.229535441
Improved bat algorithm [69] 1.35287627 1.36387305 1.40832302 1.108907756
Modified cuckoo search [70] 1.58199898 2.02814534 0.974299 1.703961167
SUFACSO (Proposed) 1.28304876 1.29860785 0.35589432 1.599078823

Average

Modified GA [67] 1.771745 1.844975 1.985642 1.803198
Modified PSO [68] 1.762978 1.515657 1.895579 2.205331
Improved bat algorithm [69] 1.518848 1.846916 1.733172 1.600529
Modified cuckoo search [70] 1.582606 1.758112 1.341075 1.595463
SUFACSO (Proposed) 1.354566 1.263372 1.317007 1.858007
of choice of the initial cluster centers as well as the ACSO ap-
proach determines the optimal cluster centers by optimizing
some validity indices. These advantages motivate us to apply the
proposed approach to automatically segment the radiological im-
ages that will be certainly helpful in diagnosing some symptoms
of COVID-19. The experimental outcomes show the efficiency of
the proposed approach. Under this pandemic environment, this
work is designed hoping that it can help physicians and other
domain experts to some extent in the early diagnosis of the
disease. Early diagnosis can prevent the drastic spread of this
highly infectious virus.
15
The quantitative outcomes of the proposed SUFACSO approach
are useful to assess the comparative performance. Quantitative
results do not have any direct implications in real-life diagnosis.
The segmented outcomes are useful in the diagnosis process.
Physicians can investigate the segmented outcomes to find some
prominent and common features as mentioned in Table 2. The
segmented images will be helpful in the easy interpretation of
the radiological images.

The proposed SUFACSO approach is an efficient image seg-
mentation approach that can effectively segment the radiological
images that highly useful in the easy interpretation of these
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Table 5
Performance evaluation of different approaches using Xie–Beni index (The highlighted values indicates acceptable values).
Image Id Algorithm No. of clusters

3 5 7 9

Test01

Modified GA [67] 2.69146705 1.41442224 1.22622137 1.176263877
Modified PSO [68] 2.39403891 2.19899596 1.58507038 1.646528068
Improved bat algorithm [69] 1.3370968 1.73434436 1.06725186 3.204134696
Modified cuckoo search [70] 0.96286351 1.69771768 1.21019388 2.118308847
SUFACSO (Proposed) 2.53699417 0.31893777 1.2685412 0.852004625

Test02

Modified GA [67] 2.03887392 3.32751564 2.28943241 2.59991593
Modified PSO [68] 2.24228212 2.15704373 1.21893503 1.531436955
Improved bat algorithm [69] 1.69818124 3.00465944 2.65510154 2.08119752
Modified cuckoo search [70] 3.70902188 2.6515796 2.20395001 2.435720549
SUFACSO (Proposed) 1.0784759 1.34309277 2.02539592 2.886558913

Test03

Modified GA [67] 4.82765162 3.46784418 2.53899662 2.89311318
Modified PSO [68] 4.25012327 3.48909152 2.67308186 3.122565004
Improved bat algorithm [69] 4.13546855 3.10709572 2.41866428 3.269968252
Modified cuckoo search [70] 2.33476302 2.35387554 2.36853987 3.061307074
SUFACSO (Proposed) 2.25055938 2.0085579 3.65811528 2.16002269

Test04

Modified GA [67] 1.92656632 2.01570677 2.96462498 2.60341865
Modified PSO [68] 1.76390865 1.40172242 2.7692897 3.072545978
Improved bat algorithm [69] 1.13667895 0.93378308 1.3956251 2.336959758
Modified cuckoo search [70] 2.91366229 1.37463862 1.1763172 1.294575943
SUFACSO (Proposed) 1.04470919 1.82491822 1.93064896 1.825483668

Test05

Modified GA [67] 2.95395779 2.11361058 1.85985557 1.5165552
Modified PSO [68] 2.23117532 1.540315 2.33176798 3.667949813
Improved bat algorithm [69] 3.08730539 1.43937536 2.70978567 2.911662524
Modified cuckoo search [70] 2.58982764 1.54398632 1.12262139 1.210945367
SUFACSO (Proposed) 1.35375084 1.47819099 1.66018935 0.824940837

Test06

Modified GA [67] 2.14442622 1.13314394 0.95573406 2.788452373
Modified PSO [68] 0.95277759 0.88675259 1.71859505 2.161697653
Improved bat algorithm [69] 1.96168524 0.87841532 2.21889045 1.219252605
Modified cuckoo search [70] 1.8958828 1.45086661 0.94136767 1.983432565
SUFACSO (Proposed) 1.30797679 0.88305988 1.55788741 1.408242103

Test07

Modified GA [67] 3.37751866 5.26303384 3.81641268 5.191173926
Modified PSO [68] 4.06106542 2.5715272 2.07107564 2.333933106
Improved bat algorithm [69] 2.26592194 3.50587509 3.71935887 2.905201863
Modified cuckoo search [70] 3.07927802 2.28665049 2.90323093 3.100018523
SUFACSO (Proposed) 2.60660201 4.55193531 1.84034578 3.403814631

Test08

Modified GA [67] 2.47011767 1.99416193 1.00946549 1.960004379
Modified PSO [68] 1.15646067 3.03547131 3.61585386 2.992494428
Improved bat algorithm [69] 1.43897989 1.93099108 0.83021415 2.760856601
Modified cuckoo search [70] 1.39764223 2.76335272 3.085587 2.089619632
SUFACSO (Proposed) 2.10516585 0.12736622 1.62210378 1.186292704

Test09

Modified GA [67] 0.79478679 1.67682005 1.12621277 2.030816079
Modified PSO [68] 3.21094249 1.46835685 1.8153802 2.388851563
Improved bat algorithm [69] 1.32670927 2.47107529 1.49174151 2.372020367
Modified cuckoo search [70] 1.39038075 1.42856234 2.08730791 1.302987319
SUFACSO (Proposed) 0.62982415 1.7625373 1.58819868 1.6800971

Test10

Modified GA [67] 2.66177118 2.10003706 1.35226514 1.228500948
Modified PSO [68] 1.62778564 2.80954682 2.13483764 1.399486344
Improved bat algorithm [69] 1.95983094 1.18115947 0.85943539 2.288793895
Modified cuckoo search [70] 0.96928909 2.51016333 1.32450961 1.498843159
SUFACSO (Proposed) 2.18385952 0.43177309 0.37290481 0.871666206

Average

Modified GA [67] 2.588714 2.45063 1.913922 2.398821
Modified PSO [68] 2.389056 2.155882 2.193389 2.431749
Improved bat algorithm [69] 2.034786 2.018677 1.936607 2.535005
Modified cuckoo search [70] 2.124261 2.006139 1.842363 2.009576
SUFACSO (Proposed) 1.709792 1.473037 1.752433 1.709912
images. The presence of the COVID-19 virus can only be con-
firmed with the help of some standard tests and one of the most
popular and gold-standard tests is the RT-PCR test. Typically, the
test reports of the RT-PCR tests are generated within 2–4 days.
There is a high possibility that a suspected patient can spread the
disease in the community completely unwillingly. The proposed
approach can reduce this chance because an initial screening can
be performed by the physicians comfortable with the help of the
proposed SUFACSO approach. It is worth mentioning here that the
proposed approach is neither a replacement of the RT-PCR test
nor it can confirm the presence of the virus accurately. However,
this approach can be helpful in an initial screening at an early
16
stage that will restrict the spread of this highly infectious virus
by separating suspected patients from the rest of the community.

6. Discussion

6.1. Threats to validity

The obtained results indicate that the proposed approach is
suitable for real-life scenarios and also performs efficiently. This
approach can be easily adapted for the automated screening pur-
poses of the COVID-19 infected patients. It is assumed the quality
of the CT scan images is considerably high and the performance
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Table 6
Performance evaluation of different approaches using Dunn index (The highlighted values indicates acceptable values).
Image Id Algorithm No. of clusters

3 5 7 9

Test01

Modified GA [67] 1.38079704 1.73218137 3.93408027 2.087090154
Modified PSO [68] 4.07844484 3.49417943 3.5708652 2.675016457
Improved bat algorithm [69] 3.61219541 1.77526628 2.52477322 3.827165547
Modified cuckoo search [70] 2.82931928 3.6382999 2.65821642 3.98048123
SUFACSO (Proposed) 0.53216147 3.9039139 1.81320183 1.022130037

Test02

Modified GA [67] 1.75109248 0.50772292 1.73011695 0.571499446
Modified PSO [68] 2.44330227 0.03057854 3.16082854 0.678371682
Improved bat algorithm [69] 0.0651176 1.28566579 1.89484017 1.883704888
Modified cuckoo search [70] 1.10079319 0.5385834 1.59255544 1.833744533
SUFACSO (Proposed) 1.650329 1.34390422 3.16610472 −0.43455972

Test03

Modified GA [67] 0.59605813 1.31612175 2.16374946 1.798332076
Modified PSO [68] 0.23727793 0.22612877 1.71117411 0.836239858
Improved bat algorithm [69] 0.70477886 0.93785786 1.69349452 0.676025097
Modified cuckoo search [70] 1.8758105 1.23204074 1.67329074 4.12189061
SUFACSO (Proposed) 4.17418903 0.81418855 1.91850303 1.903213479

Test04

Modified GA [67] 0.41709258 0.4987991 0.6082448 2.658713434
Modified PSO [68] 0.2827443 0.63529698 2.47342596 2.765396404
Improved bat algorithm [69] 2.60674701 −0.5321063 0.77104591 0.946721766
Modified cuckoo search [70] 0.5040684 1.18569092 1.47875446 1.999277329
SUFACSO (Proposed) 2.90609637 1.86109061 0.71425122 1.772877549

Test05

Modified GA [67] 1.05063521 2.65302993 1.12614224 0.602954582
Modified PSO [68] 1.03370656 0.21714971 1.46307936 1.658554434
Improved bat algorithm [69] 1.34211647 1.06864729 2.44840893 3.220427863
Modified cuckoo search [70] 1.3010428 0.95451526 3.43776349 0.863423269
SUFACSO (Proposed) 3.70360499 1.74336903 1.1313439 0.891174828

Test06

Modified GA [67] 0.65129046 0.97640418 1.18372757 1.54410516
Modified PSO [68] 0.48179468 2.6174623 3.37830325 2.701873257
Improved bat algorithm [69] 3.09224886 2.93734633 0.94054819 1.819656286
Modified cuckoo search [70] 1.47541726 0.7615836 1.26437887 2.402738065
SUFACSO (Proposed) 1.55716771 0.40530723 3.60532079 2.814619156

Test07

Modified GA [67] 0.80254483 0.5258835 3.01053616 2.079391015
Modified PSO [68] 1.99218806 2.43034641 2.01121969 0.025083963
Improved bat algorithm [69] 0.76781163 0.20209413 0.69576144 0.964311275
Modified cuckoo search [70] 1.12338312 0.2087061 0.17085699 3.453621966
SUFACSO (Proposed) 1.65299055 1.53033454 0.26862669 3.037055957

Test08

Modified GA [67] 1.28252598 0.6252526 0.05604183 1.374445695
Modified PSO [68] 3.51976111 0.0783424 1.17324832 0.34579416
Improved bat algorithm [69] 2.50111721 2.97591506 0.22389548 1.50192895
Modified cuckoo search [70] 1.58467683 1.03850298 0.35302245 0.595279952
SUFACSO (Proposed) 2.52406894 3.72972529 2.2144071 1.940383604

Test09

Modified GA [67] 0.73573519 1.83737293 0.99983621 3.335613405
Modified PSO [68] 3.32090469 1.51794873 1.6507293 1.007790939
Improved bat algorithm [69] 0.33232735 2.52350828 3.1305358 1.422894249
Modified cuckoo search [70] 4.15805945 2.73199336 4.32882324 4.69635358
SUFACSO (Proposed) 3.09892418 4.1435308 3.33631845 1.65603832

Test10

Modified GA [67] 1.22922689 2.57791297 3.96020801 1.572047169
Modified PSO [68] 3.8531468 3.54792579 2.49841155 3.185537046
Improved bat algorithm [69] 4.02841723 1.87104997 2.31529366 4.460819458
Modified cuckoo search [70] 1.90060428 2.31493962 2.99571905 3.260495626
SUFACSO (Proposed) 1.61115584 4.70141578 1.71234938 2.145844944

Average

Modified GA [67] 0.9897 1.325068 1.877268 1.762419
Modified PSO [68] 2.124327 1.479536 2.309129 1.587966
Improved bat algorithm [69] 1.905288 1.504524 1.66386 2.072366
Modified cuckoo search [70] 1.785318 1.460486 1.995338 2.720731
SUFACSO (Proposed) 2.341069 2.417678 1.988043 1.674878
of the proposed approach is not verified against the presence of
noise. It will be interesting to study the proposed approach in
the presence of noise. The scalability of the proposed approach
to different types of biomedical images can be explored in future
studies. Missing manual annotations can jeopardize the general-
izability of the proposed work. On the other hand, the obtained
results are quite promising and encouraging. From the best of the
knowledge of the authors, there is no publicly available manually
annotated dataset for the chest CT scan images of the COVID-19
positive cases.
17
6.2. Limitations

Although the proposed approach is efficient enough to seg-
ment the CT scan images automatically and produces realistic
segmented outcomes still, some important drawbacks can be
observed in this proposed approach that can be addressed in
the subsequent works. One important drawback of the proposed
approach is that it cannot automatically determine the number
of clusters and it can be overcome in future works. Automated
estimation of the clusters can make this approach more realis-
tic, robust, and application friendly. The proposed method can
handle only a single objective at a time. Therefore, the proposed
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Table 7
Performance evaluation of different approaches using β index (The highlighted values indicates acceptable values).
Image Id Algorithm No. of clusters

3 5 7 9

Test01

Modified GA [67] 1.85771923 1.87719016 2.77625117 1.923488598
Modified PSO [68] 1.29744418 1.84362835 2.8421391 3.554747442
Improved bat algorithm [69] 0.86405316 1.66327055 0.65659869 2.051280036
Modified cuckoo search [70] 3.62069121 2.0111202 1.97042879 1.91645961
SUFACSO (Proposed) 1.03997484 2.41972648 3.90032847 2.252534604

Test02

Modified GA [67] 1.79134555 2.20832869 1.12721854 0.582426433
Modified PSO [68] 3.06920476 0.87440402 1.59755176 1.820103708
Improved bat algorithm [69] 0.75311414 2.53796316 0.95256659 3.052708873
Modified cuckoo search [70] 2.81612886 2.73371316 1.99881392 2.402243737
SUFACSO (Proposed) 1.40174863 1.62155578 2.95063735 2.120275316

Test03

Modified GA [67] 0.41882013 1.86670461 1.81309491 2.28202183
Modified PSO [68] 1.15928538 2.41183226 2.24535236 3.134868573
Improved bat algorithm [69] 0.43695218 0.19359812 1.98349244 0.280256083
Modified cuckoo search [70] 2.19731892 0.28569824 2.01660314 2.340195605
SUFACSO (Proposed) 1.56466373 3.30829955 1.79733068 1.722732845

Test04

Modified GA [67] 0.0685311 1.85245478 2.19837194 2.073457603
Modified PSO [68] 2.05282544 2.32177502 2.76720803 1.966092764
Improved bat algorithm [69] 3.75941152 1.39705475 2.70941697 1.564638346
Modified cuckoo search [70] 1.7491569 2.00918337 2.68491534 1.355661156
SUFACSO (Proposed) 2.48021113 2.65801887 4.49035247 1.15488034

Test05

Modified GA [67] 0.33419284 1.2763673 0.63452301 1.497820632
Modified PSO [68] 2.1509252 3.12730032 2.90877793 0.527662769
Improved bat algorithm [69] 2.46984101 2.214897 2.71885908 1.412276426
Modified cuckoo search [70] 2.37140404 2.24710868 3.51701886 3.901908885
SUFACSO (Proposed) 2.3750031 3.88660174 3.73912423 1.627615713

Test06

Modified GA [67] 1.71561002 2.09845929 1.23969459 1.476922746
Modified PSO [68] 2.12560546 2.52042621 2.28508662 3.00984738
Improved bat algorithm [69] 1.35697143 2.2849966 2.66866176 2.264663614
Modified cuckoo search [70] 2.96245371 3.53891054 2.77460832 2.746260325
SUFACSO (Proposed) 0.81452221 2.5997894 5.05554271 1.569973168

Test07

Modified GA [67] 2.13673895 0.2052092 1.79958665 2.428984584
Modified PSO [68] 1.22252091 1.28508672 4.04698278 4.420906001
Improved bat algorithm [69] 1.02477544 1.82703711 1.70940361 1.147311283
Modified cuckoo search [70] 3.30070979 4.61310101 3.29199396 0.393190353
SUFACSO (Proposed) 0.67445288 4.91332732 2.48287968 1.074745523

Test08

Modified GA [67] 2.46713477 3.14972969 1.80583096 2.007368752
Modified PSO [68] 0.0515335 2.09674279 1.79514907 1.034859423
Improved bat algorithm [69] 1.4657952 2.35489672 3.07784961 2.201376099
Modified cuckoo search [70] 3.24732734 3.78205015 3.41062504 3.0543596
SUFACSO (Proposed) 2.79201594 4.6536034 2.37191784 2.875303569

Test09

Modified GA [67] 1.0144106 1.91057644 2.33554006 2.211316472
Modified PSO [68] 1.68094312 0.93231267 1.74826355 1.768040894
Improved bat algorithm [69] 2.79269741 4.05293806 2.64764229 2.459560893
Modified cuckoo search [70] 2.23824051 2.47162282 1.88115391 3.510091177
SUFACSO (Proposed) 2.52247598 2.58835133 4.93311917 3.143694421

Test10

Modified GA [67] 1.39451946 1.84111423 3.17625052 1.741998376
Modified PSO [68] 1.91630403 1.54328997 2.70353545 3.668091115
Improved bat algorithm [69] 1.33123066 1.46257728 1.11709722 2.45688079
Modified cuckoo search [70] 3.3946732 2.2465687 2.06897517 2.414847729
SUFACSO (Proposed) 0.69094236 2.54779909 3.4229555 1.501701743

Average

Modified GA [67] 1.319902 1.828613 1.890636 1.822581
Modified PSO [68] 1.672659 1.89568 2.494005 2.490522
Improved bat algorithm [69] 1.625484 1.998923 2.024159 1.889095
Modified cuckoo search [70] 2.78981 2.593908 2.561514 2.403522
SUFACSO (Proposed) 1.635601 3.119707 3.514419 1.904346
Table 8
Comparison of the proposed approach with the active contour method.
Methods Accuracy (%) Precision (%) Recall (%)

C-V 94.63 84.44 58.15
MAC 97.33 92.37 48.25
LSACM 98.36 96.89 45.67
Proposed 98.30 96.55 46.09

approach is not suitable for multi-objective optimization issues
unless enhanced further. The number of images in the dataset is
not very large. So, the proposed approach can also be tested on
18
some additional CT images of COVID-19 infection as well as on
some standard dataset of the biomedical images.

The proposed SUFACSO approach is an unsupervised segmen-
tation approach. It neither use any training dataset nor uses
any pre-trained model. The proposed approach can effectively
segment the radiological images that are collected from different
patients i.e., not only COVID-19 infected samples but samples
collected from patients with other infections as well as normal
patients. It is to be clarified that this approach cannot take any
decision about the type of disease automatically. For example, the
proposed approach cannot automatically differentiate between
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OVID-19 related lung images and other lung diseases. This ap-
roach aims to help physicians in early and quick interpretation
f the radiological images and diagnosis of the diseases without
ny manual delineations.

. Conclusion

This article proposes a novel, simple and elegant solution that
ses some of the important features of the chest CT scan images
o screen the COVID-19 suspected patients easily and at an early
hase which can be considered as an effective tool to reduce the
rastic spread of this virus. From Fig. 8, it can be observed that
he proposed approach works well in most situations and out-
erforms most of the other standard approaches. Both qualitative
nd quantitative study produces some satisfactory results which
elp to make the proposed approach trustworthy so that it can
e reliably adapted in the real-world scenarios. From Fig. 9, it
an be observed that the proposed approach performs well in
erms of convergence. The proposed approach initially performs a
uperpixel-based clustering using the proposed superpixel com-
utation method which significantly reduces the computational
verhead for the further clustering process by reducing a large
mount of spatial information. Therefore, radiological images can
e conveniently explicated with the application of the proposed
ethod and the proposed approach is also helpful in the easy

nterpretation of the radiological images. The proposed work nei-
her claims that the suggested approach is cent percent accurate
n determining the COVID-19 infection nor claims that it can
e a replacement of the RT-PCR test but, the proposed method
an help detect some common characteristics from the CT scan
mages, that can help to isolate some suspected patients from
he rest of the community. The proposed approach is helpful for
he early screening of the COVID-19 besides being a significant
ontribution to the image segmentation literature.
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ppendix. Experimental setup and environment

ardware setup
The experiments are performed in a laptop PC which is

quipped with 4 GB of RAM, 1 gigabyte of dedicated graphics
emory, Intel Core i3-3217U processor with 1.8 GHz clock speed.
he dedicated graphics memory is not utilized for any kind of
rocessing purposes.

oftware setup
The system in which the experiments are carried out is

quipped with the Microsoft Windows 7 (64 bit) operating sys-
em. The proposed SUFACSO approach is coded in the Matlab
19
R2014a environment. It is not at all essential to use the Matlab
environment to implement the proposed approach. We have
chosen Matlab due to the availability of some inbuilt functions
which are helpful to reduce the coding complexity. Still, any other
languages or platforms can be used to implement the same. The
graphs are also generated in the Matlab environment where the’
best’ position is selected to accommodate the legend without
interfering the actual plot.

Information about the image data and segmented output
The proposed SUFACSO approach is applied to the CT scan

images which are collected from the chest region of the COVID-
19 infected patients. It is assumed that there are no manual
annotations available and the proposed approach is capable to
process the images without having any prior knowledge. The pro-
posed SUFACSO approach produces the optimal segmented image
by computing the optimal cluster centers. The final segmented
images are constructed by assigning the superpixel to their cor-
responding cluster centers. These segmented images are helpful
to interpret different features from these radiological images.
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