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A B S T R A C T

Opportunistic IoT (OppIoT ) networks are a branch of IoT where the human and machines
collaborate to form a network for sharing data. The broad spectrum of devices and ad-hoc
nature of connections, further alleviate the problem of network and data security. Traditional
approaches like trust based approaches or cryptographic approaches fail to preemptively secure
these networks. Machine learning (ML) approaches, mainly deep reinforcement learning (DRL)
methods can prove to be very effective in ensuring the security of the network as they
are profoundly capable of solving complex and dynamic problems. Deep Q-learning (DQL)
incorporates deep neural network in the Q learning process for dealing with high-dimensional
data. This paper proposes a routing approach for OppIoT, DQNSec, based on DQL for securing the
network against attacks viz. sinkhole, hello flood and distributed denial of service attack. The
actor–critic approach of DQL is utilized and OppIoT is modeled as a Markov decision process
(MDP). Extensive simulations prove the efficiency of DQNSec in comparison to other ML based
routing protocols, viz. RFCSec, RLProph, CAML and MLProph.

. Introduction

Mobile Ad-hoc Networks (MANET ) [1] are the traditional networks where messages are transmitted between devices if an end-
o-end connection exists between them. There exists certain situations where ensuring this end-to-end connection is not possible,
uch as in rural areas, disaster management scenarios, where the application of MANETs is not an option. A subclass of Delay
olerant Networks (DTNs) [2], Opportunistic Networks (OppNets) [3] are suitable for use in such conditions where communication
pportunities are rare and an end-to-end path may never exist between the source and the destination. This characteristic of OppNets
pplies to Internet of Things (IoT ) networks [4] as well. IoT networks comprise of a large spectrum of devices that are connected to
he internet. Opportunistic Internet of Things (OppIoT ) networks [5] bring the benefits of OppNets and IoT together and perform data
ransmission using the contact opportunities between human beings and their smart devices. Routing of the messages is performed
aking use of the store-carry-forward principle, where the carrier node waits for another node that brings the message closer to

he destination node.
The vast spectrum of devices and the broadcast nature of transmission gives rise to enormous security issues. Traditional security

easures viz. trust schemes, cryptography etc. [6] are not able to effectively deal with threats to the security of the network. Machine
earning techniques can prove to be a really efficient [7] in such scenarios. Indeed, Reinforcement Learning (RL) [8], which is a
ub-class of ML, resembles human learning as using experience gained via exploitation and exploration, it learns on its own in an
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unknown environment. RL models an agent or player that takes sequential actions or decisions, with or without prior knowledge of
the environment, for achieving optimal output, which is associated with rewards. Q-learning [9] is a form of model-free RL approach.

Recently, deep learning concepts have been included into RL methods for solving several complex problems. Deep Q-learning
network (DQN) [10] is one such network that combines deep neural network (DNN) [11] and Q-learning. DQN can follow any of
the below approaches for learning procedure:

• Value-based method: The aim of value-based methods is to find an optimal value function by evaluating the goodness of
each action. These methods are ineffective as the number of actions or states rises.

• Policy-based method: A policy is randomly chosen initially and then in every evaluation step, the value function is computed
for that policy. Then transitions are made with the intention of finding an optimal policy. This approach suffers from huge
fluctuation.

• Actor–critic method: This approach brings the advantages of both the above defined approaches thereby removing their
shortcomings. The actor continuously tries to improve a policy by taking feedback from the critic until he reaches to an
optimal policy. Asynchronous advantage actor–critic (A3C) [12] is an example of such methods. A3C has multiple agents and
a global network. Each agent interacts with its own copy of environment which it resets to match the global network in the
beginning. The global network is updated asynchronously using the gradients obtained from these agent’s learning processes.
Multi- agent approach helps in diversifying and speeding up the learning process.

The increasing number of devices that are getting connected to the OppIoT networks has led to an increase in the number of
complex security threats [13]. DQN are suitable for solving such complex problems. The learning process is modeled as a Markov
decision process (MDP) [14] where the OppIoT is assumed to be composed of a set of all possible states that the nodes in the
etwork can be in. These states are defined using node’s contextual information or using certain features. The trace data of the
ystem calls are fed into MDP, whose state values are used for detection of abnormal behaviors [15] of the nodes. The attack

detection problem is thus converted to a state- value prediction job making use of the Markov chains. Detection techniques can be
broadly categorized as network-based or host-based. Network-based techniques rely on a specialized node for collection and analysis
of packets transmitted in the network. Host-based techniques analyze the log files of the nodes for differentiating normal behavior
from anomalous ones. Both these above mentioned techniques use either anomaly-based or signature-based detection methods [16].
Anomaly detection techniques observe the behavior of the nodes and raises an alert if deviations are detected from expected
behavior. Signature detection techniques on the other hand save the patterns of several known attacks and later on compares them
with the characteristics of possible attackers. The presented approach is a host based anomaly detection technique.

This work presents an actor–critic Deep Q-learning based secure routing approach for OppIoT, DQNSec, that protects the network
from hello flooding [17], sinkhole [18] and distributed denial of service attack [19]. While performing hello flood attack, the attacker
floods the network with huge traffic making the services unavailable to the legitimate nodes of the network. During sinkhole attack,
an attacker compromises a node and uses it for sending fake routing information to its neighboring nodes. Attacker attracts the
network traffic towards itself by advertising as having the shortest distance path to the destination node. Later this data can be
used for launching several other attacks. Denial of service (DoS) attacker aims at preventing the legitimate users of a service from
using the desired resources. Distributed denial-of-service (DDoS) is a form of DoS attack that is distributed in nature, affects a larger
volume of traffic and targets huge number of nodes.

The major contributions of the proposed DQNSec scheme are:

• Actor–Critic based deep Q- learning: Actor–critic approach has the advantages of both the value-based and policy-based
methods. The actor generates an optimal policy by receiving feedback from the critic.

• Markov Decision Process: The learning process follows Markov decision process (MDP) where the OppIoT is assumed to be
composed of a set several states that are defined using node’s contextual information for detection of abnormal behaviors of
the nodes.

• Detection and isolation of hello flooding, sinkhole and distributed denial of service attack: DQNSec successfully detects
and isolates the sinkhole, DDoS and hello flooding attackers from participation in the packet forwarding procedure.

• Simulation on real data trace: DQNSec is simulated using the real data trace and satisfactory results were obtained, the
attackers were detected successfully.

The rest of this paper is organized as follows. Literature review is presented in Section 2. The proposed DQNSec scheme is
described in Section 3. Section 4 provides the details of the simulations conducted. Section 5 concludes the proposed work and
throws light on the future aspirations.

2. Literature review

RL, typically Deep Q- Learning (DQL) has been used in a wide range of applications in the literature, varying from privacy of
data and users to protection of the critical infrastructure.

Yavuz et al. [20] proposed a deep learning based approach for detection of routing attacks using big data. Proposed approach
showcased high scalability and generalization. The routing attacks viz. version number, decreased rank and hello-flood attack were
successfully detected by this approach. The major disadvantage of this approach were that the attack datasets were generated via
simulation and real data trace were not used. Jinarajadasa et al. [21] proposed a RL based security approach for enhancing the trust
level in MANETs. Trust was computed using Q-value that served for calculating the reputation of the nodes, identifying malicious
2
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behavior and finding routes for creating a trusted network infrastructure. As the size of data increases, the number of Q- tables and
hence the size of memory required for storing the results exponentially leading to increased cost.

Yang et al. [22] proposed a multidimensional approach for feature phishing detection based on deep learning. URL’s character
sequence features are used for performing classification using deep learning. Then, various statistical features of the URL are
combined to obtain multidimensional features which are then classified to achieve very high accuracy. Vashishth et al. [23] proposed
the use of a cascaded learning-based ML approach for routing in OppIoT. A logistic regression classifier was used as an input cascade
to a neural network classifier. The major disadvantage of this approach was the use of multiple classifiers that led to an increase in
the system complexity and computation time. The malicious behavior of nodes was not addressed.

Yan et al. [24] proposed a malware detection method using two deep neural networks CNN and LSTM for learning from grayscale
images and opcode sequences extracted from raw binary executable files. Then the result obtained from these networks were
combined using stacking ensemble along with extra metadata features. Finally the results were obtained for classification of malware.
Stochastic Gradient Decent was used later for training the logistic regression model. Use of so many techniques in a single protocol
makes the system very complex computationally as well as on cost level.

Adeel et al. presented a survey of several techniques for disaster management using IoT networks [25]. The work presents details
of several wireless technologies that can prove to be really helpful in communication and enhancing the efficacy of prediction,
management and monitoring of disasters. Future scope and opportunities for improvement are very well emphasized in this work.
Irfan et al. [26] proposed a system for gathering the movement data of users using sensors built into a home. The authors proposed
a data reduction technique and demonstrated the graphical view of several daily living activities. The system automatically predicts
and sends a message to healthcare professional in case of an emergency.

Srinivas et al. [17] suggested a defense mechanism against HELLO flooding attack based on deep learning. Their approach included
cluster head selection and optimal shortest path selection. Route discovery time and threshold function was used for detection of
HELLO flood attackers. The shortest path was selected based on trust, transmission delay, distance between the nodes and packet
loss ratio. The major limitation of their work was that the trust-aware schemes can make their security mechanism invalid. The
algorithm is works really slowly and other attacks have not been addressed.

All the work in literature focused on either simple RL techniques or deep learning alone. The procedures followed were complex
and hence non- realistic for application to a range of OppIoT devices. In addition to this, only a few types of attacks were addressed
and attackers were not identified proactively. The efficiency of the security approaches was not taken into consideration. These
limitations have motivated the authors to propose a Deep Q- Learning based security approach that brings the advantages of RL and
Deep learning techniques together. The proposed protocol addresses several attacks and is quite efficient.

3. DQNSec: Deep Q-learning based secure routing protocol

Ensuring security of the OppIoT networks is a challenging task due to the lack of fixed path between nodes and a wide spectrum
of devices. Traditional security approaches lack the ability to predict the future conduct of the nodes. ML techniques learn from the
past behavior of the nodes and predict their future actions, thereby isolating the malicious nodes before they could cause any harm
to the network. DQNSec is a deep neural network based security approach that uses Q leaning to learn the behavior of the nodes
nd later predict the future conduct of the nodes for protecting against hello flooding, sinkhole and distributed denial of service
ttacks.

.1. Preliminaries

In RL, an agent interacts with its environment and creates several learning experiences. Agent transitions from one state to
another. RL can be modeled as a MDP [14]. Q-learning is a type of RL where the main aim is to achieve maximum total reward
which is computed using bellman equation [9] as shown in Eq. (1) where 𝛾 is the discount factor that lies in the range 0 to 1 and
helps in managing the importance of future rewards. Q-learning makes use of Q-table for saving the rewards. The size of Q table
increases with increasing number of state action pairs making it inefficient.

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎 −𝑄𝑡(𝑠𝑡, 𝑎𝑡)) (1)

Here deep learning comes to the rescue [27]. Deep learning is a powerful tool has the ability for function approximation and
can easily learn to reduce dimensions of input data. The combination of deep neural networks (DNN) and Q learning approach are
deep Q networks (DQN) that were proposed by Google DeepMind [28].

DQN architecture is depicted in Fig. 1. Every action creates an experience and are stored in the experience replay memory,
comprising of state s, reward R, action a and the next possible states. Experience replay helps in achieving a learning process that is
uniform and stable. Target network is replica of the estimation network whose parameters are updated after certain period of time.
Q value can be computed using the bellman equation as shown in Eq. (1) where 𝛼 is the learning rate. The loss function described
by Eq. (2) where 𝛽 and 𝛽′ are parameters of estimation and target DNN.

𝐿(𝛽) = 𝐸[(𝑅 + 𝛾𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′|𝛽′) −𝑄(𝑠, 𝑎|𝛽)2] (2)
3
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Fig. 1. DQN architecture.

3.2. Network and attack model

OppIoT is assumed to be comprising of n nodes that cooperate in the transmission of messages and possess enough battery and
buffer capacity. Nodes exchange several parameter values like, (the number of messages created, message copies, messages received,
destination ids, malicious nodes encountered, packets forwarded, and packets dropped), upon encounter. In the proposed approach,
malicious node can attack the network in any of the following ways:

- Hello flooding attack: where the attacker generates a huge number of ‘Hello’ messages and floods the network for wasting
the valuable resources of the network.

- Sinkhole attack: The attacker advertises itself as having the shortest path to the destination node for attracting maximum
traffic from its neighbors. The compromised node, later consumes the data for launching other attacks or simply drops the packets.

- Distributed denial-of-service (DDoS): DDoS is the most complicated attack and very difficult to identify as the attacker
generates packets very similar to the original data and the attack is executed in a distributed manner. The main aim is to prevent
the legitimate users of a service from using the desired resources by burdening the service provider.

DQNSec predicts the encountered node’s behavior based on their past actions so that the delivery probability of the protocol
stays high and the network is protected before any major loss can be done to the network.

3.3. Proposed DQNSec protocol

DQNSec comprise of two phases, training and prediction phase. During the training phase, first step is the Pre- processing of data
where raw data is transformed into meaningful dataset and noise is removed. Feature extraction is then performed where several
important features are extracted from the dataset and labeling of data is also performed. The data still have different mean and
variance, so Feature normalization is performed so that all the data lie in the same range, 0 to 1. Next important step is, Feature
selection where an optimal subset of features is obtained and irrelevant features are removed from the dataset. The dataset is then
divided into two parts, training dataset (DTrain) and testing dataset (DTest), usually in the ratio 2/3 and 1/3 respectively. Then the
training dataset is fed into the DQN which learns using multiple agent approach. The advantage of multi- agent over experience
replay is that the overhead and cost of extra memory requirement is reduced and the learning is diversified. Ada delta optimizer [29]
is used for performing learning. The training procedure followed is described in algorithm 1.

The use of multiple actors approach for learning where the learners are just the CPU threads that operate on a specific machine
that helps in reducing the cost of communication between learners. This approach helps in diversifying the learning process as each
learner explores different environment. In addition to this, separate policies can be adopted for each actor–learner pair. This justifies
the fact that there is no requirement for experience replay memory, as the stabilization is performed by actors running in parallel,
thus reducing the cost of implementation and the time required for training is also reduced.

DQNSec makes use of the A3C approach [12] which is a type of multi- actor approach comprising of a single DNN for
approximating the value and policy functions. DNN has two convolutional layers [30] and a fully connected layer and produce
two outputs, softmax layer which approximates the policy function 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) and the output of the linear layer is the value function
𝑉 (𝑠 ; 𝜃). Asynchronous gradient descent technique [31] is utilized by multiple agents for optimization. Gradients are computed by
4
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Algorithm 1 DQN Training
1: Begin
2: Input the dataset csv file.
3: Remove noise and convert csv into meaningful dataset.
4: Feed dataset into decision tree for feature selection and importance.
5: Split dataset as DTrain and DTest.
6: Model deep learning sequential model.
7: Set the layers of the neural network.
8: Set Ada Delta as the optimizer.
9: Set the Loss function.

10: Input DTrain.
11: Begin training.
12: Save the output model and weights obtained.
13: Input DTest.
14: Produce the final classification report.
15: End

the agents and updates are sent after a regular interval to the server. The central server then sends the updated weights to the agents
for maintaining a common policy among the agents. The policy function is given in Eq. (3) where 𝜃𝑡 is the value of 𝜃 at a given
time t. 𝑅𝑡 is the reward function for interval 𝑡 to 𝑡 + 𝑘, as defined in Eq. (4). 𝐻(𝜋(𝑠𝑡; 𝜃)) is entropy for favoring exploration over
exploitation during training and 𝛽 helps in controlling the strength of entropy.

𝑓𝜋 (𝜃) = log𝜋(𝑎𝑡|𝑠𝑡; 𝜃)(𝑅𝑡 − 𝑉 (𝑠𝑡; 𝜃𝑡)) + 𝛽𝐻(𝜋(𝑠𝑡; 𝜃)) (3)

𝑅𝑡 =
𝑘−1
∑

𝑖=0
𝛾 𝑖𝑟𝑡 + 1 + 𝛾𝑘𝑉 (𝑠𝑡+𝑘; 𝜃𝑡) (4)

The value function is given in Eq. (5).

𝑓𝑣(𝜃) = (𝑅𝑡 − 𝑉 (𝑠𝑡; 𝜃))2 (5)

During training the gradient is calculated as shown in Eq. (6).

𝑔 = 𝛼𝑔 + (1 − 𝛼)𝛥𝜃2 (6)

𝜃 ← 𝜃 − 𝜂𝛥𝜃
√

𝑔 + 𝜀 (7)

After the training is complete, the testing phase begins where the DTest, which is the remaining 1/3 part of the dataset, is used
for testing purpose. The final classification report produced is then tested for accuracy.

Features considered for DQNSec are as follows.

• Number of packets transmitted (𝑛1) is the count of packets that are transmitted or forwarded by a node.
• Number of packets dropped (𝑛2) is the count of packets dropped at each node in the network.
• Number of packets received (𝑛3) is the measure of packets being received at a node.
• End to end delay (𝑛4) is total delay from packet creation to the delay in packet forwarding till it gets delivered to the

destination node.
• Buffer occupancy (𝑛5) depicts the residual buffer at a node.
• Energy level (𝑛6) is the current residual energy or battery power of a node.
• Reception time (𝑛7) is total time spent by node in receiving data packets.
• Transmission time (𝑛8) is the total time spent by a node in message transmission.
• Misrouted packets (𝑛9) is the total number of packets routed on a wrong route by maliciously behaving nodes.
• Packet delivery probability (𝑛10) is the ratio of packets correctly delivered to the total number of packets transmitted.

The above mentioned features help in the identification of the correct class of the encountered node viz. benign or malicious.
The attackers perform either of the attacks, sinkhole, hello flood or distributed denial of service attack.

Sinkhole attacker makes an attempt at attracting maximum traffic towards itself by advertising as having the shortest path to the
destination. The attacker compromises a node for sending fake routing information to its neighboring nodes. The sinkhole attack
can be identified using the average time spent by a node in packet reception (PRT). PRT is usually very high for sinkhole attacker.
In addition to this, 𝑛1 is low and 𝑛5 is usually high.

𝑃𝑎𝑐𝑘𝑒𝑡_𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛_𝑇 𝑖𝑚𝑒 =
𝑛7 (8)
5
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While performing the hello flood attack, the attacker sends random HELLO packets and floods the network making the services
unavailable to the legitimate nodes of the network. Keeping a track of the transmission average time (TT ) can prove to be very
helpful in identifying hello flooding attack. 𝑛1 feature is very high for flooding attackers.

𝑇 𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑇 𝑖𝑚𝑒 =
𝑛8
𝑛1

(9)

DoS attackers prevent legitimate users of a service from using the desired resources. Distributed denial-of-service (DDoS) is a
orm of DoS attack that is distributed in nature, affects a larger volume of traffic and targets huge number of nodes. DDoS can be
dentified by tracking the energy level of a node. Performing such attack exhausts the attackers resources. 𝑛8 is usually high and
uge delay is observed in packet delivery.

In order to promote desirable behavior of nodes, reward function is designed. Whenever an actor takes some action and transitions
ts state, a reward is assigned to him. In the proposed approach, an actor is rewarded positively whenever it conducts benign behavior
nd its action enhances throughput and reduces packets dropped and delay and saves energy. Reward function is defined in Eq. (10),
here 𝜔𝑖 is the weight for controlling the weights given to each feature.

𝑅 = 𝜔1 ∗ 𝑛10 + 𝜔2 ∗ 𝑛6 − 𝜔3 ∗ 𝑛9 − 𝜔4 ∗ 𝑛5 − 𝜔5 ∗ 𝑛4 − 𝜔6 ∗ 𝑛2 (10)

The final output is generated making use of the Rectified Linear (ReLu) function [32]. ReLu is a non-linear function that makes
he back propagation of errors and activates the neurons in multiple layers. The training is performed several times until the error
s minimal. The computed reward value is then input into the DNN for predicting the Q- value and ultimately finding an optimal
ath to the destination. The nodes with higher Q- value are preferred for packet forwarding. The routing procedure is described in
lgorithm 2.

Algorithm 2 DQNSec
1: Begin
2: Initialize learning rate 𝛼 and discount factor 𝛾.
3: Initialize 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝐻𝑜𝑠𝑡 list.
4: Obtain the training dataset.
5: Obtain the feature set, 𝐹 = (𝑛1, 𝑛2....., 𝑛10).
6: Call DQN Training Algorithm 1.
7: Sender generates message.
8: for (each neighboring node N do
9: if (𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝐻𝑜𝑠𝑡 contains (N)) then

10: Malicious host encountered, wait for a better carrier.
11: else
12: Predict whether N is malicious or benign.
13: if (N is malicious)) then
14: Malicious node encountered.
15: Add node as 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑁𝑜𝑑𝑒 to the 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝐻𝑜𝑠𝑡 list.
16: Wait for a better forwarder till 𝑝𝑎𝑐𝑘𝑒𝑡.TTL expires.
17: else
18: Compute the Q- value (Q_val) for N.
19: if (N. Q_val > Carrier.Q_val) then
20: Forward the packet to the benign node encountered.
21: Compute the reward R for the transition made.
22: else
23: Wait for a better forwarder till 𝑝𝑎𝑐𝑘𝑒𝑡.TTL expires.
24: end if
25: end if
26: end if
27: if (𝑝𝑎𝑐𝑘𝑒𝑡.𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 == 𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔_𝑁𝑜𝑑𝑒) then
28: Destination reached.
29: else
30: Continue routing.
31: end if
32: end for
33: End

4. Simulation results

DQNSec protocol is simulated using the ONE simulator [33] making use of the real data traces, Kaggle’s Microsoft Malicious
dataset [34] which is a malware dataset released by Microsoft in 2015. Tensorflow Playground [35] is used to train and deploy the
eep neural network for the implementation of the DQNSec scheme.
6
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4.1. Simulation setup

OppIoT is assumed to be composed of n nodes each possessing a buffer size of 100 MB. The area for simulation is set as
1000 m ∗ 1000 m. Random Movement Model is used for depicting the node movement. The scanning granularity of bluetooth is
set at 120 per second and the TTL of the packets is set as 100 min. Every simulation runs for 337 418 s and a new message is
generated every 25–35 s of size 500 kB – 1 MB.

DQNSec protocol’s performance is compared against several machine learning protocols viz., RFCSec [36], MLProph [37],
CAML [23] and RLProph [38]. Performance metrics against which the comparison is made are as follows:

• Packets dropped: It is the average number of packets dropped by a node during routing is a representative of its behavior.
This metric should be very low for receiving higher rewards.

• Message delivery probability: It indicates the number of packets successfully delivered to its destination. This metric should
be high for an efficient routing protocol.

• Average delay: It is the latency observed in delivering the packets to its destination node. The value of this metric should be
low for good performance.

• Average overhead ratio: It is the total overhead observed in packet delivery by the network. This metric should be low as a
higher value indicates that the resources are not managed well.

The performance of secure protocol in presence of malicious nodes is further measured against metrics viz., Accuracy and F-
score.

True positive 𝑇 _𝑃 is the outcome when a protocol makes correct prediction when a node is malicious. True negative 𝑇 _𝑁 on
the other hand is the outcome obtained when the protocol makes correct prediction and the node is benign. False positive 𝐹 _𝑃 is
when the protocol predicts incorrectly and classifies a benign node as malicious. False negative 𝐹 _𝑁 is when the protocol classifies
a malicious node incorrectly as benign. Accuracy metric is computed as shown in Eq. (11).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 _𝑃 + 𝑇 _𝑁
𝑇 _𝑃 + 𝑇 _𝑁 + 𝐹 _𝑃 + 𝐹 _𝑁 (11)

F score is measured using recall and precision as shown in Eq. (14).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 _𝑃
𝑇 _𝑃 + 𝐹 _𝑃 (12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 _𝑃
𝑇 _𝑃 + 𝐹 _𝑁 (13)

𝐹 _𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(14)

4.2. Simulation results

The learning rate 𝛼 is used for controlling the size of steps at each iteration while minimizing the loss gradient. If the value of 𝛼
is low, the time spent for training is very high and a higher rate results in higher cost and the predictions are not accurate. During
simulations, firstly efforts are made for deciding an optimal value for 𝛼. The time to live for a message is set as 100 min and 𝛼 is
varied for observing its impact on the delivery probability as shown in Fig. 2. Zero value for 𝛼 implies that the agent takes only the
previously obtained information into consideration and a value of 1 signifies that only the new learning is considered. The value
of 𝛼 is chosen to be 0.6 as it produces highest delivery probability and after that saturation and even a slight fall is observed after
this value.

𝛾 is the discount factor that helps in controlling the importance of future rewards. As the value of 𝛾 rises, the delivery probability
rises. The impact of varying 𝛾 on delivery probability is depicted in Fig. 3.

The impact of changing the percentage of attackers present in the network is noted on various quality metrics as shown in Fig. 4.
is varied from 5% to 25%. As the number of attackers rise in the network, the model improves its learning based on past encounters
and the value of metrics tend to rise. The average value observed for F score is 91% and that for Accuracy is 0.896%.

Further, the impact of varying percentage of attackers is noted on delivery probability as shown Fig. 5. As the count of attackers
rise, the delivery probability tends to fall. Amongst all studied protocols, DQNSec produces highest delivery probability as it works
proactively for attacker isolation. The average value observed for delivery probability for DQNSec is 0.479 which is about 35.5%
superior to RFCSec, 33.3% better than RLProph, 31.2% better than CAML and 29.4% superior to MLProph. The effect of this change
is then noted on the number of dropped packets as shown in Fig. 6. Rising count of attackers lead to a rise in number of data packets
getting dropped in the network. Average packets dropped for DQNSec is about 15.2% lower as compared to RFCSec, 41.9% lower
han RLProph, 45.2% lower than CAML and 46.9% lower than the count of packets dropped by MLProph. Fig. 7 depicts the impact of
arying attacker percentage on packet delivery. Average latency tends to rise with increasing count of malicious nodes in network.
he average latency for DQNSec is 1874.5 s which is about 10.5% lower than RFCSec, 23.2% lower than RLProph, 36.5% better in
omparison to CAML and 35% lower than MLProph. Fig. 8 displays the overhead ratio observed in the network over rising attacker
ercentage. The overhead rises with rising attacker percentage. The average overhead ratio observed for DQNSec is 73.4 which is
7

he lowest. Table 1 provides a summary of the results shown in Figs. 5 to 8. DQNSec outperforms all the studied protocols.
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Fig. 2. Delivery probability vs. learning rate.

Fig. 3. Delivery probability vs. discount factor.

Fig. 4. Percentage of malicious nodes vs. metrics of quality.
8



Internet of Things 20 (2022) 100597N. Kandhoul and S.K. Dhurandher
Fig. 5. Delivery probability vs percentage of attackers.

Fig. 6. Packets dropped vs percentage of attackers.

Fig. 7. Average latency vs percentage of attackers.

For the next set of observations, the percentage of attackers is kept fixed at 5% and the size of buffer is varied. Fig. 9 shows
the impact of changing buffer on delivery probability. As the size of the buffer rises, the probability of packet delivery rises. This is
attributed to the fact that with enhanced buffer size, larger number of packets are able to reside in the buffer leading to an increase
in the packet delivery. The average packet delivery probability for DQNSec is 0.56 which is about 24% higher in comparison to
RFCSec, 32% superior to RLProph, 38.3% higher than CAML and 46.7% higher than MLProph. Fig. 10 shows the impact on the
9
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Fig. 8. Overhead ratio vs percentage of attackers.

Table 1
Metrics across varying percentage of attackers.

Protocol Delivery probability Packets dropped Average latency Overhead ratio

MLProph 0.294 5048 2885.21 101
CAML 0.32 4888 2952.41 93
RLProph 0.334 4618 2441.11 88.4
RFCSec 0.354 3160 2094.97 82
DQNSec 0.479 2679 1874.58 73.4

Fig. 9. Delivery probability vs buffer Size.

Table 2
Metrics across changing buffer size.

Protocol Delivery probability Packets dropped Average latency Overhead ratio

MLProph 0.379 4170 2867.258 75
CAML 0.402 4051 2725.60 71
RLProph 0.421 3821 2340.9 67.2
RFCSec 0.4482 3382 2060.17 63
DQNSec 0.556 2933 1863.24 55.4

packets getting dropped in the network. A fall is observed in the packets dropped with rising buffer size. For DQNSec the count of
packets dropped is the lowest. The impact on delay in packet delivery is captured in Fig. 11. The average latency for DQNSec is
about 9.5% lower to RFCSec, 20.4% lower to RLProph, 31.6% lower than CAML and 35.2% lower than MLProph. Fig. 12 depicts
the impact on the network overhead ratio. Average overhead tend to fall for all studied protocols with rising buffer size. Average
overhead for DQNSec 55.4 which is the lowest. Table 2 summarizes the results under varying size of buffer.
10
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Fig. 10. Messages dropped vs buffer Size.

Fig. 11. Average latency vs buffer Size.

Fig. 12. Overhead ratio vs buffer Size.

Final set of observations were made across varying time to live for messages. Fig. 13 shows that an increasing TTL leads to a fall
n packet delivery probability as the packets reside in the buffer for a longer time, enhancing its chances of getting dropped from the
uffer. Average delivery probability for DQNSec is 0.486 which is about 28.5% higher in comparison to RFCSec, 35% greater than
LProph, 44.2% higher than CAML and 50.9% superior to MLProph. The overall count of packets getting dropped in the network
ises with the rising TTL as shown in Fig. 14. Average number of packets dropped in the network for DQNSec is found to be the
11
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Table 3
Metrics across changing TTL.

Protocol Delivery probability Packets dropped Average latency Overhead ratio

MLProph 0.322 4696 2814.41 106.6
CAML 0.337 4549 2672.41 99.4
RLProph 0.36 4311 2345.11 93.8
RFCSec 0.378 3927 2059.57 88.2
DQNSec 0.486 3441 1849.98 71.4

Fig. 13. Delivery probability vs TTL.

Fig. 14. Number of messages dropped vs TTL.

lowest. Fig. 15 shows the impact on delay in packet delivery with changing TTL. Average latency observed for DQNSec is 1849.5 s
which is the lowest as compared to other protocols taken into consideration. Finally the impact is noted on the overhead incurred
in the network with rising TTL as shown in Fig. 16. DQNSec performs best with lowest overhead ratio of 71.4 which is about 19.2%
lower than RFCSec, 23.38% lower than RLProph, 28.16% better than CAML and 33.33% lower than MLProph. Table 3 provides a
summary of the results obtained with changing TTL of the packets.

The results obtained via simulations prove that the proposed DQNSec secure routing protocol performs best under all circum-
tances, the accuracy is high and still provides security against several attacks.

. Conclusion

This paper presented an actor–critic Deep Q-learning based secure routing approach for OppIoT, DQNSec, that protects the
etwork from hello flooding, sinkhole and distributed denial of service attack. The use of actor–critic approach provides advantages
f both the value-based and policy-based methods. The learning process is modeled as a Markov decision process. DQNSec
uccessfully detects and isolates the sinkhole, DDoS and hello flooding attackers from participation in the packet forwarding
12
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Fig. 15. Average latency vs TTL.

Fig. 16. Overhead ratio vs TTL.

rocedure. Simulations performed using the real data trace show that the accuracy of prediction and F- score are very high. Other
esults obtained in terms of delivery probability, average latency, overhead ratio and number of packets dropped are superior in
omparison to other studied protocol. In the future, we plan to incorporate other deep learning techniques for ensuring network
ecurity and compare their effectiveness with current work.
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