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A B S T R A C T

Printable characters extracted from portable executable (PE) files are a common surface analysis
feature. String extraction is a supplemental feature for malware analysis. Recent developments
in natural language processing techniques have enabled the rapid detection of malicious PE files.
Previously, we proposed a method for detecting malicious PE files using printable characters
using two language models for feature extraction and machine-learning. In this study, we
evaluated the method using the latest FFRI dataset consisting of 400,000 benign and 400,000
malicious samples between 2019 and 2021. To the best of our knowledge, this is the first study
to consider the time series of both malicious and benign samples. According to the results,
specific tokens in the printable characters were effective in detecting the latest malicious PE
files. The most practical combination was of the Doc2vec and multilayer perceptron, which
achieved an F1 score of 0.981. Each run time showed an almost linear increase with increasing
dataset size.

. Introduction

Printable characters extracted from portable executable (PE) files are a common surface analysis feature. A string is a sequence
f characters that can be a constant or a variable. A string contains useful information such as IP address, domains, functions,
ata, or any other information that has not been removed. String extraction is a supplemental feature for malware analysis. Recent
evelopments in natural language processing (NLP) techniques have enabled the rapid detection of malicious PE files. Previously,
method for detecting malicious PE files using printable characters was proposed [1]. This method uses two language models for

eature extraction and machine-learning models. The study showed that printable characters are effective in detecting malicious PE
iles.

However, whether this method can detect the latest malware in a real-world environment remains to be seen. Several studies
imply split samples into training and test data without considering the time series of samples. Other studies have focused on the
ime series of malicious PE files. Few studies have considered the time series of both benign and malicious samples. While several
apers have reported detection accuracies, others have not revealed the time complexity. For practical purposes, models need to be
rained with sufficient samples in a reasonable amount of time, for which actual samples may be too large. Nonetheless, few studies
ave analyzed the time complexity in this context. The time complexity should be analyzed to determine the most practical model.

In this study, we evaluated our proposed method [1] by using the latest FFRI dataset consisting of 400,000 benign and 400,000
alicious samples between 2019 and 2021. We considered the time series of both malicious and benign samples, which to the best

f our knowledge, has not been reported before. Our method was effective for the latest FFRI dataset. Our time-complexity analysis
evealed the most practical model in terms of feasibility. The key findings of our study are as follows.
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Table 1
Comparison of related studies using string extraction.

Malicious Benign Time Time
samples size sample size series complexity

[3] 3,265 1,001 – –
[4] 31,518 8,320 – –
[6] 37,262 44,602 – –
[1] 37,375 250,000 malicious –
This study 400,000 400,000 both yes

• Specific tokens in printable characters were effective at detecting the latest malicious PE files.
• The effect of the time series appears to be limited in our method, and updating the training samples may not improve detection

accuracy.
• Efficient training samples may build a robust classification model with the passage of time.
• The most practical combination was of the Doc2vec and multilayer perceptron, which achieved an F1 score of 0.981. Each

run time showed an almost linear increase with increasing dataset size.

2. Related work

2.1. String extraction

Our detection model is a combination of a natural language model and a machine-learning model. The natural language model is
uilt with a string extracted from the PE files. A string is any sequence of four or more printable characters that ends with a new-line
r a null character and can provide information about program functionality and indicators associated with a suspect binary. It can
e extracted from PE files using surface analysis and does not require dynamic analysis. Therefore, it is used as a feature for machine-
earning-based malware detection [2]. For instance, Schultz et al. presented a data-mining framework that detects previously unseen
alicious PE files [3]. This method uses the DLL, function calls, or strings extracted from PE files using the naive Bayes algorithm.
e et al. developed a malware detection system based on an interpretable string analysis with machine learning techniques [4]. This
ethod uses support vector machine (SVM) ensembles with bootstrap aggregation to classify the file samples and predict the exact

ypes of malware. Kolosnjaji et al. developed a neural network consisting of convolutional and feedforward neural constructs. This
ethod combines the convolution of n-grams of instructions with plain vectorization of features derived from the headers of the
E files [5]. Aghakhani et al. examined how machine learning-based static analysis features operate on packed samples [6]. They
xtracted the printable character sequences from PE files and obtained binary features by removing rare strings, from which more
han 99.99% were seen in less than 0.4% of the samples. Thus, string extraction is a useful feature for malware analysis and machine
earning-based malware detection. Although a string does not provide a clear picture of the purpose and capability of a file, it can
rovide a hint about what malware can do. Recent developments in NLP techniques have enabled the detection of malicious PE
iles. To detect malicious PE files, a method using NLP techniques has been proposed [1]. This method extracts printable characters
nd builds two language models called latent semantic indexing (LSI) and Doc2vec for feature extraction. LSI, also known as latent
emantic analysis, is a method for analyzing a set of documents to discover statistical co-occurrences of words that appear together.
oc2vec, also known as the paragraph vector, is an unsupervised method for learning distributed representations of text. However,
hether this method can detect the latest malware in a real-world environment remains to be seen. Additionally, the time complexity
as not reported for this study. For practical purposes, this model should be trained with sufficient samples in a reasonable amount
f time. Table 1 shows a comparison of the related studies using string extraction.

Early studies with printable characters did not use sufficient samples for evaluation [3,4]. Previous studies either did not consider
he time series [6] or only considered the time series of malicious samples [1]. In this study, we used the latest FFRI dataset consisting
f 400,000 benign and 400,000 malicious samples between 2019 and 2021. Furthermore, we considered the time series of both
alicious and benign samples and analyzed the time complexity.

.2. Static features

Our method uses printable characters extracted from PE files. Other static features are used for malware detection.
Byte n-grams obtained from PE files are one of the most common features [7,8]. Abou-Assaleh et al. applied a common n-gram

nalysis for malware detection [9]. They used byte n-grams to generate signatures from malicious and benign samples. Kolter et al.
sed byte n-grams with naive Bayes, decision trees, SVMs, and boosting [10,11]. Zhang et al. used byte n-grams with multiple
lassifiers [12]. This method selects features based on information gain. Jacob et al. presented a similarity measure based on the
istribution of byte bigrams [13]. They also presented a packer detection technique that can distinguish between different levels
f protection, such as unpacked, compressed, encrypted, and multi-layer encrypted codes. Opcode n-grams [14–17] and program
isassembly [18–22] were also used as features.

Other popular features of static malware detection are PE headers [23–26]. Shafiq et al. presented a framework for detecting
alicious PE files [27]. This method leverages the structural information of PE files. Saxe et al. proposed a deep neural network
2
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Fig. 1. Structure of the proposed detection model.

malware classifier with aggregated features [28]. They extracted the byte entropy histogram, import address table, and PE headers.
Webster et al. focused on the hidden PE32 field known as the rich header [29]. They demonstrated how the information contained
in the rich header can be leveraged to perform triage of samples, including packed and obfuscated binaries. Raff et al. explored the
feasibility of applying neural networks to malware detection and feature learning [30]. They showed that neural networks can learn
from raw bytes without explicit feature extraction.

2.3. Natural language processing

Our method uses NLP techniques for feature selection. NLP techniques are used to detect other types of malicious content
or traffic [31,32]. Concerning malicious content, Doc2vec is used for detecting macro-malware [33,34], malicious Powershell
scripts [35,36], or malicious JavaScript [37,38]. LSI is used for detecting macro-malware [39,40] and malicious Powershell
scripts [35,36]. For detecting malicious traffic, Doc2vec is applied to proxy logs [41–43] or packet dump [44,45].

3. Detection model

3.1. Detection model

Recent developments in NLP techniques have enabled the rapid detection of malicious PE files. Previously, a method for detecting
malicious PE files using printable characters has been proposed [1]. Fig. 1 shows the structure of the proposed detection model.

This method uses two language models, Doc2vec and LSI, for feature extraction and machine learning models, SVM, random
forest (RF), XGBoost (XGB), and multilayer perceptron (MLP). These classifiers are popular in the various fields, and have each
characteristic. Printable characters were obtained from the PE files and converted into tokens. These tokens consist of sequences
of printable characters and are used to build these language models. While a previous study merely removed rare tokens [6], our
method selected frequent tokens from both malicious and benign samples separately. These language models convert PE files into
feature vectors. Feature vectors were used to train each classifier.

3.2. Baseline

While the previous study provided practical performance, it did not compare the method with other techniques. Owing to issues
regarding the dataset or implementation, it is difficult to provide a fair comparison. To provide a fair comparison, we developed a
simple detection method using string extraction. In this baseline method, the most frequent tokens were selected from the training
samples. The selected tokens were converted into one-hot vectors. Other tokens in the training data or unseen tokens in the test
data were ignored. Frequent token size was unified to the dimensions of these language models.

3.3. Implementation

We implemented the detection models using Python version 3.6.8. We used Gensim 3.6.01 to implement the language models.
To implement the classifiers, we used sckit-learn 0.22.1.2 and xgboost 0.903 MLP was implemented using TensorFlow 1.14.0.4

Based on our previous study [1], a grid search was used to optimize the parameters. Grid search is a search technique that has
een widely used in many machine-learning studies. The optimized parameters are listed in Tables 2 and 3.

The other parameters were set to their default values.

1 https://radimrehurek.com/gensim/
2 https://scikit-learn.org/stable/
3 https://xgboost.readthedocs.io/
4 https://www.tensorflow.org/
3
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Table 2
Optimized parameters for each language model.

Language model Parameter Optimum value

Doc2vec

dimension 400
alpha 0.025
min_count 2
window 15
epoch 30

LSI dimension 400

Table 3
Optimized parameters for each classifier.

Classifier Parameter Optimum value

kernel linear
SVM C 0.5

probability True
criterion gini
max_features 10

RF min_samples_split 3
min_samples_leaf 1
n estimators 200

MLP optimizer Adam
epoch 30

Table 4
Outline of the FFRI dataset.

Class Period Size Packed Unique words

Benign
2019 250,000 30,749 71,472,934
2020 75,000 7,842 163,972,568
2021 75,000 7,699 171,405,803

2019 250,000 74,698 42,897,523
Malicious 2020 75,000 32,247 18,172,121

2021 75,000 35,430 16,765,218

4. Evaluation

4.1. Dataset

In this experiment, we used the FFRI dataset. The FFRI dataset is part of anti-malware engineering workshop (MWS) datasets [46].
he latest dataset was created by surface analysis5 and consists of JSON files. This dataset contains strings extracted from both
alicious and benign samples. Table 4 presents an outline of the FFRI dataset.

The samples were obtained between 2019 and 2021. Malicious samples were provided by the FFRI Security.6 FFRI security is
a security vendor and provides endpoint security solutions. These malicious samples are analyzed using their algorithms. Benign
samples were obtained from the AV-TEST.7 AV-TEST crawls over 100 download portals for new or updated software and then
downloads, installs, and analyzes these products. According to the result of PEiD,8 both the benign and malicious samples contained
many packed samples. Note that signature-based static packer detection methods have false positives and negatives. We extracted
strings from all samples and calculated the number of unique tokens. Thus, this dataset contained many samples and is well
distributed.

4.2. Methodology

To evaluate the basic performance of our method, we used samples from 2019 for training and samples from 2020 for testing.
The training samples were randomly divided into five parts. We repeated the experiment five times for each set and calculated the
average score. To examine the effect of the time series, the test samples were updated to the samples in 2021. The training samples
were then updated to samples in 2020. To examine the time complexity of our method, we increased both benign and malicious
sample sizes. The sample size ranged from 1,000 to 100,000.

5 https://github.com/ffri/ffridataset-scripts
6 https://www.ffri.jp/en/
7 https://www.av-test.org/en/
8 https://www.aldeid.com/wiki/PEiD
4
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Fig. 2. Time complexity analysis of the LSI and Doc2vec models.

To evaluate the classification accuracy, we used basic metrics as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

𝐹1 = 2𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(4)

This experiment was conducted on a computer with Windows 10, Core i9- 7900X 3.3 GHz CPU, 128 GB DDR4 memory, and
eForce GTX 1080 Ti.

.3. Time complexity

To analyze the time complexity of our method, the training sample size was increased. Fig. 2 shows the time variation of the
SI and Doc2vec models.

The horizontal and vertical axes indicate the training sample size and run time, respectively, for building each language model.
ach run time for the building gradually increases with the training sample size. Doc2vec requires more time than the LSI for
uildings. Figs. 3–5 show the time variation of each classifier with a one-hot vector, LSI, and Doc2vec in training.

The horizontal and vertical axes indicate the training sample size and run time, respectively, for training each classifier with
one-hot vector, LSI, or Doc2vec. Each run time for building both language models showed a linear increase. Each run time for

raining all classifiers except SVM showed an almost linear increase. The run time with SVM was unstable and dramatically increased
ith the training sample size. Finally, the test sample size was increased. Fig. 6 shows the time variation of each classifier during

he testing.
The horizontal axis indicates the test sample size, and the vertical axis indicates the run time for testing each classifier. The run

ime for testing gradually increased with the test sample size. SVM required more time than other classifiers. Each run time for
esting all classifiers showed a linear increase.

.4. Comparison

To evaluate the basic performance of our method, samples from 2019 were used for training and samples from 2020 for testing.
wing to the drastic increase in training time, SVM could not provide the desired performance. Table 5 shows the performance of
ach combination for the 2019–2020 samples.

Each classifier provided better accuracy with one-hot vector and Doc2vec than without them. The combination of the Doc2vec
nd MLP achieved an F1 score of 0.981.
5
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Fig. 3. Time complexity analysis of each classifier with one-hot vector in training.

Fig. 4. Time complexity analysis of each classifier with LSI in training.

Table 5
Performance on 2019–2020 samples.

Accuracy Precision Recall F1

One-hot
RF 0.978 0.983 0.973 0.978
XGB 0.973 0.978 0.968 0.973
MLP 0.979 0.983 0.975 0.979

RF 0.931 0.966 0.893 0.928
LSI XGB 0.909 0.914 0.903 0.908

MLP 0.948 0.961 0.939 0.947

RF 0.977 0.984 0.970 0.977
Doc2vec XGB 0.975 0.978 0.973 0.975

MLP 0.980 0.982 0.979 0.981

4.5. Time series

The test samples were updated to samples in 2021. Table 6 shows the performance of each combination in the 2019–2021
amples.
6
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Fig. 5. Time complexity analysis of each classifier with Doc2vec in training.

Fig. 6. Time complexity analysis of each classifier in testing.

Table 6
Performance on 2019–2021 samples.

Accuracy Precision Recall F1

One-hot
RF 0.995 0.999 0.989 0.995
XGB 0.990 0.999 0.979 0.990
MLP 0.994 0.999 0.989 0.994

RF 0.918 0.978 0.856 0.913
LSI XGB 0.893 0.926 0.855 0.889

MLP 0.983 0.988 0.978 0.983

RF 0.990 0.999 0.982 0.990
Doc2vec XGB 0.983 0.992 0.975 0.983

MLP 0.993 0.996 0.991 0.993

The performance of each combination remained constant over time. Similarly, each classifier provided better accuracy with a
ne-hot vector and Doc2vec than without them. The combination of the one-hot and RF achieved an F1 score of 0.994. The training
amples were then updated to samples in 2020. Table 7 shows the performance of each combination in the 2020–2021 samples.

Contrary to our expectation, the performance of each combination was slightly decreased by updating. The combination of
oc2vec and MLP achieved an F1 score of 0.961.
7



Internet of Things 19 (2022) 100521M. Mimura

e
s
t

a
c

5

o
v
d
r
c
3
s
t

r
F
a

5

t
u
t

5

W
i
p
w
d

Table 7
Performance on 2020–2021 samples.

Accuracy Precision Recall F1

One-hot
RF 0.955 0.922 0.994 0.957
XGB 0.930 0.885 0.988 0.934
MLP 0.956 0.922 0.996 0.957

RF 0.943 0.939 0.948 0.944
LSI XGB 0.939 0.910 0.974 0.941

MLP 0.917 0.867 0.985 0.923

RF 0.956 0.930 0.986 0.957
Doc2vec XGB 0.947 0.912 0.989 0.949

MLP 0.960 0.923 0.990 0.961

5. Discussion

5.1. Time complexity

Our time complexity analysis shows that each run time for building both language models increases linearly. Concerning training,
ach run time except SVM showed an almost linear increase. The runtime with SVM dramatically increased with the training sample
ize. While Doc2vec requires more time than LSI, the building model does not require real-time processing. Nevertheless, the run
ime with SVM is too considerable for a practical sample size.

The run time for testing all classifiers increased linearly. SVM requires more time than other classifiers. Although RF is generally
fast algorithm, run time slightly increased. This could be because both SVM and RF are implemented with scikit-learn. Thus, other

lassifiers appear to be sufficient for practical use.

.2. Comparison

Our experimental results show that each classifier with a one-hot vector and Doc2vec provides a better accuracy. The combination
f Doc2vec and MLP achieved an F1 score of 0.981. However, there is almost no difference between the performances of the one-hot
ector and Doc2vec. One possible reason for this is that the training and test samples contained common tokens. Given that the
ataset contains many distributed samples, these may be common features for classification. Each classifier with LSI provided a
elatively worse accuracy. This may imply that the topics categorized by the LSI are not efficient for classification. These results are
onsistent with this observation. We analyzed the common features of training samples randomly divided into five parts and found
98 frequent tokens. Intriguingly, many frequent tokens (328 in 2020 and 326 in 2021) are contained in both benign and malicious
amples in the test samples. Therefore, the specific tokens in malicious samples are not decisive features. Combinations of specific
okens appear to be effective for classification. Thus, specific tokens in strings can be used for classification.

In a previous study [1], the best F1 score was 0.934 using the FFRI 2019 dataset. In this study, the FFRI 2019 dataset was
andomly divided into 10 groups. The same dataset was randomly divided into five groups for training in this experiment, and the
FRI 2020 and 2021 datasets were used for testing. Accordingly, the best F1 score was 0.981. Each score in the five groups was
lmost stable. Therefore, the training sample size appears to be efficient for classification.

.3. Time series

To estimate the effect of the time series, the test samples were updated. Nevertheless, the performance remained steady with
he passage of time. The training samples were updated. Contrary to our expectation, the performance slightly decreased with the
pdate. From these results, the effect of the time series was limited in our method. Updating the training samples may not improve
he detection accuracy. Thus, efficient training samples may build a robust classification model over time.

.4. Practical use

Based on the experimental results, the most practical combination is Doc2vec and MLP, which achieved an F1 score of 0.981.
hile Doc2vec requires time to build a model, it does not require real-time processing. Each run time showed an almost linear

ncrease. Thus, both models appear to be scalable for the actual sample size. The combination of one-hot and RF appears to be
ractical. Although RF is generally a fast algorithm, the run time slightly increased. This could be because the RF is implemented
ith scikit-learn. Other implementations may improve time complexity. Therefore, our method is suitable to implement in IoT
8

evices of low computing resources. Our method can be applied to detecting IoT malware.
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5.5. Limitations

Our study clearly has some limitations.
The first is attributed to the FFRI dataset. As previously described, 800,000 samples were used in this study. However, the actual

amples may be more distributed. Therefore, the FFRI dataset may not appropriately represent the population. In fact, we cannot
se all actual samples for evaluation. To the best of our knowledge, a possible solution is to use a large-scale dataset.

The second limitation is the lack of a comparison. In this study, we compared the proposed method with traditional techniques.
owever, we could not provide a fair comparison with other related studies due to implementation problems. Further experiments
ust provide a fair comparison with other studies.

. Conclusion

In this study, we evaluated the method using the latest FFRI dataset consisting of 400,000 benign and 400,000 malicious samples
etween 2019 and 2021. We conducted several experiments considering the time series of both malicious and benign samples. Our
xperimental results show that specific tokens in printable characters are effective in detecting the latest malicious PE files. The
ffect of the time series seems to be limited in our method, and updating the training samples may not improve the detection
ccuracy. Efficient training samples may build a robust classification model over time. Finally, the most practical combination was
oc2vec and MLP, which achieved an F1 score of 0.981. Each run time showed an almost linear increase.

Our study had some limitations. Owing to the issues regarding the dataset or implementation, it was not feasible to provide a
air comparison with related studies. Further experiments are required to provide a fair comparison with related studies.
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