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A B S T R A C T

Electrical load prediction has become an integral part of power system operation. Deep learning
models have found popularity for this purpose. However, to achieve a desired prediction
accuracy, they require huge amounts of data for training. Sharing electricity consumption data
of individual households for load prediction may compromise user privacy and can be expensive
in terms of communication resources. Therefore, edge computing methods, such as federated
learning, are gaining more importance for this purpose. These methods can take advantage of
the data without centrally storing it. This paper evaluates the performance of federated learning
for short-term forecasting of individual house loads as well as the aggregate load. It discusses the
advantages and disadvantages of this method by comparing it to centralized and local learning
schemes. Moreover, a new client clustering method is proposed to reduce the convergence time
of federated learning. The results show that federated learning has a good performance with a
minimum root mean squared error (RMSE) of 0.117 kWh for individual load forecasting.

. Introduction

Short-term load forecasting is a fundamental part of resource scheduling task in power systems [1]. Some recent studies focus on
hort-term load forecasting of individual buildings for decentralized monitoring and control of power systems [2,3]. This has become
mportant due to the distributed placement of intermittent renewable energy resources. However, load forecasting of individual
ouseholds is a challenging task since the house load profile is highly dependent on the stochastic behavior of its residents [4].

Many algorithms have been proposed for short-term load forecasting in literature. They include Auto Regressive Integrated
oving Average (ARIMA) [5] model, Markov-chain Mixture (MCM) distribution model [6], Quantile Regression (QR) [7,8] method,

upport Vector Regression (SVR) [9], and deep learning models. Especially, certain deep learning models, such as Long Short Term
emory (LSTM) networks [10,11], hybrid Convolutional Neural Network (CNN) and LSTM networks [12], and some other types

f hybrid recurrent neural networks and CNNs [13], have shown good performance for short-term load forecasting. These methods
equire high volumes of historical data for training and they store the data centrally. Transferring and centrally storing the historical
nergy consumption data of individual buildings is expensive in terms of communication resources and it can compromise electricity
ser’s privacy. Moreover, with the proliferation of advanced metering infrastructure such as smart meters [14,15], it is infeasible
o centrally store and manage the massive amounts of data produced by these devices. Edge computing and distributed learning
ethods are promising solutions to overcome these issues by eliminating the need for central data storage and processing. These
ethods also reduce the computational burden of training deep learning models by dividing the processing task among multiple

dge devices.
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Federated learning, introduced by Google in 2017 [16], is a type of distributed machine learning mechanism that allows training
global model by cooperation of edge devices and without sharing the training data. In this method, the training is performed by

he edge devices and the resultant weights are shared with the central server to perform weight updates. The updated weights are
hen sent back to the edge devices for another round of training. This iteration continues until model accuracy is high enough [17].
ince no raw data is exchanged between the edge devices and each edge device carries out a part of the training task, federated
earning preserves data privacy and has higher scalability compared to centralized learning methods [18].

Due to the numerous benefits it offers, federated learning is quickly expanding to various research areas such as healthcare [19],
ommunications [20], language modeling [21], transportation [22], and many others . A few studies have also used federated
earning for short-term electrical load forecasting. To this end, Savi and Olivadese [23] developed a federated LSTM model to
orecast electricity demand of individual houses and compared it to the centralized model. To enhance the forecasting accuracy,
ustomers were clustered based on socioeconomic affinities and consumption similarities such as average, total, and lowest energy
onsumption. However, these indices may not properly reflect the consumption patterns of consumers. Therefore, clustering might
ot enhance the model performance. Taïk and Cherkaoui [24] used federated LSTM for the same purpose but without customer
lustering. The results showed that the performance of federated learning for load forecasting was not good even after a few rounds
f personalization. Personalization is the process of taking the global model and running a few local training rounds on it to increase
rediction accuracy. Tun et al. [25] used bidirectional LSTM with OPTICS clustering method to group consumers based on house
ype, region, facing direction, number of rental units, and heating type. However, these attributes cannot reflect consumer behavior
nd load shape properly as they remain constant even if the residents of a dwelling change. Horizontal and vertical federated learning
ere applied by Liu et al. [26] for power consumption prediction without customer clustering. The main goal was to demonstrate
ow much federated learning can preserve privacy.

Although there have been a few studies published in the area of federated learning for energy forecasting, its performance for
orecasting of individual buildings’ energy consumption and aggregate demands has not been thoroughly studied yet. This paper
ssesses the performance of federated learning for predicting both individual house electrical loads as well as aggregate electricity
emand by comparing them to centralized and local forecasting schemes. Moreover, a new customer clustering method is introduced
hich does not require sharing any confidential customer data. The main contributions of this paper are as follows:

• Conducting a thorough study of federated learning performance compared to centralized and local forecasting for predicting
single and aggregate electrical demands;

• Proposing a new consumer clustering technique that better reflects consumer consumption pattern and does not require sharing
confidential consumer data;

• Implementing an algorithm into the federated learning that detects and removes consumers that deter the global model.

The remainder of this paper is organized as follows. Section 2 describes the federated learning framework used in this study.
imulation setup, used data, and results are presented in Section 3. Finally, the concluding remarks are drawn in Section 4.

. System model

This section describes the system model for applying federated learning and edge computing to forecast the electrical demand
f single houses as well as the aggregate demands.

.1. Federated learning model

The architecture of the system used in this study is illustrated in Fig. 1. The system is divided into two subsystems: central server
cloud) and clients (individual houses). Each client contains a smart meter device that measures the electricity consumption and
ommunicates with the central server. Direct smart meter to cloud communication is feasible using the current technology [27,28].
n addition, it is assumed that these smart meters contain processing units to train simple neural networks using the historical energy
onsumption data stored within them. In federated learning, the central server sends the initial weight values to clients to start the
raining. After one or more steps of training by each client, the obtained weights are sent back to the central server to perform
ight update after aggregating weights from all clients. The central server uses FedAvg for this purpose. FedAvg method basically
erforms a weighted averaging on the weights obtained from all clients. This can be shown as

w𝑘+1 =
𝐶
∑

𝑐=1

𝑛𝑐
𝑛
∇w𝑐 , (1)

where w𝑘+1 is the updated weights sent by the central server in the (𝑘 + 1)th round of communication and w𝑐 is the weights sent
by the client 𝑐 to the central server. Parameter 𝑛 is the total number of data points used for training the global model and 𝑛𝑐 is the
total number of data points used by client 𝑐 for training.

The central server sends the updated weights back to the clients for another round of training and this iteration between clients
and the central server continues until desired training accuracy is achieved. As can be understood from this process, FedAvg attempts
to fit a general model to the clients’ data and each client contributes to the global model based on the amount of data it used for
2

training. The process of federated learning is shown in Algorithm 1 in more details.
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Fig. 1. Federated learning scheme.

Algorithm 1: Federated learning with clustered aggregation
1 Input: Hyperparameter data of clients
2 Output: Cluster-specific trained models

⊳ Initialization
3 for each cluster 𝑘 with 𝑘 = 1, 2, ..., 𝑁 in parallel do
4 Initialize weights 𝑤𝑐
5 Update local models of clients using these weights

⊳ Communication loop
6 for Communication round 𝑡 = 1, 2, ..., 𝑇 do
7 for each client 𝑐 with 𝑐 = 1, 2, ..., 𝐶 in parallel do
8 Train and update the local model using local data
9 Send updated weights to the central server

⊳ Detecting and removing clients that deter the model
10 if 𝑙𝑜𝑠𝑠𝑐,𝑇 > 1.6 × 𝑙𝑜𝑠𝑠𝑐,𝑇−20 then
11 Remove client 𝑐

⊳ Federated averaging
12 Aggregate weights and update global model using FedAvg method in Eq. (1)

As it can be seen, the three-layer IoT architecture is used here. The perception and network layers consist of smart meters
that measure energy consumption and send it to the central server. The application layer includes a central server that performs
computations on the data received from clients. The smart meters use MQTT paired with TCP/IP internet protocol suite for sending
data to the central server. Each smart meter pushes weight data to the central server and polls weight updates from the server.
Each smart meter is specified by its respective client throughout this paper. Details regarding IoT communication and security
requirements are out of the scope of this paper.

2.2. LSTM model

LSTM networks are a special type of recurrent neural networks (RNN) that are able to learn long-term temporal correlations in
data sequences and were developed to solve the vanishing gradient problem in original RNNs. They have a forget gate that decides
what information to keep or throw away during the learning phase. Recent research suggests that LSTM and its variants have the
best performance for time-series forecasting [29,30]. Therefore, this paper uses LSTM networks for the training phase inside the
clients. In this study, the time series data is sampled into sliding windows with look-back size of 24 h. These sliding windows are
the inputs to the LSTM model and the output is the next-hour electricity load. The structure of the LSTM network used in this study
3
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Fig. 2. Structure of the LSTM network used in this study.

is shown in Fig. 2. This structure is similar to the model developed in [31]. The proposed network has one hidden LSTM layer and
two fully connected layers.

It should be noted that the local training using historical data and LSTM networks is performed inside each client while the
global update is performed by the central server after aggregating the neural network weights obtained by the clients. The overall
framework is called federated learning.

2.3. Customer clustering

Since in the FedAvg method, the obtained local weights are averaged by the central server, it is important for clients’ load profiles
to have similar patterns. Otherwise, the heterogeneity in data may lead to misconvergence of the global model [32]. For example,
a client with a very different and unique load profile might affect the global model weights to fit its own data. This will cause the
global model to diverge from fitting other clients’ data and, consequently, the error of the obtained model will remain high. To
prevent this issue, the clients must be grouped based on their similarities. However, since the global model has no access to client
data in federated learning, customer clustering is a challenging task.

Some research works have used clustering based on socioeconomic affinities, metrics such as average, total, and lowest energy
consumption, and some other data such as house type, region, facing direction, and number of rental units. However, none of these
metrics can reveal consumption patterns properly. A method was proposed by Xu et al. [33] to cluster clients based on their obtained
weights after the first communication round with the central server. This method might not be accurate either since it takes more
training rounds for client weights to converge. In fact, the initial weights adjusted by the central server are the same for all clients
at the beginning of the training and might not significantly change after only a few training steps.

This paper proposes a new clustering method that is able to reveal the similarity between load profiles of various clients.
Since all clients are equipped with processing units needed for training, they can also perform hyperparameter tuning for a simple
neural network using their data. In this method, the central server asks clients to perform hyperparameter tuning for their training
network or another simpler neural network. These hyperparameters can include number of neurons in each hidden layer, number
of epochs for training, learning rates, etc., and the tuning can be easily performed using GridSearchCV method. Each client updates
its hyperparameter tuning results from time to time and shares this non-sensitive data with the central server. The central server
clusters the clients based on their hyperparameters when performing federated learning. This way, the clients are more likely to be
grouped based on their data similarities as their hyperparameters are selected based on the historical data stored in each client. In
previous studies, the neural network structure for all of the clusters was the same. In the proposed method, the central server fits
a specific neural network model to each cluster based on the obtained hyperparameters for that cluster. The number of clusters is
determined by the central server based on various factors such as accuracy, communication/computation cost, or trade-off between
4
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Table 1
Hyperparameters for clusters.
Cluster# First layer neurons Second layer neurons Epochs Number of clients

Cluster 1 44 127 148 11
Cluster 2 68 198 247 9
Cluster 3 56 198 103 15
Cluster 4 32 85 291 17
Cluster 5 32 127 103 23

Fig. 3. Clustering inertia for various numbers of clusters using k-means clustering.

communication/computation cost and accuracy. In addition, the proposed method has the flexibility to adapt to changes in number
of clients or their consumption patterns.

In this paper, an algorithm is implemented within the federated learning process that detects and removes clients that deter the
global model. For this purpose, the training loss of clients in each round is assessed and compared to previous rounds to check
whether it is getting smaller or not. In this study, the clients whose loss is 60% worse compared to 20 rounds ago are removed from
the federated learning process as shown by lines 10–11 in Algorithm 1.

3. Simulation and results

This section describes the dataset and the parameters of the model used in this study. Subsequently, it presents, discusses, and
compares the obtained results.

3.1. Simulation data

This study was conducted using data from 75 locations within the City of Edmonton. The data was provided by EPCOR
distribution company under the APIC-alliance project and is not available online. The data from residential buildings is used in this
study and clustering is used to group them based on similarity in their consumption behavior. The proposed LSTM network consists
of one hidden layer. The output of this layer is given to two fully connected hidden layers. Each client performs hyperparameter
tuning for this network using its local data to find the best number of neurons for the first and second fully connected layers as
well as the number of training epochs. The clients share this data with the central server and the server groups the clients into
five clusters using the k-means clustering method. The hyperparameters with the highest number of occurrences within each cluster
are chosen for the general structure of that cluster. Inside each client, 75% of data is used for training and 25% for testing. The
programming was performed in Python using PyTorch library, on a 3.6 GHz processor with 48 GB RAM.

The hyperparameters for each cluster are given in Table 1. To determine the best number of customer clusters in this study,
k-means clustering was repeated for various number of clusters and the obtained inertia (sum of squared distances of samples to
their closest cluster center) was plotted against the number of clusters as shown in Fig. 3. The five-cluster model was selected
since after this point in the plot, there is no significant decrease in inertia. This choice of the lowest acceptable number of clusters
optimizes the communication/computation cost of distributed learning.

Mean squared error (MSE) is used as the loss function in this study

𝑀𝑆𝐸 =
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
, (2)

where 𝑦 is the actual value, 𝑦 is the predicted value, and 𝑁 is the total number of predicted values.
5
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Table 2
Prediction results for cluster 1 (units in kWh).

Federated learning Centralized learning Local learning

Test dataset RMSE (ILP)
Min 0.187 1 0.159
Max 0.597 1.115 0.504
Mean 0.418 1.062 0.334

RMSE (ALP) – 2.205 1.152 1.176

Train dataset RMSE (ILP)
Min 0.205 1.005 0.139
Max 0.396 0.63 0.512
Mean 0.4 1.06 0.306

RMSE (ALP) – 2.022 1.022 0.981

Max client energy consumption 6.378 Mean client energy consumption 0.546
Max aggregate energy consumption 12.832 Mean aggregate energy consumption 4.37

Table 3
Prediction results for cluster 2 (units in kWh).

Federated learning Centralized learning Local learning

Test dataset RMSE (ILP)
Min 0.308 2.342 0.272
Max 1.055 2.903 1.155
Mean 0.607 2.627 0.479

RMSE (ALP) – 3.904 1.448 1.741

Train dataset RMSE (ILP)
Min 0.213 2.124 0.17
Max 1.288 2.903 0.713
Mean 0.568 2.614 0.330

RMSE (ALP) – 4.003 1.272 1.162

Max client energy consumption 10.959 Mean client energy consumption 1.33
Max aggregate energy consumption 22.399 Mean aggregate energy consumption 11.978

3.2. Simulation results

To evaluate the performance of federated learning for individual load prediction (ILP) and aggregate load prediction (ALP), the
esults are compared with local and centralized forecasts. Local and centralized learning are defined as follows:

• Centralized learning: data is gathered from all clients and a single central server performs training and forecasting.
• Local learning: data stays within each client and each client performs training and forecasting for its local data.

Root mean squared error (RMSE) is selected as the evaluation criteria in this study as it has the same unit as the actual load
nd can be easily compared to it. Mean absolute percentage error (MAPE) is not preferred for load forecast problems since load
alues, especially in ILP, are usually small. This can result in large MAPE values which do not correctly reflect the performance of
he forecasting algorithms [34].

Table 2 presents the obtained RMSE results for cluster 1. The best obtained results are typeset in bold. The forecasting RMSE can
e compared with the maximum and minimum energy consumption given in the same table to get a sense of prediction accuracy. As
an be seen, the performance of federated learning for ILP is comparable and, in some cases, even better than local learning. It was
lso observed that, depending on the initial random weights, the performance of local learning can vary to a large extent and easily
et trapped in a local minimum. However, the global updates in federated learning can circumvent this problem. To mitigate the
ocal minimum issue in local learning, three different optimization algorithms (stochastic gradient descent, RMSprop, and Adam)
ere tested, and Adam was selected due to its better performance. In addition, the learning rate, number of neurons in each layer,
nd number of iterations were selected to minimize the mean squared error. The parameters were consistent in federated, local,
nd central learning to allow fair comparison. The mean RMSE in the same table reveals that, on average, local learning performs
est for ILP. For the ALP, centralized learning performs better than local and federated learning. It should be noted that, in local
earning for ALP, each client performs the forecast individually and the results are summed up to get the aggregate demand.

Prediction results for cluster 2 are given in Table 3. Similar to cluster 1, federated learning performs better than centralized
earning and is comparable to local learning for ILP. Centralized learning has the best performance for ALP and local learning has
imilar results.

Tables 4–6 show the results obtained for clusters 3–5. The observed results show a similar trend as clusters 1 and 2 except that,
n clusters 3 and 4, local learning performs slightly better for ALP. In general, the best case for federated learning is cluster 5 with an
verage RMSE of 0.433 kWh that is 14.55% higher than the average RMSE using local learning. In the worst case, which occurs for
luster 4, the average RMSE obtained using federated learning is 0.874 kWh which is 40.74% higher than the mean RMSE obtained
y local learning.

Fig. 4 illustrates the federated and local forecast for ILP on the test dataset of client 7 inside cluster 3. It can be observed that, in
his case, federated learning performs better than local learning. On the other hand, Fig. 5 shows an example where local learning
6
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Table 4
Prediction results for cluster 3 (units in kWh).

Federated learning Centralized learning Local learning

Test dataset RMSE (ILP)
Min 0.186 1.81 0.173
Max 1.276 2.347 1.033
Mean 0.627 2.153 0.534

RMSE (ALP) – 4.016 2.944 2.782

Train dataset RMSE (ILP)
Min 0.189 1.784 0.176
Max 1.331 2.334 1.00
Mean 0.606 2.14 0.487

RMSE (ALP) – 3.953 2.620 2.557

Max client energy consumption 2.927 Mean client energy consumption 1.286
Max aggregate energy consumption 36.93 Mean aggregate energy consumption 19.298

Table 5
Prediction results for cluster 4 (units in kWh).

Federated learning Centralized learning Local learning

Test dataset RMSE (ILP)
Min 0.237 5.973 0.130
Max 3.199 8.706 1.653
Mean 0.874 8.314 0.621

RMSE (ALP) – 3.939 3.265 2.865

Train dataset RMSE (ILP)
Min 0.268 6.013 0.119
Max 3.337 8.703 1.548
Mean 0.888 8.329 0.555

RMSE (ALP) – 4.235 3.498 2.860

Max client energy consumption 6.515 Mean client energy consumption 1.593

Max aggregate energy consumption 50.155 Mean aggregate energy consumption 25.494

Table 6
Prediction results for cluster 5 (units in kWh).

Federated learning Centralized learning Local learning

Test dataset RMSE (ILP)
Min 0.117 4.236 0.088
Max 1.095 4.836 1.471
Mean 0.433 4.676 0.378

RMSE (ALP) – 2.7 2.194 2.630

Train dataset RMSE (ILP)
Min 0.13 4.204 0.097
Max 1.088 4.831 0.759
Mean 0.406 4.686 0.338

RMSE (ALP) – 2.429 0.311 2.068

Max client energy consumption 2.011 Mean client energy consumption 0.717
Max aggregate energy consumption 29.631 Mean aggregate energy consumption 16.496

performs better than federated learning for ILP. Centralized learning does not perform well for ILP and cannot be compared to
federated and local learning. Therefore, it is not presented in these figures. It can be observed that although federated learning was
trained using heterogeneous data from all customers, it still has the capability to perform well on ILP. Considering other benefits
that federated learning offers, such as increased data privacy, reduced need for central data storage, and reduced computational
burden due to the use of edge computing, it can be a good alternative to local and central learning for ILP.

Fig. 6 compares the forecast results from federated, centralized, and local learning for ALP. As seen before, the centralized forecast
erforms best for ALP and is closely followed by local forecast. However, in absolute terms, federated learning’s performance for
LP is not good enough. Therefore, it should only be used in cases where centralized learning and access to data is not possible.
n example of such a case is forecasting the aggregate demand of houses that are not connected to the same distribution substation
hile preserving privacy of users.

To show the effectiveness of the clustering method proposed in this study, MSE of federated learning with and without clustering
or client 7 inside cluster 3 is illustrated in Fig. 7. It can be inferred from this figure that, the training loss without clustering takes
ore epochs to converge and is higher compared to training with clustering. The results were repeated and verified using data from

ther clients as well.
7
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Fig. 4. Forecast results for electrical load of client 7 inside cluster 3 using federated and local learning.

Fig. 5. Forecast results for electrical load of client 4 inside cluster 2 using federated and local learning.

Fig. 6. Forecast results for aggregate load of cluster 5 using federated, centralized, and local learning.
8
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Fig. 7. A comparison of the convergence of federated learning with and without hyperparameter-based clustering for client 7 (cluster 3).

4. Conclusion

Federated learning with clustered aggregation was implemented and compared to centralized and local learning for individual
and aggregate load forecast problems. A new clustering method based on hyperparameter tuning was proposed and tested in this
study. This new approach clusters the clients based on their data similarity while preserving their privacy. The results confirmed
that the proposed clustering method reduces the convergence time of federated learning. The study was conducted by dividing the
data from 76 houses into five clusters. The results showed that, on average, federated learning’s performance was weaker than local
learning for forecasting individual loads. In the worst case, federated learning’s mean RMSE within the cluster was 40.74% higher
and in the best case, it was 14.55% higher than local learning. However, assessing the results for each house revealed that in some
cases, federated learning had lower RMSE than local learning. In addition, it is very common that local learning gets trapped in a
local minimum during the training process. Such problems never occurred during the federated learning due to the global updates.
The federated learning’s performance was always better than centralized learning for individual load forecast. In the aggregate load
forecast problem, federated learning did not perform well in any of the clusters.

In general, it can be concluded that federated learning often gives reliable results for the individual load forecast problem and
it can be used in cases where access to training data is not possible or it is restricted due to privacy issues. Using federated learning
for aggregate demand prediction is not recommended except in cases where access to aggregate data is not possible, as discussed
in the paper. Future research should focus on optimizing the number of local training epochs by each client to synchronize the
communication time with the central server and to increase the overall forecasting accuracy of federated learning.
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