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A B S T R A C T

In this paper, we present a novel artificial intelligence-based fog controller, called FogAI that
provides a versatile control mechanism to the fog layer. FogAI not only abstracts the control
mechanism from the fog environment but also offers potential solutions for the problems of
fog-based Next Generation Internet of Things (NGIoT) systems. To this end, we first present
a comprehensive examination of challenging issues in Fog Computing (FC). Then, we outline
possible FogAI based solutions to these challenges from different perspectives. To illustrate the
feasibility of our FogAI concept, we design a use case scenario for task offloading problem
in FC. Then, we propose a Deep Q-Learning (DQL) algorithm that autonomously performs
task offloading in delay-sensitive and computationally-intensive IoT applications and test it on
FogAI. The results show that the proposed FogAI-assisted DQL algorithm is superior to existing
offloading policies.

. Introduction

The Internet of Things (IoT) is a prominent technology that consists of a great number of ubiquitous and heterogeneous smart
evices providing real-time interconnection and intercommunication with each other. With the widespread usage of IoT applications,
t is becoming a part of our lives and the number of smart devices increases sharply [1]. According to Cisco [2], this number is
xpected to reach up to 29.3 billion by 2023. On the other hand, this dramatic rise creates new problems regarding the storage and
rocessing needs of the data collected by these devices.

Over the past decades, cloud computing has been accepted as an adequate solution for IoT requirements with its rich
omputational power and storage capacity. However, due to the rapid increase and diversification of IoT data, traditional cloud
omputing has started to fall behind the technology in supporting all the data communication, processing, and storage needs of
oT data [3]. In cloud-based IoT systems, transmitting a huge amount of data to a centralized server may lead to undesirable
onsequences such as bandwidth bottleneck, congestion, high latency, and QoS degradation [4]. Fog computing (FC) is introduced
o provide innovative and promising solutions to data and quality of service (QoS) related problems of IoT systems. FC is a
omplementary technology for cloud computing in order to lighten the burden of cloud computing by moving the services closer
o the end systems. Instead of sending whole data to long-distance cloud servers, FC distributes cloud services and allows local
ata processing and storage. Due to its geographically distributed nature and proximity to the IoT devices, FC provides significant
fficiency by decreasing the amount and time for data transmission. Therefore, it ensures end-to-end latency requirements of IoT
pplications [5]. It also offers different capabilities to cloud computing such as high mobility, location-awareness, and temporal
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storage. With the help of its key features, FC is highly recommended for delay-sensitive IoT applications such as augmented reality,
vehicular networks, smart traffic lights [6].

Fog and cloud computing concepts are not substitutes but complements of each other. In this fog–cloud architecture, fog layer
esides in the middle of physical and cloud layers. Fog layer is responsible for communicating physical layer and preprocessing the
oT data before transmitting to the cloud layer for further analysis. Depending on the number of IoT devices in the system, the
mount of data produced and transmitted to the related servers may increase exponentially [7]. FC allows network structure to
xpand horizontally so that delay and mobility related QoS requirements can be satisfied.

Although FC provides additional advantages over cloud computing, several challenges arise from the rapid increase in network
ize and the distributed nature of FC. Fog servers become inadequate to manage the network that produces many types of IoT data
t a tremendous pace [8]. Therefore, a more intelligent system is needed for better network interoperability, effective handling of
eterogeneity, making fast and optimized offloading decisions, and elimination of possible security and privacy threats [9]. On the
ther hand, IoT is evolving towards the Next Generation IoT (NGIoT). Different from traditional IoT networks, NGIoT networks
ring together hyperconnectivity, edge computing, Artificial Intelligence (AI), autonomous system, and blockchain technologies.
hese NGIoT systems with embedded intelligence, hyperconnectivity and AI capabilities promise smart solutions by shifting data
rocessing and network management to distributed edge devices [10].

Managing fog servers are studied in the traditional IoT networks as well. The existing studies in the literature generally present
ontrol systems to manage underlying networks for different purposes, using virtual cloud controllers, virtual fog controllers, or
xternal SDN controllers located in the cloud or fog layers. Abdelaal et al. [11] propose event based control systems as a service
rom cloud layer in the aim of decreasing resource utilization for large-scale systems. Guan et al. [12] focus on simplifying the
ncertainties of cloud control systems by decomposing and proposing a new controller design for cloud control systems. Inaltekin
t al. [13] investigate the optimal placement of virtual control services in the fog continuum. They aim to balance the latency and
eliability aspects by determining the locations of virtual controllers. Yanuzzi et al. [14] propose virtualized control functions for
mart cities in a smart cabinet, and Al et al. [15] propose their fog based control systems for smart home with a control panel
laced in a home. On the other hand, SDN-based cloud/fog systems have been gained too much attraction due to the controlling
nd managing capabilities of SDN. Alomari [16] provides a comprehensive survey of SDN-based cloud and fog systems for efficient
esource management. Task offloading [17], load balancing [18], and security [19] are some of the other aspects where SDN offers
manageable and controllable system for cloud and fog systems.

Apart from the above-mentioned studies, this study focuses on a more generalized controller system model covering the fog
ontinuum and offers AI-based solutions to the most FC challenges. More specifically, this paper proposes a novel controller called
ogAI for handling NGIoT specific issues in the fog layer. In FogAI, logical and operational decisions can be made dynamically.
hus, FogAI provides versatile control and managing, flexibility, and seamless integration among physical-fog–cloud layers. In the
ext section, we present a detailed explanation on why our proposed controller system is important and how it is differentiated
rom existing studies.

Although there are some studies in the literature covering fog-based challenges and solutions [20–24], we differentiate from the
xisting studies by offering AI-based solutions to the fog-based challenges in NGIoT applications. Overall contributions of this paper
an be listed as follows:

• We highlight the importance of FC for NGIoT applications and comprehensively identify the research challenges that still need
to be addressed in FC.

• We propose a novel AI-supported fog controller called FogAI to provide AI-based functionalities demanded by fog-based NGIoT
applications

• We propose FogAI based potential solutions and mechanisms for possible FC challenges.
• To verify our FogAI concept, we also propose a Deep Q-Learning (DQL) based task offloading algorithm that maximizes the

control and management of the system resources while also reducing task processing delay, task transmission delay, and total
system delay.

The rest of the paper is organized as follows. Section 2 explains why we need FogAI. Section 3 summarizes FC challenges.
n Section 4, we give the details of the proposed FogAI layer. Section 5 offers potential FogAI solutions for NGIoT challenges. In
ection 6, we propose a FogAI based solution to the task offloading problem. Section 7 presents our simulation results and finally
oncluding remarks are given in Section 8.

. Motivation

To facilitate the understanding of FogAI structure and to highlight its necessity, we provide explanations of the following critical
uestions.
(1) Why a New Fog Controller Concept? IoT technology and its applications have evolved quickly in recent years and the

underlying infrastructure needs to evolve with it, in order to support the emerging needs such as rapid scaling, heterogeneity,
interoperability, agility, security, and privacy issues. A new layer has required for alleviating the management challenges of fog
servers and preventing a possible bottleneck of service provisioning. FogAI is a novel controller concept that extends FC to help in
controlling and managing the network. FogAI concept is similar to SDN, but it extends the SDN capabilities. Although SDN is an
emerging technology, it still suffers from centralized management of the decentralized structure of FC, for example, a single point
of failure, reconfiguration cost in a dynamic network environment, scalability and latency [25–27]. However, FogAI can eliminate
2
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the disadvantages of SDN controller with its distributed fog architecture and advanced AI support. In addition, it offers promising
solutions to many FC problems such as resource management, heterogeneity, mobility, federation and interoperability. In these
aspects, it offers a broader concept than the SDN controller concept.

(2) Why an AI-Supported Controller? Communication, Computing, Caching, and Control (4Cs) problems are the main obstacles
to fully enabling collaboration in Fog-based IoT networks. In particular, solving the communication problems brought by the
heterogeneous and complex IoT network, and ensuring the flexible processing on edge/fog servers by dividing the computational
tasks into sub-tasks are challenging. Moreover, content and interest-based data caching are essential for context-aware and delay-
sensitive IoT applications [28]. At this point, there is a need for advanced infrastructure components that serve to create interest and
context-aware systems. Furthermore, it is hard to achieve autonomous control of the IoT network by making real-time decisions by
adapting to a dynamic network environment. To solve these problems, different methods based on heuristic algorithms, traditional
machine learning, and deep learning are proposed in the literature. Based on these methods, it is seen that advanced AI algorithms
provide superior success in solving current IoT network problems [29]. For this reason, we introduce an AI-supported controller
(FogAI) as a promising novel structure in solving 4Cs problems in NGIoT applications.

(3) What is FogAI Good For? FogAI is an extension of fog layer as a new AI-supported controller. It helps FC manage
heterogeneous and pervasive IoT devices by offering additional capabilities with its agent, modules, algorithms, and tools. FogAI
provides potential solutions for the different challenges explained in Section 5.

3. Fog computing and challenges

FC is an innovative approach that extends the processing, storage, and computation capabilities of cloud computing. Since
FC is a complementary solution to cloud computing, they cooperate with each other and this cooperation creates fog–cloud
collaboration [30]. FC is generally three-layer where fog layer acts as a bridge and provides a seamless connection between physical
and cloud layers [30]. During the transmission of data, each layer takes over different responsibilities that are explained in detail
below:

• Physical Layer: This layer is located closest to the end-users. It consists of various types of static and mobile IoT devices such
as mobile phones, smart vehicles, sensors, and actuators. They sense the environment and produce very heterogeneous and
ubiquitous data due to the distributed deployment through the area.

• Fog Layer: This layer is located at the edge of the network and connects the physical and cloud layers. It consists of servers,
routers, gateways, switches, and base stations. It provides quick and distributed processing over a wireless connection like
WiFi, 3G, 4G. It also ensures temporal storage in such cases where instant responses are demanded like real-time disaster
management [31] or traffic management [32]. Hence, the queries can be processed immediately at local servers without
sending them to a remote server.

• Cloud Layer: This layer supports extensive data analysis which requires more powerful computational and storage capacities.
After preprocessing the data in fog layer, the data is sent to the cloud layer over the Internet. Cloud layer enables permanent
storage for further analysis of the huge amount of data.

FC is a decentralized structure in which distributed fog servers aim to overcome the design problems caused by the centralized
structure of cloud computing. Although FC technology is still in its early stages, it has gained too much attention from academics and
practitioners for different purposes [33,34]. As interests in FC increases, the application areas of fog-based systems diversify, thereby
increasing the fog-related problems. While most of these problems are more fundamental, some of them may be domain-specific
like smart grids and vehicular networks, or problem-specific like scheduling and offloading. The fundamental challenges [35–42]
can be listed as follows:

• Federation and Interoperability: Since fog servers are geographically distributed, these servers can be operated by different
cloud or fog service providers. In the fog–cloud collaboration, there is a need for different technologies, modules, and
algorithms are required to operate the system by interconnecting with each other [35].

• Heterogeneity: Since fog layer poses a decentralized structure, each fog node residing in this layer may differ in their storage
and computing capacities by considering the demands of the area they are deployed or the resource limits of those fog nodes.
Heterogeneity should be taken into consideration in the task assigned to each fog server.

• Scalability: Fog–cloud architecture is a highly dynamic structure in nature where several IoT and fog nodes can join or leave
the network. As the number of IoT devices increases, fog servers should scale up and cover these large number of IoT devices to
remain operational. On the contrary, some IoT nodes can fail due to limited resources, and accordingly, the network structure
should scale down itself [36].

• Load balancing and Resource Allocation: Fog servers may have limited memory and low computational resource to compute
the tremendous amount of data received from physical layer. When the capacity of a specific fog server becomes high, it has
to distribute its load to an available fog server so as not to fail. A mechanism is required to control the current status of active
servers. When the capacity of a server exceeds a critical threshold, this mechanism should determine the optimal neighbor
server to offload its tasks. In addition, when deploying the resource-limited fog nodes in a large-scale environment, resource
fragmentation can be a serious problem leading to QoS degradation [37]. By considering the user requirements, a pool of
3
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• Node Placement: Fog servers are expected to cover a specific area to manage and control the underlying layer effectively.
Therefore, they should be placed where the resources are in order to take advantage of FC’s proximity. However, it is not always
possible in situations where they are exposed to some physical threats and/or vulnerabilities. Considering the requirements
of the application, determining the optimal number of servers and their locations forms an optimization problem to be solved
efficiently.

• Mobility: FC supports mobility. Hence, in addition to IoT devices, fog servers can be static or mobile as well. When a mobile
device in the IoT layer, such as a mobile phone, moves out of range, it must transmit its data to the related fog server. It
should be decided how to make the transmission by taking into account critical metrics such as path length, bandwidth, and
security [38].

• Data, Task, and Computation Offloading: Since IoT nodes consist of resource-poor devices, they tend to fail in coping with
such a huge workload and need to offload their tasks to more resourceful devices like fog servers [39,43]. The most appropriate
fog server should be selected by evaluating the current information of all fog servers in the fog layer. It should also be decided
on how to transmit the data or task to the desired server.

• Policy Agreement: Fog servers are deployed in a large-scale area and customized for different services such as healthcare or
environmental monitoring. These different tasks can be managed by different service providers. Besides, the cloud operator
can be different as well. All operators in the fog–cloud architecture should collaborate to provide seamless integration of
layers. Proper Service level agreement (SLA) management techniques should be utilized to provide acceptable QoS in a highly
dynamic fog system [40].

• Collaboration with Emerging Technologies: Software-Defined Networking (SDN), Network Function Virtualization (NFV),
Information-Centric Networking (ICN), and Tactile Internet are some of the auxiliary technologies for FC in facilitating network
management and control; however, new challenges are expected to arise during the integration of these technologies. The pros
and cons of these technologies should be considered carefully, and smooth integration should be provided.

• Security and Privacy: Security and privacy challenges are commonly studied for FC under different topics such as authentica-
tion, trust, and malicious attacks [41] Fog nodes are generally physically open and vulnerable to security and privacy threats.
Since they are deployed in wide-range unreliable regions, usually they cannot be protected by strict surveillance or protection
mechanisms [41,44]. Although authentication provides an initial set of relations among IoT and fog nodes, it is not generally
enough to secure the system. IoT and fog nodes can be compromised after joining the network. These compromised nodes use
detailed information for their own benefit and break the privacy of the system. An effective privacy-preserving model should
be used to avoid compromising and revealing detailed information of users. Besides, fog and cloud nodes can be operated
by different operators who may not be fully trusted. Therefore, a robust management model should be employed to verify
that all nodes participating in the network provide a certain level of trust [45]. In addition, FC usually deploys its service
to delay-sensitive applications where real-time processing is important. This makes the fog system much more fragile against
Denial of Service (DoS) attacks [42].

4. FogAI: AI-supported fog controller

We present the graphical representation of the proposed FogAI concept and the positions of FogAI components in the system
architecture in Fig. 1. Our three-tier IoT system architecture consists of a physical device layer, fog layer controlled by FogAI, and
cloud layer. There are heterogeneous IoT devices in the physical layer as the data producers and data consumers. Data producers
naturally generate a wide variety of data types such as text feeds, audio feeds, video streams, sensory data, and so on. Data consumers
can be static or mobile device applications that request the processed data by fog servers or cloud servers. The processing and analysis
of generated data require different hardware requirements [46].

For this reason, fog servers are responsible for processing a wide variety of data with different specifications in the fog layer. On
the other hand, these fog servers require more intelligent mechanisms for management, scalability, interoperability, and security
issues. Herein, we propose a new virtual controller called FogAI to manage, control and monitor the highly heterogeneous and
dynamic fog network in terms of data and resource management, functionality, and system performance. FogAI controller has
various AI-based components such as agent, Deep Learning (DL) models, engines, modules, algorithms, and other tools, which offer
promising solutions to the challenging issues discussed previously. To better understand these components and their structures, we
briefly clarify each of them below.

• Agents: Agents are some of the basic elements of Reinforcement Learning (RL). They observe the IoT network environment
and produce policies that allow the designed system to be adaptively and dynamically managed in line with certain goals.

• AI Models and Algorithms: These components refer to DL models and algorithms developed to perform one or more of the
system functions. DL models can be evolved for a wide range of IoT applications from simple sensor data analysis applications
to comprehensive big data analysis applications.

• Modules/Interfaces: These components refer to software elements that can perform one or more tasks in a network environment.
They can ensure that applications run in an effective way according to the system topology.

• Engines and Tools: These components provide flexibility to the system by scaling up/down the system resources. Also, they
simplify the management of fog servers and make system decisions more agile.
4
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Fig. 1. System infrastructure and graphical representation of FogAI.

4.1. Network model and formulation

As shown in Fig. 1, we present the potential network model of FogAI structure over the IoT architecture. We also formulate the
network in accordance with the task offloading problem addressed in the study. In network model, set of 𝐹 =

{

𝑓1, 𝑓2,… ...., 𝑓𝑚
}

and
𝑆 =

{

𝑠1, 𝑠2,… ...., 𝑠𝑚
}

represent the fog devices and smart devices/sensors, respectively. 𝑚 denotes device count.
𝐿𝑠𝑓 =

{

𝑙𝑠1 ,𝑓1 , 𝑙𝑠2 ,𝑓1 , 𝑙𝑠3 ,𝑓1 ,… ....., 𝑙𝑠𝑖 ,𝑓𝑗
}

and 𝐿𝑓𝑐 =
{

𝑙𝑓1 ,𝑐 , 𝑙𝑓2 ,𝑐 ,… ....., 𝑙𝑓𝑖 ,𝑐
}

are communication link sets between the IoT device (𝑒),
fog (𝑓 ) and cloud (𝑐) layers. Based on the notations above, we formulate task processing, task offloading and total system delays to
evaluate proposed FogAI controller.

Here, 𝑆𝑚𝑡
is the total amount of task from smart devices at time 𝑡.

𝑆𝑚𝑡
=

𝑚
∑

𝑖=1
𝑠𝑖𝑡 (0 < 𝑠𝑖) (1)

Here, we define task processing delay of FogAI component as follows.

𝑇 𝑝𝑟𝑜𝑐
𝐹𝑜𝑔𝐴𝐼𝐴𝑔𝑒𝑛𝑡 =

𝑆𝑚𝑡

𝑓 𝑐𝑐 (2)

where 𝑓 𝑐𝑐 is the computing capability of FogAI component.
In addition, 𝐵𝑢𝑝 and 𝐵𝑑𝑜𝑤𝑛 denote the total uplink bandwidth and downlink bandwidth respectively. 𝑆𝑢𝑝 and 𝑠𝑑𝑜𝑤𝑛 refer to the

number of tasks transmitted up and down according to the link direction. Herein, uplink and downlink task transmission delays can
be given as shown in Eqs. (3) and (4).

𝑇 𝑢𝑝
𝑙𝑒𝑓 ∕𝑙𝑓𝑐

= 𝑆𝑢𝑝

𝐵𝑢𝑝 (3)

𝑇 𝑑𝑜𝑤𝑛
𝑙𝑐𝑓 ∕𝑙𝑓𝑒

= 𝑆𝑑𝑜𝑤𝑛

𝐵𝑑𝑜𝑤𝑛 (4)

Thus, we obtain the total end-to-end task transmission delay (𝑇 𝑡𝑟𝑎𝑛𝑠
𝑒2𝑒 ) between the task sender and receiver by summing all the

uplink and downlink transmission delays.

𝑇 𝑡𝑟𝑎𝑛𝑠
𝑒2𝑒 = 𝑇 𝑢𝑝

𝑙𝑒,𝑓
+ 𝑇 𝑢𝑝

𝑙𝑓,𝑐
+ 𝑇 𝑑𝑜𝑤𝑛

𝑙𝑒,𝑓
+ 𝑇 𝑑𝑜𝑤𝑛

𝑙𝑓,𝑐
(5)

Finally, the total system delay for 𝑁 tasks transmitted to the network can be given as follows.

𝑇 𝑠𝑦𝑠𝑡𝑒𝑚
𝑡𝑜𝑡𝑎𝑙 =

𝑁
∑

(𝑇 𝑝𝑟𝑜𝑐
𝐹𝑜𝑔𝐴𝐼𝐴𝑔𝑒𝑛𝑡 + 𝑇 𝑡𝑟𝑎𝑛𝑠

𝑒2𝑒 )
5
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5. Potential FogAI based solutions for NGIoT challenges

In this section, we provide potential FogAI based solutions to the FC challenges through illustrative scenario cases. A summary
f these potential solutions are presented in Table 1.

.0.1. FogAI based solutions for federation and interoperability
FogAI based agents and DL models can cooperate with the different providers to ensure the coordination between application

omponents. For example, Actor–Critic based federated RL agents can be used to control and manage multiple fog servers or edge
evices [47]. RL-based multi-agents can be used to interpret certain ontology concepts and provide an exact meaning to a message
ent by system components. At the same time, these agents can ensure the interoperability of protocols in an environment where
eterogeneous communication protocols such as MQTT, COAP, HTTP, SMTP, and AMQP exist [48]. Besides, Convolutional Neural
etwork (CNN), Long Short-Term Memory (LSTM) based DL models can be deployed in FogAI to detect anomalous behavior of IoT
evices by classifying malicious events [49].

.0.2. FogAI based solutions for heterogeneity
The network heterogeneity raises problems such as mutual interference, differentiated QoS provisioning, and resource alloca-

ion [29].
To solve heterogeneity problems, FogAI agents and DL models can be employed. For example, in Vehicular Ad hoc NETworks

VANETs) vehicles can make various types of requests such as multimedia requests, internet requests, emergency notifications, and
ontent caching [50]. An RL agent can be developed that can effectively respond to these requests according to the status of the
etwork.

In other potential solutions, RNN based DL model and modules can be used to identify and track objects such as cars, buses,
edestrians, and cyclists in an application of autonomous vehicle driving [51]. Also, LSTM based model can proactively predict
obility of vehicles for content delivery and caching. Therefore, the requested contents can be transferred, cached to the RSU

ccording to the direction of the vehicles, and stored [52].

.0.3. FogAI based solutions for scalability
In a network system, scalability can have many dimensions such as operational environment, capacity, performance, reliability,

nd security [53]. From an architectural point of view, two types of scalability can be mentioned. Horizontal scalability is
elated to increased devices and software expansion of components, while vertical scalability is related to their ability to increase
fficiency [54]. From a scalability perspective, FogAI based agents, models, and algorithms can offer effective solutions. For example,
n smart transportation applications, vehicle mobility and speed patterns can be predicted via DL models and algorithms in FogAI.

.0.4. FogAI based solutions for load balancing and resource allocation
Due to the dynamicity, heterogeneity, and uncertainty of fog environment, load balancing, and resource management systems

re essential to make the workloads distributed in a balanced manner [55]. Load balancer and resource allocator agents can be used
ogether in highly dynamic, heterogeneous, and uncertain areas like smart healthcare. In this application, patient data and server
oads in the network are monitored continuously, and this data can be distributed equally among the existing servers by responsible
gents [56]. On the other hand, Deep Belief Network (DBN) based DL model can be directed to suitable servers by analyzing a large
mount of user data and network load [57].

.0.5. FogAI based solutions for node placement
FogAI based agents or models can be employed. For instance, an efficient FogAI based server, service, and task placement

odels/agents can be used to optimize service decentralization on FC landscape [58]. In this optimization process, agents can
ake into account parameters such as location, computing, and storage capacities of fog devices.

.0.6. FogAI based solutions for mobility
In IoT system design, devices and fog nodes can be mobile [36]. Thus, engines and modules that handle this mobility are needed

o ensure the continuity of services [59]. Herein, FogAI based mobility engines can be a solution to this challenge. In addition, an
DN controller can be located to FogAI, and make the fog and physical layers are more manageable and flexible by decoupling the
etwork as data and control planes. Thus, in applications with high mobility, even if a mobile IoT device moves out its coverage
ange, it can easily transmit its data to its own server efficiently due to the global point of view of the SDN controller in FogAI.

.0.7. FogAI based solutions for data, task and computation offloading
With limited computation, memory, and power capacities, IoT devices cannot handle such a huge workload [60]. Therefore,

here is a need for components to meet current challenges in terms of data, task, and computing. Herein, system needs can be met
y RL agents, DL models, and algorithms that take into account one or more of these challenges. For instance, an RL agent can
evelop a task offloading policy to minimize energy consumption, task delay, and task loss. In this way, it can be decided that the
ask will be run in the cloud or locally [61].
6
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Table 1
FC challenges and potential FogAI based solutions.

FC challenges Possible FogAI
components

Potential FogAI based solutions NGIoT application domain

Federation and
Interoperability

RL agent Federated agents can be used to control, manage and coordinate
multiple fog or edge devices.

Network optimization

RL agent Agent can interpret specific ontology concepts and provide an
exact meaning to messages sent by system components. Also,
they can ensure interoperability between the protocols such as
HTTP, MQTT and AMQP.

Image recognition

RNN RNNs can classify data traffic with high accuracy in detection
malicious behavior.

Intrusion detection

Heterogeneity
RL agent Agent can provide allocation policy by considering networking,

caching, and computing in VANETs.
VANETs

CNN, Module DL models and modules can be used to identify and track objects
such as cars, buses, pedestrians, and cyclists.

Autonomous vehicle
driving

LSTM LSTM module can predict the mobility movement and select
and appropriate RSU in fog layer to cache contents.

VANETs

Scalability RNN, LSTM FogAI based DL models and algorithms can predict the mobility
and speed patterns of vehicles. Also, traffic congestion can be
reduced by regulating the traffic flow according to the predicted values.

Intelligent transportation
system

Load balancing and
Resource Allocation

RL agent Agent can allocate resources in VANETs by taking into account
the computing, caching and networking capabilities of fog servers.

VANETs

RL agent Agent can distribute data traffic in a balanced manner by
simultaneously considering patient data and server loads.

Smart healthcare

Node Placement RL agent, DL
models

Models/agents can be used to optimize service decentralization
by considering parameters such as location, computing and storage
capacities of fog servers.

Network optimization

Mobility Engines Engines can make the fog and physical layers are more
manageable and flexible by handling the mobility of vehicles.

VANETs

Data, Task, and
Computation
Offloading

RL agent Agent can take an optimal offloading action decision to
minimize the energy consumption, processing delay, and task
loss probability.

Network optimization

Policy Agreement DL models DL models can proactively identify SLA violations and change
the network state to avoid that violation.

Network management

Emerging
Technologies

Interface,
Engine

Tactile–human interfaces/Engines can interact human senses
with machines and technologies. Enabling tactile interaction
can make it possible to detect, manipulate, and position objects
in a virtual environment.

Telesurgery, Vehicle
platoons,
and Augmented reality

RL agent FogAI agent can cooperate with SDN controller to control the
network more effectively.

Network management

Security
and Privacy

DL models DL models can be used for security issues such as threat
identification, false data injection, and intrusion detection.

Security systems

RL agent Agent can maintain connectivity with dynamic decisions by taking into
account position, speed, and connectivity of vehicles on the air/ground.

Multi-Robot systems

5.0.8. FogAI based solutions for policy agreement
FogAI based SLA management systems can be a potential solution for the fog–cloud architecture. FogAI controller may consist of

ifferent providers that offer options such as different billing and metering methods, different scalability, and elasticity procedures.

.0.9. FogAI based solutions for emerging technologies
SDN technology can be employed for content-based forwarding, but it suffers from a single point of failure. In addition, an SDN

ontroller can have disadvantages such as centralizing the decentralized structure of the fog computation, reconfiguration cost in the
ynamic network environment, and latency. A FogAI controller can cooperate with SDN controller and provide backup solutions for
DN in case of any controller failure. Moreover, the FogAI can eliminate the disadvantages of the SDN controller with its distributed
og architecture and advanced AI support. Also, ICN models can be implemented by FogAI components for data management at the
ateway level. Given that data delivery requires the new ICN paradigm, an agent can decide where to process the data by considering
ncoming content and fog server status. From a content delivery perspective, Tactile Internet can offer skill sets over the network
n addition to the content delivery in potential applications such as telesurgery, telerehabilitation, toolkits, and augmented reality.
7
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Fig. 2. Proposed FogAI based system model and illustration of the case study.

5.0.10. FogAI based solutions for security and privacy
RL agents and DL models can be used to ensure network security and privacy issues. For example, multi-robot systems such as

UAVs, drones, and autonomous cars often face connectivity preservation problems due to the dynamic and complex environment.
To overcome this problem, DRL agents can maintain the connection with dynamic decisions by considering their position, speed,
and connectivity. On the other hand, DBN-based DL models can be used for security threat identification and false data injection
attacks. Autoencoders can be used for intrusion detection and machine fault diagnosis.

6. Case study: Deep reinforcement learning based autonomous task offloading in FogAI

In this section, we describe a case study to demonstrate the application of task offloading via DRL agent in FogAI.

6.1. Proposed FogAI based system model

As shown in Fig. 2, the proposed system model consists of three layers: physical layer, fog layer with FogAI, and cloud layer.
The physical layer includes different devices that generate heterogeneous data and tasks. As seen in studies [62,63], tasks can be
grouped as Delay-Sensitive (DST), Computation-Intensive (CIT), and both Delay-Sensitive and Computational-Intensive (DSCIT) in
real network environments. Therefore, in this paper, the tasks are divided into these three groups.

All devices request the nearest fog servers to handle their tasks to meet QoS and user requirements effectively. Fog layer has
a dynamic and heterogeneous structural design. Therefore, it consists of multiple resource-poor and resource-rich servers. Here,
resource-poor and resource-rich servers are named CPU-assisted fog (CFog) and GPU-assisted fog (GFog), respectively.

FogAI contains the DQL based agent that offloads the tasks to the appropriate servers by considering the task type, server type,
and computing capacities of the servers. The agent periodically makes a task offloading policy at the beginning of each task offloading
round. The task offloading policy includes both task offloading decisions (where to offload) and appropriate fog or cloud server
allocation. The cloud layer consists of data centers with multiple servers that are capable of sufficient storage and computational
resources.

6.2. Deep Q-learning based task offloading algorithm

In this case study, we consider carrying out a balanced task offloading by distributing tasks to appropriate servers. In this way,
we aim to increase QoS by reducing task transmission delay, task processing delay, and total system delay. For this purpose, we
propose the DQL based task offloading algorithm that can offload a task to the appropriate fog server or a nearby cloud server by
8



Internet of Things 19 (2022) 100572İ. Kök et al.
considering the task type, server type, and server computing capabilities. In our algorithm, we use a fully connected Deep Neural
Network (DNN) that has two hidden layers (108 × 108 neurons) and Rectified Linear Unit (ReLU) activation function. To get these
values, we tested the DNN algorithm under the different numbers of neurons (32, 54, 64, 108, 128), and batch sizes (27, 45, 81)
in the training process. We also set up experience replay memory size 5.105, the maximum episode is set 50, and the maximum
number of steps in each episode is set 405, which is the number of total tasks used in the simulation. The learning rate 𝛼 is fixed
10−3, discount factor 𝛾 = 0.95. The e-greedy algorithm is used with random 𝜖 = 0.1.

To make the proposed algorithm feasible in our system, we define the core system elements as follows:

• FogAI Agent: It refers to the task offloader that offloads the tasks according to the proposed DQL algorithm.
• Environment: It refers to our system model where FogAI agent interacts with.
• State: It is represented as a vector that includes the task types, computation capacities of the fog, and cloud servers at time

slot 𝑡.
• Action: In our setting, a task can be offloaded to either the fog or cloud servers; thus, we define the action as a 1 × 𝑛 vector

where 𝑛 represents the total number of servers in the system. In the vector, the server to which the task will be transferred is
set to 1, while the others to 0.

• Reward: In each time slot 𝑡, the FogAI agent receives an immediate reward from the environment after its action. If the agent
offloads a task successfully to the appropriate fog or cloud server, it gets a positive reward of +1, otherwise a negative reward
of −1.

7. Simulation results and evaluation

7.1. Simulation settings

We conduct our simulations using Tensorflow and Python 3.6 on a PC equipped with Intel i7-6850K CPU, 16 GB RAM, and
NVIDIA GeForce GTX 1080Ti GPU. We assume that devices have three task types (DST, CIT, and DSCIT) requests to be processed
on cloud or fog servers. In determining these three task types, we have considered the task types in papers [62,63]. Since all
task types require different processing capabilities, we define three fog groups that contain both GPU-assisted (colored Green) and
CPU-assisted (colored Red) fog servers. We also define one cloud server group with three servers (Server 1/2/3 - colored Green).
As DSTs are delay-sensitive, these tasks need to be processed on CFog servers. Thus, these tasks can be performed without waiting
for offloading, and congestion delay. Besides, it is assumed that DSCITs can be processed on resource-rich GFog servers. Processing
these tasks in the fog layer is required in terms of reducing latency, while resource-rich servers are computationally required. Note
that when a task is offloaded to the cloud server, it increases delays. Therefore, it is assumed that only CIT tasks are transferred to
cloud servers.

For experiments, we generated two different balanced task datasets, each containing 405 tasks by using the discrete uniform
distribution. In this way, we ensured that the data sets have an equal number of samples (135 tasks) from each task type. We used
one of the data sets in training and the other in the testing phase.

7.2. Performance evaluation

We evaluate the performance of our DQL based algorithm in terms of total system reward, task workload, task computation delay,
task transmission delay, and total system delay. For this purpose, we compare the proposed algorithm with the three commonly used
offloading algorithms in the literature [64–66]. These algorithms offload the tasks according to different policies. These policies are
explained as follows.

(1) Proposed FogAI Agent Offloading Policy (FAOP): This represents the task offloading policy of the proposed DQL based agent
located in FogAI. FAOP jointly considers the incoming task type, server type, and the computation capacity of the servers in task
offloading.

(2) Task-centric Offloading Policy (TOP): This policy does not consider the computation capacity of the servers while considering
the task type and server type in task offloading. It randomly sends the task to one of the servers of its type.

(3) Random Offloading Policy (ROP): This policy randomly offloads the incoming tasks to one of the fog or cloud servers. It does
not consider the task type, server type, and computation capacities.

(4) CoMputation-centric Offloading Policy (CMOP): This policy only considers available computation capacity of the servers in
task offloading. Note that the available computation capacity is determined by taking into account the current load of the servers.
On the other hand, this policy does not consider task and server types.

Fig. 4 illustrates the average total rewards obtained by the offloading policies learned in each training episode. From Fig. 4, we
can see that FAOP increased the system reward from −152 to +384 thanks to its learning capacity.

On the other hand, ROP, TOP and CMOP policies collected the system rewards in the (min/max) range of −356/−294,−202∕−94,
and −166∕ − 94, respectively. We obtained the average system rewards of FAOP, ROP, TOP and CMOP policies as +322,−317,−136,
−134, respectively. It is clearly seen from the results that FAOP is significantly more successful than the other three policies. This
is because FAOP constantly updates its offloading policy based on the feedback (rewards) received from the environment. It is also
the ability to use past experiences in policy-making.
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Fig. 3. Average task loads of the servers (a) GFog servers, (b) CFog servers, (c) Cloud servers.

Fig. 4. Average total system reward.

Fig. 3 depicts the average tasks loads offloaded to the servers. Here, it is seen that FAOP and TOP deliver the tasks to the servers
more suitable and balanced according to task types. However, ROP and CMOP offload the tasks to servers highly unbalanced. Task
offloading results in Fig. 3 indicate that FAOP distributes tasks to suitable servers with an approximately 95% success rate.

We also investigate task processing delay, task transmission delay, and total system delay of all policies. Here, an average task
completion time is calculated as the sum of the task processing time and the task transmission time. In order to provide more
comprehensive results about delays, we set the transmission and protocol processing delays in study [67] as task offloading and
task processing delays, respectively.

Based on Tables VII, VIII, and IX in [67], we set the transmission delay to fog and cloud servers to 15 ms and 120 ms,
respectively. Besides, we set that DST, DSCIT, and CIT tasks are processed in CFog/GFog/Cloud Server at 4/8/16 ms, 20/40/80 ms,
and 40/80/160 ms, respectively.

Fig. 5 shows the average task offloading and task processing delays separately. When the average processing delays are examined,
it is seen that the proposed FOAP policy has the lowest task processing delay. This is because the FOAP policy makes server allocation
for each task type more accurate than other policies. More precisely, FOAP policy produced approximately 34%, 35%, and 36%
lower task processing delay than TOP, ROP, and CMOP policies, respectively. Other policies are listed as TOP, ROP and CMOP, from
least to most. In terms of task transmission delays, we see that FOAP and TOP policies have lower delays than ROP and CMOP.
Here, TOP has an advantage over other policies since it distributes the tasks more appropriately to the server type.

On the other hand, we calculate the average total system delays created by all policies and give them in Fig. 6. Considering the
average total system delay, the FOAP policy revealed approximately 11%, 14%, and 15% lower latency than TOP, CMOP, and ROP
policies, respectively. Overall results show that the proposed FAOP generates a lower delay time for all delay types. In this way, it
ensures a positive effect on the overall system delays.

Based on the numerical results presented above, we can say that the FogAI supported DQL agent provides significant im-
provements in vital performance metrics of the IoT network such as workload distribution, task processing latency, data transfer
latency and end-to-end latency. The results have shown that the proposed solutions have the potential to meet the needs of IoT
architecture, especially in task-oriented communication. On the other hand, in the future cyber–physical world, we introduce a
conceptual architecture that makes the challenges of the fog-based IoT network smarter, autonomous and scalable with AI-powered
mechanisms. We believe that the proposed conceptual architecture and AI-powered fog components will provide a wide range of
potential solutions to the covered challenges in this paper. Moreover, we hope that this study will motivate researchers to apply a
new approach to solving NGIoT network problems.

8. Conclusion

In this paper, we comprehensively examine the challenges in FC and introduce AI-supported solutions that can overcome the
10
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Fig. 5. Average task processing and task transmission delay.

Fig. 6. Average total system delay.

alled FogAI that makes the network management and control dynamic by abstracting the fog layer from the physical and cloud
ayer. From the algorithmic point of view, we present deep learning agents, models, and algorithms that can work in FogAI.
oreover, to fully understand the proposed FogAI concept, we present a case study on DQL-based task offloading to minimize task

rocessing and response time, and balance the task workload of the system. In conclusion, we expect that, in addition to solving
C layer problems, FogAI concept can make the whole IoT network smarter and more dynamic by providing coordination between
he physical and cloud layers.

This study identifies the FC-related issues and emphasizes the importance of the FogAI and its potential solutions; however,
ow to overcome each challenge precisely is yet unclear and incomplete. We sought to provide potential FogAI components and
ogAI-based solutions as suggestions for each challenge; however, each solution can be enhanced using different methods. In this
aper, we present an example of how the proposed concept is applied to the task offloading problem. As part of future research,
e want to show how the FogAI concept may be applied to other issues including mobility, security, and heterogeneity.
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