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Intelligent context-aware fog node discovery

Abstract

Fog computing has been proposed as a mechanism to address certain issues in
cloud computing such as latency, storage, network bandwidth, etc. Fog comput-
ing brings the processing, storage, and networking to the edge of the network
near the edge devices, which we called fog consumers. This decreases latency,
network bandwidth, and response time. Discovering the most relevant fog node,
the nearest one to the fog consumers, is a critical challenge that is yet to be ad-
dressed by the research. In this study, we present the Intelligent and Distributed
Fog node Discovery mechanism (IDFD) which is an intelligent approach to en-
able fog consumers to discover appropriate fog nodes in a context-aware manner.
The proposed approach is based on the distributed fog registries between fog con-
sumers and fog nodes that can facilitate the discovery process of fog nodes. In
this study, the KNN, K-d tree, and brute force algorithms are used to discover
fog nodes based on the context-aware criteria of fog nodes and fog consumers.
The proposed framework is simulated using OMNET++, and the performance of
the proposed algorithms is compared based on performance metrics and execution
time. The accuracy and execution time are the major points of consideration in
the selection of an optimal fog search algorithm. The experiment results show
that the KNN and K-d tree algorithms achieve the same accuracy results of 95 %.
However, the K-d tree method takes less time to find the nearest fog nodes than
KNN and brute force. Thus, the K-d tree is selected as the fog search algorithm
in the IDFD to discover the nearest fog nodes very efficiently and quickly.

Keywords: Fog node, Discovery, Context-aware, Intelligent, Fog node discovery

1. Introduction

Edge devices are resource and power constrained as they have minimal capa-
bilities for computing and storing their sensed and generated data. Edge devices
need to offload their tasks to cloud services for processing and storage. As a re-
sult, a vast number of cloud services are provided to support these edge devices.
However, cloud services suffer from bottleneck problems and latency [1]. For
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example, processing a large amount of data in the cloud, which is located far
from edge devices, will increase the network bandwidth and response time signif-
icantly. To overcome these issues, a new paradigm known as fog computing has
emerged. Merging fog computing with cloud computing will help these resource-
and power-constrained devices process their tasks using fog nodes. Fog comput-
ing brings cloud services include computing, storage and networking to the edge
of the network close to the fog consumer’s vicinity, thereby decreasing latency
and the response time significantly [2] [3]. Data processing will take place in the
fog nodes in between the centralized cloud and edge devices. The fog computing
paradigm is in its infancy stage which presents several challenges that need more
investigation and solutions [4]. Discovering relevant fog nodes from the available
ones that satisfy the fog consumer’s requirements is a critical problem and it is an
important stage of the fog node. To ensure that the tasks from the fog consumers
are processed in a timely manner, one of the crucial aspects to consider for fog
node discovery is the geographic distance between the fog node and the fog con-
sumers as this directly impacts latency, response time, and bandwidth usage [5].
As we demonstrated in [6], context awareness in fog computing assists in the cor-
rect use of the requirements of the user that will assist in providing information
on the node that has the best ability to provide these requirements [7]. Thus, it
should be an important criterion to consider in fog node discovery.

In this paper, we propose an intelligent system to help fog consumers dis-
cover fog nodes based on the context-aware information of fog nodes and fog
consumers. Fog node discovery is a crucial problem which needs further investi-
gation by researchers.

The structure of this paper is as follows: Section 2 summarizes the existing
approaches that have been proposed for fog node discovery. Section 3 presents the
architecture of the proposed solution - IDFD. Section 4 details the performance
evaluation of the proposed solution - IDFD and the simulation. Section 5 discusses
in detail the experiment results. Finally, Section 6 concludes the paper.

2. Related works

The discovery of services has been well-studied in the areas of cloud comput-
ing [8], web services [9] and the IoT environment [10]. However, the discovery
of services in fog computing is still in its infancy and none of the existing lit-
erature considers the discovery process in a context-aware manner. Most of the
existing research considers that fog nodes are located close to the fog consumer
and assumes that fog consumers have already discovered the fog nodes and are



thus focusing on the next phase of their operation, i.e., processing the communi-
cation between the devices. They fail to consider the context-aware mechanism
characteristics through which they should be discovered. A few studies focus on
the actual discovery of fog nodes and the approach they utilize to achieve this is
intensively discussed in [6]

Some existing approaches have been proposed fog node discovery based on
an 802.11 Wi-Fi beacon to find appropriate fog nodes. Rejiba et al. [11] [12]
proposed the discovery approach which focuses on reducing the energy consump-
tion of edge devices based on the discovery of a wireless network signal range
using the 802.11 beacon technique. Rejiba et al. presented the F2C (fog-to-cloud)
system to discover fog nodes. The proposed approach embeds the 802.11 beacon
technique to discover fog nodes that are close to the vicinity of the edge devices
using Wi-Fi technology. While the proposed approaches detect and connect to
the fog nodes using Wi-Fi and the 802.11 beacon technique, they fail to consider
location-awareness and context-awareness requirements, such as but not limited
to user location, user identity, etc. in the discovery process.

Venanzi et al. [13] [14] proposed a Bluetooth-based MQTT-driven node dis-
covery solution in an IoT-fog environment. The proposed approach is termed
power efficient node discovery and aims to ensure sustainability, energy efficiency,
discoverability, and reliability while engaging in service discovery. The goal of
this approach is to reduce the energy consumed by the edge device during the dis-
covery process and to ensure [oT devices are 100% discoverable. Although the
proposed approaches using the MQTT technique to find IoT devices are applied
on a real-world platform, they do not focus on the use of intelligent algorithms to
consider the context-aware, location-aware and energy-constraint requirements of
fog nodes.

Gedeon et al. [15] proposed an approach called sunstone for the joint discov-
ery and orchestration of fog nodes (fog computing resources). Sunstone combines
three discovery mechanisms, namely (i) the snooping of traceroute packets, (ii)
DNS NAPTR record information, and (iii) BGP community string advertisement.
The actual discovery work takes place at the cloud side in a Kubernetes environ-
ment. The proposed approach is evaluated in a real-world testbed. While the
results show that this approach helps to reduce end-to-end latencies, the authors
do not use intelligent algorithms for a smart fog nodes search and also, they do
not take into account the context-aware and location-aware characteristics of fog
nodes for discovery.

Soo et al. [16] proposed a framework for fog node discovery based on the
proximity of a mobile ad hoc social network (MASN) in a decentralized peer-
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to-peer manner. The mobile edge devices are connected to each other through a
MASN and they monitor and gather information from MASN peers in the dis-
tributed hash table. When the edge device moves, the application from MASN
gathers information about the fog nodes that are close to them and uses this infor-
mation to access them. The GPS locations of the edge devices are used to find the
nearest fog nodes. To reduce latency during the communication, the authors pro-
posed using fog nodes that are within the location proximity. While researchers
have proposed different methods for fog node discovery, they fail to consider the
context-aware mechanism characteristic through which fog nodes should be dis-
covered. They do not consider an intelligent mechanism to carry out the discovery
that incorporates other specifics such as context-aware requirements. Based on the
above literature review, we identify that the primary gap in the existing literature is
the lack of mechanisms for discovering fog nodes in a context-aware manner. To
solve this challenge, in this paper we propose the Intelligent and Distributed Fog
node Discovery mechanism (IDFD) for storing information on fog nodes, search-
ing and discovering optimal fog nodes. Given the complexity of the approach, in
this paper we limit ourselves to single criterion-based approaches to compute the
‘proximity’ between a fog consumer and fog node.

3. Proposed solution - IDFD

In this research, we propose an intelligent framework on top of fog computing
for context-aware fog node discovery which we called IDFD. IDFD is a frame-
work which contains a novel concept of the fog registries consortium (FRC). We
regard the FRC as an intermediary between the fog consumer (edge node) and fog
nodes that acts as a broker for various activities such as, but not limited to, fog
discovery, fog selection, etc.

3.1. Fog Registries Consortium (FRC)

In this research, we propose and use the notion of FRC for fog node discovery.
In the future, the role of FRC can be extended beyond this. In this research, we
define the notion of FRC which is a finite collection of fog registries (FR) that
maintain information on fog nodes. Conceptually, FRC may be defined as follows:
FRC = {FR1, FR2, FR3, FR4, ... FRn}. The FRC is responsible for the following
activities:

* managing the membership of the FRC;

* ensuring the integrity of the FRC process;
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¢ ensuring concurrency in the FRC by synchronizing data between distributed
fog registries;

* distributing the distributed fog registries across the globe in a uniform man-
ner;

* controlling the connection between the fog consumer and the distributed
registry in their geographical limitation.

In our proposed framework shown in Figure 1, the FRC consists of two types of
fog registries as follows:

* The main central fog registry (CFR): The CFR controls and coordinates
all the distributed fog registries in the consortium, ensures an equal and
uniform spread of distributed fog registries, manages the membership of
the distributed fog registry in the FRC, ensures the integrity of the FRC,
and ensures concurrency by synchronizing fog node data between all other
fog registries to keep them up to date.

* The distributed fog registries (DFR): In contrast to the main CFR, there
are multiple geographically dispersed registries that synchronize with the
main CFR. The DFRs are located in different remote regions and are uni-
formly spread across the globe. Each DFR stores information on all fog
nodes in the network. All DFRs have the same data on all fog nodes and are
synchronized. The DFRs are the first point of contact for fog consumers.
The DFR has the following modules:

- Fog Node Discovery Engine (FNDE)
- Fog repository.
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Figure 1: Conceptual overview of the proposed solution — IDFD

Membership of the FRC: The membership of the fog registries within the
FRC could either be static or dynamic. In a fog environment, the membership of
the FRC is transient and dynamic. However, the membership of the FRC could
also be static with proper checks and balances in place to ensure the integrity
of the process activity carried out by the FRC. In our research, we use a static




membership function for the FRC. In the following, we describe how fog nodes
can become members of the FRC and also how the integrity of the activity carried
out by the FRC can be maintained (particularly under static membership).The job
of the FRC is to store an exhaustive list of all the fog nodes in the network with
their bespoke attributes such as but not limited to fog node name, fog node location
etc. Itis critical to note that this list of fog nodes stored in the FRC is not static but
an evolving list where new fog nodes may join the fog network and existing ones
drop out of the fog network. The membership criteria for the FRC are grounded
on the factors that enable the fog registry (FR) to maintain and update the list of
the fog nodes in a dynamic manner. As such, we use the following membership
functions to join our FRC:

 Storage Capacity: The FR should have a very large storage space to main-
tain the extensive and expansive list of fog nodes with their bespoke at-
tributes to minimize retrieval time.

* Processing capacity: The FR should have a fast processing capacity to min-
imize retrieval time.

* Reputation Value: The FR should be a trustworthy fog node as evidenced
by its reputation value.

Whilst in this research, we propose the above three factors for selecting
the FRs, in a practical implementation, these factors can be different. The
CFR initiates the selection process. It is critical to note that while the CFR
initiates the process, the activities within the selection process are carried
out in a manner that is visible to all the participants.

Ensuring the integrity of the FRC process: To ensure that no single entity
or group of entities within the FRC has control of the entire activities in the FRC
to the extent that they are able to manipulate its activities in an unfair manner,
we propose the notion of checkpointing and benchmarking. Checkpointing is
carried out at regular periodically recurring intervals of time (n). The working of
checkpointing and benchmarking is as follows:

* During the checkpointing process, each member of the FRC is asked to
submit a one-way hash of its repository, using a dynamically generated key.
The CFR generates this key dynamically and every member of the FRC is
required to submit a one-way hash outcome to the FRC which is shared with
all members of the consortium.



* During the benchmarking process, led by the CFR, the hash outcomes of
all the ‘N’ FRs are compared to identify whether there are any erroneous
FRs. These erroneous FRs, whose hash outcomes do not match those of the
majority ones, are asked to rectify the content of their respective registries
so that there is no discrepancy in the one-way hash outcomes. If the CFR
finds a FR whose one-way hash outcome repeatedly does not match those
of the majority, then that fog node may be expelled from the FRC.

It is critical to note that both the checkpointing and the benchmarking process
is carried out in a manner that is visible to all members of the consortium. A
consortium-visible blackboard is used to systematically display all the activities of
the checkpointing process (such as a call for one-way hash functions and the sub-
mission of one-way hash functions) and also all the activities of the benchmarking
process (outcome of the comparison process, identification of non-compliant one-
way hash functions, rectification of the repositories of non-compliant nodes and
expulsion of repeating non-compliant nodes).

Ensuring concurrency between DFRs in the FRC: Each DFR stores infor-
mation on all the fog nodes in the network. The FRC achieves consistency and in-
tegrity of information by ensuring that the information is stored and synchronized
in all the DFRs. In this research, we use the push synchronization mechanism
to synchronize fog node data between the DFRs in the FRC. It is an event-based
process and is carried out when new information is added or when information is
updated. The redundant data in the DFRs helps detect any malicious node if data
is changed. Also, if one of the DFRs fails or dies, the data can be recovered from
another registry.

3.2. Fog Node Discovery Engine (FNDE)

The IDFD framework is encapsulated in the FNDE in the DFR. We pro-
pose the FNDE as the means for discovering fog nodes. The FNDE collects the
context-aware data of the fog consumer. In the scope of this research, the word
‘context’ refers to the identity and location of the fog consumer. In the future,
other research may choose to enrich context-aware discovery by adding additional
context-related parameters. The following steps demonstrate the methodological
working of IDFD based on the FRC module and FNDE:

1. Step 1: The fog node provider publishes the context fog node data to the
DFR when the fog node joins the network. The context fog node data in-
cludes the identity and the current physical location of the fog node which



includes fog node name, fog node ID, fog node location and fog node de-
scriptions. The location of the fog node in this research is static and must be
determined in its geographical range. Fog nodes may be located at various
locations such as shopping malls, schools, hospitals, libraries, train stations
etc.

. Step 2: Data is stored in the fog repository of the DFR.

. Step 3: Synchronize the fog node data between the DFRs in the FRC to
ensure the concurrency of the information between them. When the data
of the fog node is registered (new data) or modified (changed) in one of
the DFRs, the DFR will push this new data (or changed data) to the CFR
using the push synchronization mechanism. The data source which is the
DFR notifies the data sink which is the CFR of new data or changed data.
The push is an event-based process which starts when the new data arrive
or the data are changed. This event-based push mechanism ensures data
consistency between all DFRs.

. Step 4: The CFR broadcasts the new data or the changed data to all the other
DFRs. As a result of Step 4, all the DFRs have the same up-to-date data on
all fog nodes, which maintains the consistency of data and the concurrency
between all the DFRs in the FRC.

. Step 5: When the fog consumer wants to connect to the fog node, the fog
consumer will be prompted on their edge device (such as a mobile device)
about the availability of the nearest fog node. The discovery of the fog node
is based on the location-based context information of the fog consumer and
also the fog node provider. The fog consumer initiates the node discovery
process by providing their login credentials (usually comprising username
and password; however, other authentication mechanisms such as finger
printing may also be used). Developing reliable and foolproof authentica-
tion measures has been a longstanding research question. In this research,
we do not intend to address this question and focus on developing reliable
authentication mechanisms. On the other hand, we use proven authentica-
tion mechanisms such as the use of authentication service providers coupled
with a single sign-on. Fog consumers authenticate their identity using an ex-
ternal third-party authentication service (such as Google or Microsoft). On
successful authentication, they are redirected to the DFR in the consortium.
The external party communicates the authenticated identity to the central
fog node provider.

. Step 6:The FNDE autonomously collects the fog consumer’s physical loca-
tion (latitude and longitude values from the GPS receiver) to carry out fog
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node discovery.

7. Step 7: The FNDE applies the selected fog search algorithm, namely KNN
[17], k-d tree [18], or brute force [19]. These search algorithms are com-
monly and successfully used in nearest neighbor searching. In our research,
we implement four variants of the fog discovery algorithms (with each
variant comprising one algorithm). It intelligently matches the nearest fog
nodes on context parameters such as identity and location.

8. Step 8: The FNDE provides a list of the nearest fog nodes. The fog con-
sumer is presented with these available fog nodes and they can select one of
them.

Figure 2 illustrates the working of the proposed solution in details.
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Algorithm 1 summarizes the working of the the proposed solution — IDFD.
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Algorithm 1 IDFD

Require: FN_Identity, FN_Location, FC _Identity, FC_Location
Ensure: K fog nodes

1:
2:
3:

10:

Registering FN_Identity and FN_Location, in the DFR

Store FN_Identity FN_Location in the fog repository of the DFR

DFR pushes FN_Identity FN_Location to the CFR by using the push synchro-
nization mechanism

The CFR broadcasts the new or changed FN _Identity FN_Location to all the
other DFRs

The FRC manages the connection between the FC and one of DFRs based on
the FC’s geographical location.

The FC provides his/her FC_Identity login credentials (username and pass-
word)

If the authentication is successful, then

The FNDE in the DFR autonomously collects the FC_Location (latitude and
longitude values from the GPS receiver)

The FNDE finds the nearest fog nodes to the FC by using one of fog search
algorithms.

The FNDE provides a list of the K-nearest fog nodes

4. Performance evaluation

To find the optimal nearest fog nodes, the FRC should be implemented first.

We implemented the framework of FRC in a simulation environment using the
OMNET++ platform. OMNET++ is an open source simulation tool coded in the
C++ language [20]. We used OMNET++ version 5.6.2. OMNET++ contains three
components which are network, NED language, and configuration file. In the
network, we define four modules CFR, DFR, FN, and FC, as shown in Figure 3. .
The NED creates the network topology. The configuration file called omnetpp.ini
runs the network simulation.
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Figure 3: Simulation modules

Firstly, we build a wireless network and build four modules for the FRC. The
first two modules are the CFR and DFR which contain the fog repository that has
information on all the registered fog nodes which are pushed from DFR. The fog
repository schema of CFR and DFR is detailed in Table 1.

Table 1: The schema of the fog repository in CFR and DFR.

FN_ID FN_name LATITUDE LONGITUDE

1000 Fort Hill Wharf DARWIN -12.471947 130.845073

10000 Cnr Castlereagh & Lethbri PENRITH -33.756158 150.698182

10000002 | Optus 50m Lattice Tower 71 Eastward | -28.77766 114.63426
Road Utakarra

The third module is the fog node module which is represented with four pa-
rameters, namely identification, name and physical location (latitude, longitude).
The network is designed with up to 2000 fog nodes with their physical locations.
The simulated latitude and longitude of fog nodes are edge servers’ locations from
the EUA dataset [21]. Table 2 provides a snapshot of the fog nodes dataset. The
fourth module is the fog consumer module which represents each fog consumer in
the simulated network with fog consumer ID, fog consumer IP, and physical loca-
tion (latitude, longitude). We use the end user dataset from the EUA dataset [21]
to represent fog consumers in the network. Table 3 shows a snapshot of the fog
consumer dataset. These modules communicate via channels to send and receive
messages. Secondly, the FNDE is implemented and written in the C++ language
in the DFR module. We implemented the FNDE with four different nearest neigh-
bors search algorithms: KNN with Euclidean distance [17], KNN with Manhattan
distance [17], k-d tree [18], and the brute force algorithm with haversine distance
[19]. Figure 4 shows the simulated network with four modules.
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Table 2: A snapshot of the fog nodes dataset
SITE_ID Name LATITUDE LONGITUDE
1000 Fort Hill Wharf DARWIN -12.471947 130.845073
10000 Cnr Castlereagh and Lethbri PENRITH | -33.756158 150.698182
10000002 | Optus 50m Lattice Tower 71 Eastward | -28.77766 114.63426
Road Utakarra
10000003 | 6 Knuckey Street Darwin -12.464597 130.840708
10000004 | Cape Wickham Links Clubhouse KING | -39.5964 143.9339
ISLAND
Table 3: A snapshot of the fog consumer dataset
FC_ID P LATITUDE LONGITUDE
FC1 1.120.2.1 -37.8833 145.3333
FC2 1.120.0.1 -30.5083 151.6712
FC3 1.120.163.1 -21.0405 149.1849
FC4 1.122.32.1 -31.9344 115.8716
FC5 1.123.11.1 -34.8333 138.6333
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We conducted several experiments on the simulated network with a differ-
ent number of fog nodes and different fog consumers. The experiments include
finding the 10-nearest fog nodes for five different fog consumers.We selected five
different fog consumers as detailed in Table 3. For each fog consumer, we find
the 10-nearest fog nodes using the four proposed methods with a different number
of fog nodes. We used 5 iterations. The first iteration has 100 fog nodes. The
second iteration has 500 fog nodes. The third iteration has 1000 fog nodes. The
fourth iteration has 1500 fog nodes. The fifth iteration has 2000 fog nodes. Then
for each fog consumer, the 10-nearest fog nodes will be obtained using:

1. KNN with Euclidean distance

2. KNN with Manhattan distance

3. K-d tree

4. Brute force with haversine distance

Consequently, the first iteration includes 100 fog nodes and 1 fog registry. The
results of the four methods to find the 10-nearest fog nodes for each fog consumer
are presented in Table 4:
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When a fog node is added to the network, it communicates with the nearest
DFR and sends a cMessage which includes the fog node’s context date. Then,
when the fog consumer establishes the session to discover the nearest fog nodes,
the latitude and longitude of the fog consumer’s current location is sent to the
DFR as a cMessage. The FNDE in the DFR will find the nearest fog nodes using
the search algorithm and then sends the list to the fog consumer. We undertook
the same processing for all iterations of 100, 500, 1000, 1500, and 2000 fog nodes
for each fog consumer. Figures 5, 6, 7, 8, and 9 show the simulation of 100, 500,
1000, 1500, 2000 fog nodes respectively.
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Figure 5: Simulating 100 fog nodes using OMNET++
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Figure 6: Simulating 500 fog nodes using OMNET++
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Figure 7: Simulating 1000 fog nodes using OMNET++
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Figure 9: Simulating 2000 fog services using OMNET++

We evaluated the results of the nearest neighbours’ fog nodes by comparing
the four methods. We validated the results by calculating the evaluation metrices
of the four methods using well-known and accepted metrices, namely precision,
recall, F1 score and accuracy to obtain the optimal method of finding the accurate
nearest neighbours fog nodes.
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4.1. The validation process is as follows:

1.

2.

3.

Step 1: Initialization process: The initialization process comprises the fol-
lowing steps:

(a) Specify the number of fog nodes, starting with 100 fog nodes. The
number of fog nodes in each iteration is increased by 500.

(b) Determine the number of FRs, starting with 10 registries.

(c) Determine the number of iterations = n times. The value of the param-
eters for (b) and (c) vary from one iteration to the next. The number
of iterations = 5 and the number of fog nodes in each iteration is in-
creased by 500.

* First iteration: fog nodes =100

* Second iteration: fog nodes =500

¢ Third iteration: fog nodes =1000

* Fourth iteration: fog nodes =1500

* Fifth iteration: fog nodes =2000
Step 2: Implement the four nearest neighbor algorithms (KNNs, K-d tree,
brute force) for fog node discovery in the DFR module.
Step 3: The system administrator selects a random fog consumer A and asks
it to carry out context-aware fog node discovery. The system administrator
knows the closest context-aware fog nodes for the selected fog consumer A;
however, this information is unknown to fog consumer A.

. Step 4: Use well-known and accepted metrices such as precision, recall and

F1 score which are defined as:

.. TP
Precision —TTP 7P
Recall = TP+FN

__ 2x(RecallxPrecision)
F1Score = (Recall+Precision)
Then, we compute and compare the accuracy of the four methods.

_ TP+TN .
Accuracy = gprpnrrvrp Where a:

* True Positive (TP): means the discovered fog node is relevant to the
actual output.

* True Negative (TN): means the undiscovered fog node is not relevant
to the actual output.

* False Positive (FP): means the discovered fog node is irrelevant to the
actual output.
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* False Negative (FN): means the undiscovered fog node is relevant to
the actual output.

5. Step 5: Repeat steps 3 and 4 n times.
Figures 10, 11, 12, 13, and 14 illustrate the results of the four methods with a

varying number of fog nodes.

100 Fog Nodes - K=10
iR

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

]

Precision Recall F1 Score Accuracy

mKNN with Euclidean ~ m KNN with Manhattan ~ mKDTree  w Brute Force with Haversine

Figure 10: Evaluation results of the network with 100 fog nodes

500 Fog Nodes - K=10
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1
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0.4
0.3
0.2
0.1

0

Precision Recall F1 Score Accuracy

m KNN with Euclidean m KNN with Manhattan m KDTree m Brute Force with Haversine

Figure 11: Evaluation results of the network with 500 fog nodes
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1000 Fog Nodes - K=10
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Figure 12: Evaluation results of the network with 1000 fog nodes

1500 Fog Nodes - K=10
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Figure 13: Evaluation results of the network with 1500 fog nodes
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2000 Fog Nodes - K=10
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Figure 14: Evaluation results of the network with 2000 fog nodes

The overall accuracy of the four methods is shown in Figure 15.

Overall Accuracy

1.1

W KNN + Euclidean
0.

m KNN + Manhattan
0.7

mKd tree
0.5

m Brute Force with
03 Haversine

KNN + KNN + K-d tree Brute Force
Euclidean Manhattan with
Haversine

Figure 15: Average evaluation results

5. Discussion

Figures 10 - 15 show that the brute force algorithm with haversine distance
has the highest accuracy of all the methods, outperforming K-d tree and KNN and
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also obtains a value of 1 for precision, recall, and F1 score. However, KNN and
K-d tree have equal precision and recall values and their accuracy is also close
to 1 which means these two approaches give optimal results as well because both
methods use Euclidean distance to find the nearest neighbours. As can be seen
from Figures 10 - 15, the brute force with haversine distance outperforms KNN
and K-d tree, although the results of all methods are very similar.

A key point of consideration in the selection of an optimal fog search algo-
rithm is the complexity of the algorithm itself. We use algorithm complexity as
a key input to its selection. The DFR will carry out node discovery on multiple
occasions for consumers. Even a very minor incremental reduction in the com-
plexity of the search algorithm makes a huge difference to the load on the fog node
server. The complexity of brute force with haversine distance is O(n"). However,
using this linear search method is not suitable for the approach proposed in this
paper because when the data increases (number of fog nodes), the complexity of
finding the nearest locations also increases. The complexity of the KNN method is
O(n). The downsides are that KNN is very sensitive to the curse of dimensionality
and expensive to compute with a O(n) calculation. In contrast, the complexity of
the K-d tree method is O(long(n)). K-d tree is guaranteed log2 n depth where n is
the number of points in the set.

The execution time of the three methods is calculated to evaluate their com-
plexity. We computed the execution time of the three methods with a different
number of fog nodes (100, 500, 1000, 1500, and 2000). We ran the simulation
five times then the average of the execution times is obtained. Figures 16 - 20
show the average execution times of the three proposed methods with a different
number of fog nodes.
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Average Execution Time of 100 Fog Nodes
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Figure 16: The average execution times of the three methods when fog nodes = 100
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Figure 17: The average execution times of the three methods when fog nodes = 500
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Average Execution Time of 1000 Fog Nodes
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Figure 18: The average execution times of the three methods when fog nodes = 1000
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Figure 19: The average execution times of the three methods when fog nodes = 1500
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Average Execution Time of 2000 Fog Nodes
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Figure 20: The average execution times of the three methods when fog nodes = 2000

The average of the overall execution times is shown in Figure 21.

Overall Average of Execution Times

= = [N
o (5] o
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KNN with Euclidean kdtree Brute Force algorithm
Distance based on Haversine
Distance

Figure 21: The overall average of the execution times of the three methods

Figures 16 - 21 show that the execution time of K-d tree is less than KNN and
brute force with haversine distance. When the number of fog nodes is 100, the
execution time of K-d tree is less than 1 millisecond, but the execution time of
KNN is more than 3 milliseconds and brute force with haversine distance is more
than 6 milliseconds. So, the K-d tree method takes less time to find the nearest
fog services than KNN and brute force with haversine distance. Furthermore,
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the execution time of the three methods increases when the number of fog nodes
increases. For example, when the number of fog nodes is 100, the execution time
of K-d tree is about 0.92 milliseconds. However, when the number of fog nodes is
1000, the execution time of K-d tree is about 11.8 milliseconds. So, to select the
optimal method to use in the FNDE, we took into consideration the incremental
reduction in the execution time of the method. In the approach proposed in this
paper, a very minor incremental reduction in the execution time of the method
makes a huge difference to the load on the fog discovery module at FNDE. For
this reason, the K-d tree method performs faster and needs less time to find the
nearest fog nodes. Based on the experiment results, it is clear that the K-d tree is
very efficient in terms of the proposed approach. Moreover, the K-d tree in FNDE
will discover the nearest fog nodes very efficiently and quickly.

6. Conclusions and future work

Fog computing is a promising solution for critical cloud issues such as latency,
network bandwidth, storage, etc. Discovering optimal fog nodes helps fog con-
sumers process their services efficiently and quickly. In this paper, we proposed
an intelligent mechanism for fog node discovery based on the context-aware data
of fog nodes and fog consumers. We proposed IDFD to enable fog consumers to
discover appropriate fog nodes in a context-aware manner. The IDFD contains
the fog registries consortium (FRC) that has distributed fog registries. The work-
ing of the framework is encapsulated in the fog node discovery engine (FNDE)
in the distributed fog registry. FNDE must use the optimal fog search algorithm
to reduce time and increase accuracy. Four fog search algorithms, namely KNN
with Euclidean distance, KNN with Manhattan distance, K-d tree, and brute force
with haversine distance were implemented and evaluated in the FNDE using the
OMENT++ platform. Several simulation experiments were conducted and the re-
sults show that the K-d tree search algorithm improves the overall system perfor-
mance. The K-d tree algorithm achieves high accuracy result of 95% and requires
less time to find the nearest fog nodes than the KNN methods and brute force
with haversine distance. The thrust of this research is to build an intelligent single
criterion approach for computing the ‘proximity’ between a fog node consumer
and provider. Our approach is agnostic of the parameter used to quantify prox-
imity. In our future work, we will propose intelligent multi-criteria-driven node
discovery approaches based on diverse parameters that manifest proximity, such
as bandwidth, physical distance, latency etc.
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