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a b s t r a c t 

Contact tracing has been proven an essential practice during pandemic outbreaks and is a 

critical non-pharmaceutical intervention to reduce mortality rates. While traditional con- 

tact tracing approaches are gradually being replaced by peer-to-peer smartphone-based 

systems, the new applications tend to ignore the Internet-of-Things (IoT) ecosystem that is 

steadily growing in smart city environments. This work presents a contact tracing frame- 

work that logs smart space users’ co-existence using IoT devices as reference anchors. The 

design is non-intrusive as it relies on passive wireless interactions between each user’s 

carried equipment (e.g., smartphone, wearable, proximity card) with an IoT device by uti- 

lizing received signal strength indicators (RSSI). The proposed framework can log the iden- 

tities for the interacting pair, their estimated distance, and the overlapping time duration. 

Also, we propose a machine learning-based infection risk classification method to char- 

acterize each interaction that relies on RSSI-based attributes and contact details. Finally, 

the proposed contact tracing framework’s performance is evaluated through a real-world 

case study of actual wireless interactions between users and IoT devices through Bluetooth 

Low Energy advertising. The results demonstrate the system’s capability to accurately cap- 

ture contact between mobile users and assess their infection risk provided adequate model 

training over time. 

© 2021 Elsevier B.V. All rights reserved. 

 

1. Introduction 

Recently, smartphone-based contact tracing has emerged as a practical way to trace someones social exposure with many 

public-safety-related applications including infectious disease tracking [1] . Such systems can monitor peer-to-peer interac- 

tions between citizens and retroactively provide alerts to users that were in contact with someone that has been diagnosed 

or tested positive for an infectious disease. A case in point for the importance of such systems is the recent COVID-19 pan-

demic where many governments have been looking for effective ways to relax restrictions, resume industry operations and 

bring back daily routines without risking dangerous outbreaks [2] . Therefore, effective contact tracing can be added to the 

relatively short list of outbreak-preventive measures that also includes regular hand washing, face covering, and temperature 
checks. 
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Traditionally, contact tracing is a manual process that requires the collaboration of multiple authorized entities and per- 

sonnel resulting in a time-consuming operation [3] . Recently, multiple parties have been developing contact tracing applica- 

tions that rely on peer-to-peer (P2P) architectures that track interactions between individuals through their smartphones or 

other smart wearables (e.g., smartwatches [4] ). The majority of those applications detect either the location or the proxim- 

ity of two users, and rely mostly on well-known positioning tools that include GPS [5] and more prominently the Bluetooth

Low Energy protocol [4,6–9] . Specifically, the list of contact tracing apps that use BLE as their main technology include

the BlueTrace protocol -the basis behind Singapore’s TraceTogether app [10] -, Apple/Google’s decentralized CT protocol [9] , 

the Pan-European Privacy-Preserving Proximity Tracing (PEEP-PT) [6] , Privacy-Preserving Automated Contact Tracing (PACT) 

[11] among others. The logic behind such applications is simple: User devices’ transmit and detect BLE advertisement pack- 

ets, and utilize them to exchange the users’ IDs and calculate their proximity. These encounters are logged either on the

device or on a remote central authority to be used in case one of the two parties tests positive (in the case of infectious

diseases) or is picked out for any reason. Then, using history logs other contacts of that person will be identified and alerted

either through the device itself or by other means. 

While the aforementioned approaches are promising in terms of performance, the overall designs tend to ignore the im- 

pending fact that a massive Internet of Things’ infrastructure is actually embedded within urban areas and smart cities. Such 

Internet of Things (IoT) infrastructure supports city-wide communications [12–14] and consists of computationally powerful 

devices including Electric Vehicles, smart locks, cameras, drones, various sensors, smart furniture, and WiFi hotspots [15–18] . 

Utilizing such networks of interconnected and computationally powerful devices can lead to the development of alternative 

contact tracing applications or (most probably) reinforce the operation of existing P2P contact tracing and significantly im- 

prove their performance and accuracy. 

In this work, we specifically address this gap by presenting an IoT-assisted correlative contact tracing framework that 

relies on passive interactions between mobile users and static IoT devices that are already part of a wider smart city ecosys-

tem. Specifically, we: 

• Design a distributed framework that enables IoT devices to harvest passive advertising packets and act as contact tracing 

anchors to detect and log interactions between two smart space occupants. 

• Deploy a centralized solution able to combine information from multiple IoT devices concurrently towards identifying 

more accurate contact tracing information including duration of interaction, and distance. 

• Utilize machine learning methods to accurately classify the infection risk between two users given specific attributes of 

their interaction. 

• Evaluate our design on a real-world case study where 46 participants interact with an IoT infrastructure of 32 devices as

part of their daily routine using the Bluetooth Low Energy protocol. 

The rest of this paper is organized as follows: Section 2 presents related work while Section 3 presents the overall

architecture of the IoT-based contact tracing framework. Section 4 outlines the infection risk classification function along 

with the utilized machine learning algorithms. Finally, Section 5 presents the systems performance evaluation through a 

real-world case study, and Section 6 concludes this work. 

2. Related Work 

Due to the 2019/2020 pandemic [2] , a lot of contact tracing systems leveraging BLE technology have been studied, mainly

due to its broad availability in wearable devices and its low consumption profile [19–21] . The work in [22] designed an

algorithm estimating the distance between users in a Personal Area Network (PAN) through RSSI. Based on the estimation 

distribution and predefined zones (e.g., safe, moderate, and high-risk range), the system sends the appropriate alert to the 

users depending on their proximity. 

The authors in [8] proposed a BLE based contact tracing method where each user estimates his distance to nearby users

using RSS measurements on their smartphones. The proximity measured by the users’ smartphones is evaluated based on 

low and high-risk contact using five different machine learning classifiers. To protect users’ sensitive information, the work 

uses non-connectable BLE transmission to disallow access to other users’ smartphones. To harden the privacy, they propose 

a signature protocol where the BLE packet is encrypted by 31 bytes of information obtained from the nearby devices. This

signature will be unique and is unlikely to get duplicated on other occasions. However, this signature requires computation 

to be generated, preventing scalability, and potentially imposing constraints on network traffic. The work in [4] leverages 

smartwatches to measure the proximity between users for contact tracing purposes. The proposed application also leverages 

BLE technology to make contact tracing more convenient for users that do not always carry their smartphones. 

The authors in [23] discuss the impact of enhanced contact tracing using sensing technologies. The work proposes an 

IoT-based contact tracing architecture consisting of three components called user endpoint (UE), facility endpoint (FE), and 

object endpoint (OE) that measure the infection risk over time. The work in [24] also focuses on an IoT-enabled architecture

for contact tracing and focuses on privacy and security issues. Their proposed generic architecture delegates technical con- 

tact tracing tasks as well as privacy/security tasks to the deployed IoT devices and health authorities towards avoiding the 

computational and power limitations of mobile devices carried by users in public places. 

Finally, we have recently observed an explosion of the use of blockchain technologies in smart city applications that 

span across multiple fields from local energy markets [25] , and smart grid infrastructure security [26] to e-voting systems
2 
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Fig. 1. Framework Architecture. 

 

 

 

 

 

 

 

 

 

[27] . Thus, multiple works discuss and investigate the use of blockchain technology for secure data sharing in hospitals [28] ,

and even for COVID-19 detection using CT Imaging [29] . The work in [30] discusses various COVID-19 pandemic challenges

and investigates the applicability of blockchain to face them along with the expected performance. Similarly, the authors in 

[31] investigate practical blockchain applications that attempt to mitigate COVID-19 challenges. The work in [32] presents 

BeepTrace which is a privacy-preserving blockchain-enabled contact tracing framework. The focus is on reinforcing privacy 

and security and allows for the decentralization of user identification and location-based information. Finally, the authors in 

[33] propose a contact tracing framework that uses blockchain technology to decouple any connection between the owner- 

ship of on-chain location information and user identity. The proposed framework is evaluated using Bluetooth 5.0 with the 

focus being on storage/CPU usage, observed delay, energy consumption, and mainly security vulnerabilities. 

3. IoT-enabled Contact Tracing Framework 

3.1. Architecture 

The proposed system utilizes existing IoT devices with multiple wireless interfaces as permanent wireless packet scan- 

ners. We will denote as I the set of | N| IoT devices randomly placed in our smart setting (i.e., following the random place-

ment of IoT devices such as cameras, smart locks, sensors, etc.). We will also denote as U the set of | M| mobile or static

users that are frequent occupants on the smart space and carry their respective personal devices. Our design accounts for 

any kind of personal smart devices, such as smartphone, smartwatch, or other wearables, as well as any device with con-

nectivity capabilities handed to the users by the facility/city administrators (e.g., smart id cards). Such devices can emit 

non-intrusive advertising packets by any of their communication interfaces, with the most common being Bluetooth Low 

Energy (BLE) advertisement packets and WiFi probe request frames. Our design utilizes such passive user-IoT device inter- 

actions to calculate the proximity of a user to an IoT device and document their interaction with other users through the

common edge device with which they are both associated (common anchor). Each personal device can be anonymously 

linked to its owner from any wireless interface that might utilize for the contact tracing capability. 

Each IoT device reports all the recorded interactions between users to a centralized processing unit (e.g., a local server or

cloud environment [34] ) that combines information from all sightings and produces a final contact trace between every pair 

of users. For each pair, our system can calculate the duration of the contact, as well as produce an estimation of the distance

between the two users during the contact. Based on the information above, our system outputs an infection risk indicator 

that will be the outcome of infection probability modeling (performed by a specialist) and machine learning models as 

described in this work. Fig. 1 shows the overall architecture of the proposed framework, while Table 1 summarizes all the

different tuning parameters of the proposed system as found in this section. 
3 
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Table 1 

Key Notations. 

Notation Definition 

I = { i 0 , . . . , i n , . . . , i | N| } Set of IoT devices 

U = { u 0 , . . . , u m , . . . , u | M| } Set of users 

T a User Device Advertising interval 

T o Update interval of IoT device 

T CP > T o Centralized processing interval 

d i j Estimated distance between user i and user j 

t i j Overlapping time duration for user i and user j 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. User-IoT device Distance Estimation using RSSI 

Given the constant stream of advertising packets from the users to the IoT devices, our framework’s first step is to

estimate the user-IoT device distance at any time. This process takes place locally within each IoT device. In what follows,

we explain the required data processing steps to estimate the user-device distance. 

First, we assume that every personal user device transmits advertising packets every T a seconds (advertising interval). 

These packets are picked up by multiple IoT devices, and their Received Signal Strength Indicators (RSSI) are used to calculate

the user-IoT device distance locally within each device. To do so, the following process takes place periodically every T o 
seconds across all available IoT devices. First, we perform Exponential Smoothing [35] to smooth the RSSI values and remove

high bandwidth noise as follows: 

ˆ rssi t+1 | t = αrssi t + (1 − α) ˆ rssi t | t −1 (1) 

where ˆ rssi t+1 | t is the estimated RSSI at time t + 1 is calculated using the weighted average of the most recent rssi t and the

previous estimate ˆ rssi t | t −1 . Parameter α controls the weight of the past and recent observations over time (e.g. it associates 

smaller weights to the older data and greater weights to the recent data). 

Next, we apply Kalman filter to provide a better estimation of RSSI values. It consists of two parts: 1) Measurement

update (Bayes rule product) and 2) Prediction (total probability convolution). In the update step, two Gaussian distributions 

used are called prior and measurement. The prior distribution has a mean of m 1 and a variance of v 1 2 , and the measurement

distribution has a mean of m 2 and a variance of v 2 2 . We multiply two prior and measurement distributions of RSSI values

and obtain the new RSSI measurement using m 

′ and v 2 ′ . The update equations are as follows: 

m 

′ = 

v 2 2 m 1 + v 1 2 m 2 

v 2 2 + v 1 2 
v 2 ′ = 

1 
1 

v 2 2 
+ 1 

v 1 2 

(2) 

In the prediction step, we add up the old mean m 1 and the motion x, and for the variance, we add up the old variance

v 1 2 and v 2 2 . The prediction equations are as follows: x is denoted as motion or estimated RSSI (e.g., if the user moves over

to another place with a different received RSSI). 

m 

′ ← m 1 + x 

v 2 ′ ← v 1 2 + v 2 2 
(3) 

Fig. 2 is a visualization of above equations and illustrates the RSSI estimation using two Gaussian distributions. Thus, in 

this step, we forecast the users’ RSSI to the nearby devices. 

Finally, the Kalman filter outputs the RSSI estimate values for the specific user. Each RSSI estimation is converted to 

distance. To do so, we use the following path loss model [37,38] to calculate the corresponding distance value d: 

p d = p d0 − 10 β log ( 
d 

d 0 
) (4) 

Where p d is the observed RSSI value (dBm) d meters away from the IoT device and p d0 is the RSSI value (dBm) observed at

a reference distance d 0 . 

3.3. IoT Device Scanning 

Every IoT device gathers distance readings from each user in its proximity within the T o interval. Next, each IoT device

locally calculates the overlap time between each pair of users and logs the minimum and maximum distance observed for 

each of them during T o . This information is sent at the end of every T o period to the centralized unit (see Fig. 1 ). Specifically,

each IoT device reports: 

• ID A : ID of the pair’s first user 

• ID B : ID of the pair’s second user 

• t ov erlap : Duration of the pair’s encounter 
4 
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Fig. 2. RSSI Estimation Using Kalman Filter [36] . 

 

 

 

 

 

 

 

 

• min A : Minimum distance between user A and IoT device within T o 
• max A : Maximum distance between user A and IoT device within T o 
• min B : Minimum distance between user B and IoT device within T o 
• max B : Maximum distance between user B and IoT device within T o 
• RSSI A range : Range of RSSI readings for user A 

• RSSI B range : Range of RSSI readings for user B 

3.4. Centralized Processing 

3.4.1. Combining observations from multiple IoT devices for the same pair 

Each user pair’s information (overlap time, and distances to the device) may have been collected by multiple nearby IoT 

devices. Thus, each device will generate alternative values for the same user pair describing the same time interval ( T o ).

This information is sent to a centralized unit where our framework combines the given distributed information to produce 

a holistic view for each pair. This process in the central unit happens also during specific time intervals T CP where T CP > T o . 

Assuming that one or multiple devices have reported that a specific pair of users A and B are in close proximity, the

centralized unit logs the IDs of the interacting users, and their combined duration of interaction: 

t AB 
ov erlap = max ( 1 t AB 

ov erlap 
2 t AB 

ov erlap , . . . , 
n t AB 

ov erlap ) , with n < = | N| (5) 

In addition, for each user m, we calculate the average RSSI range from all IoT devices: 

RSSI m 

range = 

∑ n 
i =1 

i RSSI m 

range 

n 

, with n < = | N| (6) 

Regarding the estimated distance between users, we first estimate the distance of each user m from an IoT device n as

r m 

n = 

max m + min m 
2 . Next, we identify three possible scenarios depending on the number of IoT devices that intercepted the pair

during the T CP interval: 

1) A single IoT device n has identified the AB user pair : In this case we estimate their distance d AB as: 

d AB = | r A n − r B n | (7) 

2) Two IoT devices n 1 and n 2 have identified the AB user pair : In this case we rely on the IoT device that was closer to the 

interaction (e.g., n 1 in case min (min 
n 1 
A 

, min 

n 2 
A 

, min 

n 1 
B 

, min 

n 2 
A 

) = min 

n 1 
A 

or min 
n 1 
B 

) to estimate their distance d AB as in Eq. 7 . 

3) Three or more IoT devices have identified the AB user pair : In this case, we rely on the known locations of each IoT de- 

vice (x n , y n ) and calculate the exact location of each user m (x m 

, y m 

) using trilateration [39,40] . If more than three IoT

devices have intercepted the pair, we use the measurements from the three devices that present the lower RSSI readings. 

Fig. 3 shows the trilateration process. A user’s smart device has been identified by three IoT devices. The distance be-

tween the smart device and each IoT device represents the radius of a circle showing all possible locations of the mobile

smart device. The user m (x m 

, y m 

) coordinates are obtained using equations for the three circles in the two-dimensional

Cartesian coordinate system and by solving the following equations: 

(−2 x 1 + 2 x 2 ) x + (−2 y 1 + 2 y 2 ) y = r 1 
2 − r 2 

2 − x 1 
2 + x 2 

2 − y 1 
2 + y 2 

2 

(−2 x 2 + 2 x 3 ) x + (−2 y 2 + 2 y 3 ) y = r 2 
2 − r 3 

2 − x 2 
2 + x 3 

2 − y 2 
2 + y 3 

2 (8) 
5 
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Fig. 3. Trilateration. 

 

 

 

 

 

 

 

 

 

 

Next, given the estimated locations of the two users A (x A , y A ) and B (x B , y B ) their distance is given by: 

d AB = 

√ 

( x A − x B ) 
2 + ( y A − y B ) 

2 (9) 

Finally, the framework outputs the combined interaction information for each pair of users A, and B within the interval 

T CP : 

• ID A : ID of the pair’s first user 

• ID B : ID of the pair’s second user 

• t AB 
ov erlap 

: Overlapping time of pair 

• d AB : The estimated distance between the two users 

• RSSI A range : Average RSSI range for user A 

• RSSI B range : Average RSSI range for user B 

4. Infection Risk Assessment using Machine Learning 

4.1. Risk Classification 

Next, our framework estimates the infection risk following the interaction of two users. To do so, we consider the RSSI

interactions between the user pair and the IoT devices, and the users’ estimated overlapping time to identify this interaction 

between users as low, medium, or high risk. We adopt a similar risk classification logic, as presented in [8] . We categorize

the risk prediction function as a hypothesis test. We suppose x as a feature vector and R as a risk prediction function

R : (x ) → { 1 , 2 , 3 } , where 1 shows low, 2 medium, and 3 high risk. Then we have the following three hypotheses, as shown

below: 

H 0 = R (x ) = 1 

H 1 = R (x ) = 2 

H 2 = R (x ) = 3 

(10) 

where H 0 represents a low risk, H 1 the average risk, and H 2 the high risk. Under this scenario, a false positive is an error in

the classification in which a hypothesis incorrectly shows the interaction as low risk. However, this classification is high-risk, 

while in a false negative error, the hypothesis incorrectly shows the high-risk user to be low-risk. 

The exact function that accurately translates the interaction between two parties to infection risk is a variable that relates 

to the exact nature of the infection, and specific analysis made by the field specialists [41–43] . Therefore, the proposed

framework can be retrofit to any past or future pandemic cases. We will also utilize a supervised machine-learning approach 

that requires a set of labeled interactions before being able to classify the interaction risk successfully. This labeling can be

initially made by the specific infection risk function. However, after this system is available online and more and more 

interaction cases are identified, they can be labeled accurately by their outcome. For instance, if a user has been identified

as infectious, his contacts will be identified. Then, suspicious interactions will be labeled as high risk. 

Since, neither a specific risk function or after-the-fact data are currently available to us, we define an alternative labeling 

procedure, to showcase the applicability of this method. Our manual label classification considers the interaction distance 

and time overlap duration between any two individuals. We consider specific conditions on d i j and t i j for calculating the

labels as shown below and in Fig. 4 : 

• High-risk = 2, { d i j < 2 m and t i j ≥ 60 s } or { 2 m ≤ d i j ≤ 6 m and t i j ≥ 3600 s } or { 6 m ≤ d i j ≤ 10 m and t i j ≥ 3600 s

} 
6 
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Fig. 4. Label-risk function. 

 

 

 

 

 

• Medium-risk = 1, { d i j ≤ 2 m and t i j < 60 s } or { 2 m ≤ d i j ≤6 m and t i j < 3600 s } 
• Low-risk = 0, { 6 m ≤ d i j ≤ 10 m and t i j < 3600 s } 

4.2. Classification Algorithms 

Our machine-learning approach utilizes five input features to classify a user pair interaction at a specific risk level. These 

features are the minimum and maximum RSSI values observed by each user, their estimated position user, the average RSSI 

observed for each user, and their respective average RSSI ranges. These features provide information on the environmental 

noise conditions that accompanied each interaction. In addition, we compared different classification methods. We applied 

multi-class classification (One-vs-all) in all models where we have three classes of labels equaling high risk, medium risk, 

and low risk. In the following, we will briefly describe these classification models: 

1. Decision Tree(DR): Decision Tree is a supervised and nonlinear machine-learning model. The DR uses a training set and 

splits the feature input into smaller subsets and at the same time creates a related tree. The Gini impurity measurement

is used in DR to decide the optimal split for the nodes. The formula for calculating the Gini impurity of a feature is as

follows: 

G = 

∑ 

i 

P (i ) ∗ (1 − P (i )) (11) 

where P(i) is the likelihood of a certain classification i, for the training data set [44] . 

2. Extreme Gradient Boosting (XGBoost): XGboost is an excellent technique to improve the performance of the model by 

reducing overfitting [45] . This model is high-speed and scalable. The objective function of XGBoost is illustrated as below: 

N(θ ) = L (θ ) + �(θ ) 

�(θ ) = γ T + 

1 
2 
λ‖ w ‖ 

2 (12) 

where γ controls the learning rate and set to a value greater than 0 and less than 1, w is the weight of the leaves, and

�(θ ) is a parameter which controls the regularization term. T is the number of leaves in a tree and γ T prevents over-

fitting. L (θ ) calculates the loss function and fits the data for our model. The equation for calculating L (θ ) is illustrated
7 
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Table 2 

Case-Study Parameters. 

Parameter Value 

Number of IoT devices ( N) 32 

Number of Beacons/Participants ( M) 46 

Advertising interval (T a ) 1 s 

Update interval of IoT device (T o ) 10, 15, 20 s 

Centralized processing interval (T CP ) 40 s, 1 min, 2 min 

Smoothing parameter (α) 0.8 

Measurement uncertainty (v 2 ) 4 

Motion uncertainty (constant) 2 

Initial estimate (m 1 ) 0 

Initial uncertainty (v 1 ) 10 , 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

as follows: 

L (θ ) ≈
n ∑ 

i =1 

l(y i , ̂  y (t−1) 
i 

) + g i f t (x i ) + 

1 

2 

h i f 
2 
t (x i ) + �(θ ) . (13)

where l is loss function, f t is the t th tree output. g i and h i are the first and second derivatives of the loss function as

given below: 

g i = ∂ ˆ y (t−1) l(y i , ̂  y (t−1) ) 

h i = ∂ 2 
ˆ y (t−1) 

l(y i , ̂  y (t−1) ) 
(14) 

The Eq. (14) shows y i and ˆ y i as target label and predicted label accordingly. From Eq. (12) we find the best splitting point

for each tree and minimize the objective function and the goal is to create the tree and minimize the target label. 

3. Bootstrap aggregating (Bagging): Bagging builds the learning algorithm on a different subset from training data. The 

algorithm collects the groups of data and trains each bag separately. The new predictions are built by averaging the 

predictions together from the base learners. This is shown in Eq. (15) where ˆ g bag is the bagged prediction, x is the record

for which we need to produce a prediction, and ˆ g 1 (x ) + ̂  g 2 (x ) + . . . + ˆ g h (x ) are the predictions from the particular base

learners. 

ˆ g bag = 

ˆ g 1 (x ) + 

ˆ g 2 (x ) + . . . + 

ˆ g h (x ) (15) 

The aggregation method reduces the variance of the individual base learner. 

4. K-nearest neighbors (KNN): KNN is a non-parametric supervised learning method based on distance rule-based tech- 

niques. KNN tries to classify a data point to a given category with the training set [46] . KNN uses k samples of group

data and finds the distances between a query and all the data’s training information. By choosing a specific number 

for K, the algorithm uses a majority vote for finding the most frequent label. Therefore, K is the tuning parameter that

affects the performance of KNN. 

5. Experimental Evaluation 

The proposed framework is evaluated using the Bluetooth Low Energy protocol as the main means of passive packet 

advertising, and our real-world trial-generated dataset of user-IoT device interactions, the BLEBeacon dataset [47,48] . 

5.1. Case Study 

Our case study environment is comprised of multiple BLE advertising devices (held by 46 smart space occupants) and 

a sensing infrastructure of IoT-like devices [48] , which in this case are 32 Raspberry Pis (RPi). Note that the locations of

the IoT devices were dictated by the need for outlets, and therefore are distributed in a non-uniform fashion in the physical

space. This setting emulates a real-world installation of multi-purpose IoT devices very closely. The trial participants (college 

students and faculty following their usual routines in the indoor environment of a university building) carry BLE beacons 

(Gimbal Series 10) that produce advertising packets with a transmission rate of 1 Hz ( T a = 1 second) . The generated packets

are collected by the RPis, thus emulating interactions between mobile users following their routine (for one month) and IoT 

devices. Fig. 5 illustrates the RPis’ exact locations and Table 2 shows the exact parameter values that were used to evaluate

our framework in this real-world scenario. 

5.2. User-Device Distance Estimation Accuracy 

First, we evaluate the framework’s capability to estimate the distance between the user and the IoT device using BLE 

advertising packets. To do so, we have conducted the following experiment. A user equipped with a BLE beacon was kept

static at different distances from an IoT device with the same hardware specifications used in the real-world case study. 
8 
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Fig. 5. Location of IoT Devices - Smart Space Topology [48] . 

Table 3 

Relative distance error vs. real distance. 

Relative Error (%) 

Real Distance (m) 8.22 9.14 9.14 11.27 11.58 

Exponential with Kalman 22% 16% 31% 23% 48% 

Simple Moving Average 25% 16% 29% 26% 47% 

Simple Exponential Filter 67% 36% 212% 49% 138% 

Raw Data 121% 86% 105% 49% 88% 

 

 

The device collected packets for approximately 15 minute periods for each distance and logged the RSSI values from each 

packet. From then on, we evaluated different approaches for filtering the RSSI values for noise reduction. Specifically, we 

tested the proposed filtering (exponential filter and Kalman) against more lightweight methods, namely simple exponential 

filtering, moving average filtering [49] , and using the raw RSSI values for the distance estimation with Eq. 4 ( p d0 = -64.63

for d 0 1m). Regarding the exponential filter we tested different values for α (see Eq. (1) ) such as 0.2, 0.4, 0.6, 0.8 and lowest

average absolute error was achieved with α = 0 . 8 . 
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Fig. 6. Average absolute distance error vs. real distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 and Table 3 show the average absolute and relative distance estimation error (compared to the real measured 

distance) for different user-IoT device distances, respectively. Results show that the combined approach followed in our 

framework that utilizes both exponential and Kalman filtering vastly outperforms the alternative. Specifically, the distance 

error of the filtered RSSI is reduced by approximately 6–8 m in comparison to the raw RSSI approach. 

5.3. System Parameter Evaluation and Overall Accuracy 

Next, we evaluate the operation of our system using the real-time-generated data from the BLEBeacon dataset [38,47] . 

Every entry corresponds to a single interaction between a user and an IoT device (in the form of a BLE advertising packet –

see [38,50] ). Our analysis considers how our framework would operate during a single day (09/22/2016) and a single week

(09/22/2016-09/29/2016). 

First, we consider a single day of the experiment [50] and evaluate tuning parameters of our system, namely the update

interval of each IoT device (T o ) , and the centralized processing server interval (T CP ) , as seen in Table 2 . As mentioned earlier,

the centralized processing unit outputs contact tracing results every T CP seconds. We further merge the contact information 

for those users who have appeared in multiple consecutive (with the less or equal 1-second lag) batches and calculate 

their total overlapping time duration and average estimated distance. Fig. 7 shows how adjusting the (T o ) , and (T CP ) values

affects the overall accuracy of our framework. Results show a similar number of occurrences regardless of the distributed 

systems’ update/processing periods, attesting to our framework’s capability to detect mobile users’ contact. Therefore, the 

system operator will be able to adjust the T o and T CP parameters in order to optimize network traffic and computational

efficiency for both the IoT devices and the centralized unit without losing the ability to detect user contacts (time duration

and distance) accurately. 

Next, we extend the period under observation to one week. We use an IoT device update period of T o = 15 seconds and

central unit update interval of T CP = 1 minute and apply the framework to a week-long portion of the BLEBeacn dataset.

Fig. 8 shows the overall number of contacts against the observed distance and their overlapping time. The overlapping time 

results show a strong power law distribution behavior, which follows previous results on the statistical behavior of dwell 

time for human mobility patterns [51] . 

5.4. Evaluation of Risk Classification 

The interactions (contacts of user pairs and their data e.g., RSSI ranges and user estimated location) that were generated 

by the week-long study were used to evaluate our machine-learning algorithms for the infection risk classification part of 

our framework. We split the collected interaction data into a training (80%) and a test (20%) set. We first fit the parameters

and weights of the hypothesis function into the training dataset and assess the learned model by using the test data that

predicts user-risk. The labeling for this specific evaluation along with the utilized features is explained in Section 4 . For all

our testing we utilize the Python Scikit-Learn library. 

We evaluate four machine-learning classifiers: Bootstrap aggregating (bagging), Decision Tree (DR), Extreme Gradient 

Boosting (XGBoost), and K-nearest neighbors (KNN). Our study uses KNN as a baseline. We draw the confusion matrix to 

show each method’s performance in Fig. 9 . We observe that XGBoost wrongly categorizes high-risk as low-risk 5.1% of the

time and as average-risk 29.1% of the time. However, it correctly categorizes high-risk cases at a 65.7% rate. On the other

hand, bagging wrongly categorizes high-risk as low-risk 12.6% of the time and as average-risk 28.6% of the time. The correct 

high-risk characterization is at 58.9%. The decision tree and KNN approaches perform significantly worse than the ones 

mentioned above. It is very important for the specific scenario of contact tracing that people who are at high risk are not

classified as low risk. Therefore, in that aspect, XGboost outperforms all other models. 
10 
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Fig. 7. Contact occurrences vs. overlapping time and distance during a single day. 

Table 4 

Algorithm Performance. 

Classifier Performance 

Accuracy Precision Recall F1-score 

XGBoost 0.85 0.81 0.87 0.87 

(0.83,0.87) 95% CI (0.79,0.83) 95% CI (0.85,0.89) 95% CI (0.86,0.89) 95% CI 

Bagging 0.81 0.79 0.84 0.86 

(0.79,0.84) 95% CI (0.77,0.81) 95% CI (0.82,0.86) 95% CI (0.84,0.88) 95% CI 

Decision Tree 0.77 0.75 0.83 0.83 

(0.75,0.79) 95% CI (0.73,0.78) 95% CI (0.81,0.86) 95% CI (0.81,0.85) 95% CI 

KNN 0.50 0.45 0.50 0.53 

(0.47,0.52) 95% CI (0.43,0.48) 95% CI (0.47, 0.52) 95% CI (0.50,0.56) 95% CI 

 

 

To calculate the confidence intervals for our models, we iterated the process 100 times and at each iteration randomly 

divided the data into 80% for training and 20% for the test. From Table 4 , we observed that XGboost has 81% precision and

87% recall, while Bagging presents 79% precision and 84% recall. On the other hand, the DT presents only a 75% precision

and 83% recall. In contrast, the worst-performing KNN has only 45% precision and 50% recall, which makes the approach 

inappropriate for this application. High precision and recall are translated to low false positive rates and low false negative 

rates. Therefore, XGboost has a better performance compared to other models. 
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Fig. 8. Overall number of weekly contacts vs (Left) distance, and (Right) overlapping time. 

Fig. 9. The classification performance of different models through a Confusion-Matrix. 
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Fig. 10. Accuracy vs. window size. 

Fig. 11. Accuracy vs. AUC. 

 

 

 

 

 

 

 

 

 

5.4.1. Impact of Window Size 

Finally, we examined the impact of the T o window size on accuracy and area under the ROC curve (AUC). The outcome is

illustrated in Fig. 10 . We can observe that DT has profited more by the window increase, and achieved a higher performance

increase than other approaches (DT accuracy was raised from 68% to 84%). Additionally, as seen in Fig. 11 the AUC score of

XGboost is higher than any other method, while the AUC score of KNN presented no significant change. In total, we observed

an increase in the accuracy of all models as the T o interval grew. This behavior is attested to the fact that a larger window

leads to larger local samples of RSSI measurements, and therefore a better risk estimation for the whole system. All related

data and code is open-sourced and available in [52] . 

6. Conclusion 

Fast and accurate contact tracing systems can assist in preventing the spread of highly infectious diseases like Covid-19. 

This requires a cohesive and complex system. We propose a passive contact tracing framework that relies on passive inter- 

actions between users and an IoT infrastructure. The framework relies on proximity sensing while performing risk infection 

classification using well-known machine-learning techniques. We have also performed a case study of the system using a 

real-world dataset of BLE-based interactions. Our experimental results suggest that our design can substantially help mon- 

itor the contact occurrences between people in smart cities constantly and accurately both as a standalone system or as a

complementary system for other contact tracing applications. 
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