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A B S T R A C T

In recent years, technological advancements and the strengthening of the Internet of Things
concepts have led to significant improvements in the technology infrastructures for remote
monitoring. This includes telemedicine which is the ensemble of technologies and tools involved
in medical services, from consultations, to diagnosis, prescriptions, treatment and patient
monitoring, all done remotely via an Internet connection.

Developing a telemedicine framework capable of monitoring patients over a continuous
long-term monitoring window may encounter various issues related to the battery life of
the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT
architecture that is adaptable to various scenarios and the ongoing changes of the application
scenario under analysis.

In this work, we present an IoT architecture for continuous long-term monitoring of patients.
Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson’s Disease
management, building up the PDRMA (Parkinson’s disease remote monitoring architecture).
Performance analysis for optimal operation with respect to temperature and daily battery life is
conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson’s patients
is presented.

. Introduction

Nowadays Internet of Things (IoT) encompasses many areas of modern life, and, one of the most important area, is in healthcare
onitoring system for providing effective emergency services to patients [1]. The use of cloud-based IoT in healthcare provides
wide range of applications and services for patient monitoring beyond the ability to access shared resources and a common

nfrastructure. However, there are still many issues with patient health monitoring using IoT platform (for a systematic review
efers to [2]) and some of these are related to wearable devices. The main ones include: (1) The compatibility of wearable
evices: depending on the patient’s clinical condition, certain sensors must be used for telemonitoring, and not all sensors are
lways compatible with each other. Furthermore using multiple devices for data acquisition could result in patient discomfort. Few
earable medical devices have effectively integrated multiple functions [3]; (2) The data accuracy: two important parameters to
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consider are specificity and sensitivity. The low specificity, in terms of the ability to correctly identify healthy subjects, may lead to
overdetection of benign nonclinical related signals resulting in misdiagnosis. While, low sensor sensitivity, in terms of the ability to
correctly identify sick people, increases the risk of false negatives, i.e. subjects who, despite having normal values, are still affected by
the disease or condition being researched. This results in missed diagnosis and delayed treatment [4–6]; (3) Battery life: monitoring
of certain clinical states requires signal extraction systems to have a very high sampling rate, combined with user interaction with
the device to obtain direct information from the user. In addition, viewing data in real-time requires continuous transmission.
This results in huge battery draining, forcing us to decrease the analysis window during the day. However, the efficiency of a
telemonitoring system also depends on the length of the analysis window. Designing low-power consuming and high-energy storage
wearable devices have always been a challenging issue [7,8]; (4) Other issues such as cost, low data collection, and processing
efficiency, unstable human–computer interaction interfaces, and incomplete construction of big data health clouds need to be further
improved [5,9,10].

An acceptable IoT architecture for monitoring must take these aspects into account and ensure an extended daily monitoring
window to extract data useful for analysis. In literature, several proposed architectures provide respectable experience and try to
solve some of these issues. Zhang Q. et al. in [11] proposed an environment-centric framework for the monitoring of warehouse
designed specifically for complex and structured systems. This architecture includes only a simple network topology for the sensing
layer. In the healthcare field is necessary to have meaningful data throughout the day, so it would be appropriate to use a more
user-centric approach. For example, Zhang Y. et al. in [12], proposed a remote mobile health monitoring system with a mobile
phone, web service capabilities, and a belt for heart rate monitoring. The main limitation was that the system was capable of only
real-time monitoring of the patient’s status, not professional analysis and instruction. Furthermore, some users were not enthusiastic
about the idea of continuously wearing a monitoring device. The reason could be the overall discomfort caused by the belt for the
heart rate monitoring. This is a crucial point to monitor over a large time window, you need a system that meets users’ needs.
So a possible solution is to use devices that are already part of the user’s daily life. Regarding this, an interesting framework was
developed by Kheirkhahan M. et al. in [13]. They developed a smartwatch-based framework for real-time and online assessment
and mobility monitoring.

The proposed ROAMM framework includes a smartwatch application and server. However, while they have achieved great
results, they encountered issues concerning battery life and that forced them to monitor only in certain time windows during the
day. Especially in the field of telemedicine, having continuous monitoring, not limited to certain time windows, can be crucial in
the identification of some clinical parameters or the identification of pathological states or dangers

The proposed paper aims to provide the elements for the creation of a possible framework for continuous long-term monitoring
of patients, solving both some problems from a technical point of view and creating a framework that meets the needs of the
user. So the proposed IoT architecture is user-centric and, it is adaptable for various application cases. As proof of concept, we
adapt the proposed architecture to monitoring patients with Parkinson’s disease. Through analysis of the battery of the monitoring
device (smartwatch), we extend the monitoring window to a duration that covers the entire day of activity of the user. Finally, a
multi-parameter app for continuous monitoring of Parkinson’s patients is presented.

The rest of this work is organized as follows: the next section presents the proposed IoT Architecture for continuous and real-time
monitoring; in Section 3 we present the Parkinson’s Disease Remote Monitoring Architecture (PDRMA); in Section 4 we show and
discuss the main aspects of PDRMA; finally, Section 5 provides concluding remarks.

2. Proposed general architecture

The developed architecture, is designed for daily long continuous monitoring sessions. To achieve this goal, on the one hand,
the heart of the system, the edge system, has to facilitate the user experience, on the other hand, it must perform essential functions
to preserve the battery life of wearable systems.

An overview of the architecture is shown in Fig. 1. The main elements of the proposed architecture are the edge system, the
fog system, and the cloud system. The main functions of the edge system are the storage of data coming from sensors and the User
Interface (UI), data communication between sensors, and from/to the fog. The fog system stores the data sent by the edge system,
and performs other major functions such as acting as a bridge between cloud and edge in order to update configuration parameters
in the latter. Finally, the cloud offers a web interface for data visualization and control database storage, AI analytics, and patient
digital representation (Digital Twin Model).

Each component of the architecture has to handle three types of data: user data, management data, and control data. Thus,
depending on the nature of the data, certain aspects need to be taken into account to avoid communication errors between the
various parts of the system and to avoid losing relevant information. The types of data are explained in detail below:

• User data: these data are generated by the direct interaction, either through GUI or indirectly through sensors, of the user
with the system, or are generated for consumption by the user of the system (alerts, warnings, . . . ). One of the main problems
of sensor data is in the transmission layer, which may incur network congestion. Congestion occurs when the amount of data
to be transferred exceeds the effective network capacity. To avoid network congestion, the architecture introduces a flow
controller that verifies the amount of data to send before every transmission. If necessary, related to buffering bounds, it has
to divide the data to be sent in accordance with a policy of traffic shaping. Furthermore, a high sampling frequency leads to
a substantial increase in memory occupation. Therefore the workflow controller, if there is an error in the transmission that
2

does not allow the memory to be cleared, must interrupt data acquisition to avoid data loss and prompt the administrator.
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Fig. 1. Architecture overview: The figure shows the functional elements of the architecture, divided into edge, fog, and cloud. For the peripheral systems (edge
and fog systems), the internal structure is shown in more detail.

Users directly interact with the system by entering data via a GUI: the administrator can configure the system to prompt the
user at a specific instant of time to enter a data item, and the alerts handler carries out a control so that the parameters set
by the administrator are respected. A crucial aspect of user input is the UI: UI should follow the principles of UX Design (User
experience design).
User data also includes other unstructured data such as audio and video. Audio and video data, as in general unstructured
data, do not have a predefined data model and therefore are not suitable for a traditional relational database. So, identified
the component of the system that will have to generate this type of data, it will be necessary to provide a specific space on
the server for their storage.

• Management data: they are the configuration parameters, namely parameters set by the administrator, such as the sensors
to be used in the application and their sampling frequency. For this type of data, there is a need for a sensor identification
method (each sensor will have its ID), and a workflow controller. This is to synchronize the data to a specific timestamp and
to have a predefined logic for data acquisition.

• Control data: they are the device parameters, such as battery, transmission error, application error, etc. Keeping track of these
parameters is important to alert the administrator in case of malfunctions and intervene promptly.

In the next sections the edge, the fog, and the cloud system are analyzed in detail.

2.1. Edge system

The edge system manages data collection: sensors data and GUI data. The architecture of the edge system is summarized in
Fig. 1. The main component is the flow controller, which synchronizes the operations of the data and transmission unit. The data
unit collects data from sensors and GUI and through a data handler, organizes all these data in an output buffer. The flow controller
deals with determining the exact time for saving this data to the local storage. Subsequently, when possible, the flow controller
fetches data from local storage, processes them through the processing unit, and finally creates a transmission buffer to send the
data to the fog system. In this way, we avoid network congestion, and the data, depending on its type, will be stored in the proper
location.

The sequence diagram of the logic of the edge system is shown in Fig. 2. The main data flows are: (1) Sensor and GUI data
flow: sensors data are collected based on sampling rate (stored on configuration parameters section of local storage) and they are
stored in local storage through the data unit. Likewise, when the user interacts with the application and enters new data, this is
sent to the data unit and stored locally. As soon as the workflow controller gives the command to send the data to the fog system,
3
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Fig. 2. Edge system sequence diagram. Data_unit, Processing_unit, and Transmission_unit are part of the application layer and they are controlled by the flow
controller. GUI and Sensor are the sources of the edge system data.

a stack of data is fetched from the local storage, elaborated through the processing unit, and sent to the fog system through the
transmission unit. (2) Configuration parameters data flow: the transmission unit receives configuration data from the fog system,
and sends it to the data unit which provides for storing it in the local storage. A key aspect to consider is edge-side transmission
technologies and policies, which significantly impact the system’s ability to operate for extended service times.

2.2. Fog system

The fog system is the bridge between the edge and the cloud system, indeed, it locally saves the data sent by the edge system,
and it periodically sends the data to the cloud database. Also, it might produce unstructured data such as audio and video to relieve
the data load at the edge system. The architecture of the fog system is shown in Fig. 1. The main component is the flow controller,
which synchronizes the operations of the edge–fog interface, the fog–cloud interface, and the data unit. Fig. 3 shows the data flow
with respect to the operations carried out by the fog system: (1) Edge system data flow: when new data from the edge system
are available, the data are reported to the data unit. Subsequently, the data are elaborated by the processing unit and stored in
the local storage. As soon as the workflow controller gives the command to send the data to the cloud system, a stack of data is
fetched from the local storage and is sent to the cloud system through the transmission unit; (2) Media data flow: when the audio
or video file is recorded from the application, the media data are reported to the data unit and processed by the processing unit.
Subsequently, they are saved in the local storage, in order to send them to the cloud system through the transmission unit; (3)
Configuration parameter data flow: the cloud system sends new configuration parameters to the fog system, the transmission
unit sends the configuration parameters to the data unit to save them in the local storage. The workflow controller takes care of
getting the configuration parameters from the local storage and sending them to the data unit. The parameters are then sent to the
transmission unit and finally sent to the edge; (4) Authentication workflow: the user enters authentication data through the GUI.
The login data are sent to the data unit that sends them to the transmission unit. The transmission unit sends the login data to the
cloud system, which responds with the authentication status. If the user is authenticated, the transmission unit prompts the flow
controller to enable system operations.
4
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Fig. 3. Fog system sequence diagram. The Data_unit, Processing_unit, and Transmission_unit are part of the application layer and they are controlled by the
workflow controller. GUI and Media_Data are the sources of the edge system data. The fog system communicates with both the edge system and the cloud
system.

2.3. Cloud system

As shown in Fig. 1, the cloud system is composed of three main components: Web portal, API, and database. Each component
has a specific role, the database stores fog and edge data and, for security reasons, is located in a virtual machine dislocated from
the web portal and the API.

The API acts as a bridge between the web portal, the fog system, and the database. It implements functions such as authentication
management (OAUTH2 or Apikey), database interaction, user and administrator functions management, etc.

Finally, the web portal is essentially the access point for registering with the system and viewing and downloading data. It
implements a user and administrator interface: the user through the portal can read instructions written by the administrator and
5
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upload consent for testing and data processing. While the administrator, through the portal, can configure edge and fog systems
parameters.

The choice of database is crucial for healthcare applications. Each database has its pros and cons. From the study in [14], it was
ompared a NoSQL database (MongoDB) with MySQL database. It was observed that in some scenarios, MongoDB provided less
esponse time compared to MySQL. But MySQL’s response times are stable compared to MongoDB’s in executing queries for a larger
umber of records. Choosing a better database for healthcare depends on the requirements of the application. A NoSQL database
as been chosen for this architecture since most of the data are of an unstructured type.

The API and the database have to consider some rules for the correct functioning of the system and respect user privacy. The
ystem has to implement a user identification method that does not use personal data, to retrieve data from the database through
he API. Moreover, the personal data section in the database should be separated from the recorded data.

At the database level, two key aspects must be considered: structure flexibility and fast data retrieval. Regarding the structure, it
as to be scalable and easily amenable to future changes and each collection should have supporting parameters that help the API
o perform fast queries. To obtain fast data retrieval, the query performed by the API should be selective (it is necessary to clearly
efine the requirements before writing the query so that only the necessary information is received). A support tool to improve
uery performance, in NoSQL database, is the indexing method: an index supports a query when the index contains all the fields
canned by the query [15].

Regarding the logic of the cloud system, Fig. 4 describes the sequence diagram of data flows carried out by the cloud system:
1) Edge/fog data flow: the edge/fog data are sent to the API, that process the request and checks the user authentication status.
f the user is authenticated, it sends the data to the Virtual Machine (VM) that hosts the database. Here the database is updated. If
he user is not authenticated, an error is sent to the fog system; (2) Authentication data flow: the authentication data sent by the
og system, are processed by an API function that executes a check in the database and responds with the outcome of the operation;
3) User/administrator interaction flow: the user or the admin interacts with the web portal. The API receives and processes
he request from the web portal and checks if the user is authenticated. If the user is authenticated, the API retrieves the data from
he VM and makes the data available on the web portal. If the user is not authenticated, an error is reported; (4) Configuration
arameters data flow: the administrator set the configuration parameters for the users through the web portal, the API processes
he request, and if the admin is authenticated and it is verified the status of administrator, inserts in the VM these parameters and
ulls out the edge address of the users. Finally, the fog systems are prompted with new parameters.

. Case of study: Parkinson application

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder, characterized by the presence of predominantly
otor symptoms (bradykinesia, rest tremor, rigidity, and postural disturbances). It is also associated with a variety of non-
otor symptoms, which, together with late-onset motor symptoms (such as postural instability and falls, speech and swallowing
ifficulties), are to date challenging symptoms to treat for the neurologist. PD has taken over almost 10 million people based on
he statistics provided by the World Health Organization [16].

In the management of Parkinson’s disease, it is well known that there are several problems related to both diagnosis (error
ate reaches 30% [17]) and therapy management, mainly related to motor fluctuations and dyskinesias. A solution to improve these
spects is certainly the continuous monitoring of the patient through wearable sensors and telemedicine systems. Remote monitoring
llows care to be brought to the patient’s home and this makes Parkinson’s disease care more patient-centered [18] with personalized
herapies [19]. This is in line with the trend in medicine now moving toward precision medicine.

A valuable tool for the remote monitoring of PD patients is the inertial system. The inertial systems are now integrated into
earable sensors and smart devices and it has been proved their impact in the evaluation of motor abnormalities. In literature there
re several studies where the usage of wearable sensors is peculiar in clinical monitoring of PD patients and, in particular, these
ystems are used to monitor patient’s cardinal motor symptoms like bradykinesia [20–23], rigidity [24–28], and tremor [29–31]
r gait, posture, balance axial motor symptoms [32–38]. For example, in [39] has been proved the wearable electronics impact as
alid support in assessing a correct evaluation of PD in its early stage. In [40] has been proved that motor anomalies in PD can be
etected through analysis of keystroke dynamics during typing on smartphone touchscreens. LeMoyne et al. in [41], demonstrate
he capability of the iPhone wireless accelerometer to quantify Parkinson’s disease tremor attributes. However, in most of these
tudies, data are offline analyzed, and embedded devices are used only for the acquisition.

In order to allow an online analysis of data, and thus continuously monitor the patient, there is a need for a system that allows
he visualization of data in real-time. Regarding this, several solutions have been proposed: in Shahar Cohen et al. study [42], a
obile application and an Internet of Things (IoT) platform have been developed in order to support large-scale studies of objective,

ontinuously sampled sensory data from people with PD. Even though the system seems to work reasonably well, they encountered
omplications in smartphone and smartwatch device pairing and battery drainage. As mentioned in Section 1, battery life is one
f the technological barriers in healthcare wearables. One possible solution is presented in the study of Paola Pierleoni et al. [43],
here, in order to develop a smart inertial system for 24 h Monitoring, a Power Management Unit with a capacity of 850 mAh is
sed. Although many of these methods have yielded acceptable results, from a long-term monitoring perspective, the monitoring
evice must be appropriate for the patient’s daily life. Therefore, it must be a wearable device that facilitates the user experience
nd is easily integrated into daily life. This means that in some respect, it should not be alienating to the patient and should not
equire too much of the patient’s attention on many tasks throughout the day. This study proposes a patient-centered solution to
6
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Fig. 4. Cloud system sequence diagram. The main components of the cloud system are the API, the Web portal and the Virtual Machine with the database of
the system Moreover the User/Admin interaction from the Web Portal is described.
7
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3.1. Recording data of edge/fog system

To develop a framework for PD and implement the architecture described in Section 2, there is a need for a match among
pplication-specific data to be extracted and data sources devised in the architecture definition. A fundamental datum is the motor
tatus of the patient, correlated to motor symptoms. In Parkinson’s disease the main motor symptoms are:

• Cardinal motor symptoms:

– Bradykinesia: slowness of initiation of voluntary movement with a progressive reduction in speed and amplitude of
repetitive actions;

– Rigidity: an increase in muscle tone at rest leading to a resistance to passive movements;
– Tremor: is an involuntary, rhythmic movement that affects a part of the body and it is caused by the rapid and alternating

contraction and relaxation of muscles.

• Motor complications:

– Motor fluctuations:

∗ ‘ON’ time is when antiparkinsonian treatments with the drug levodopa are working well and the symptoms are
controlled;

∗ ‘OFF’ time is when antiparkinsonian treatments are no longer working well and symptoms such as tremor, rigidity,
and bradykinesia re-emerge.

– Dyskinesia: are unintended, involuntary movements induced by levodopa (the main Parkinson’s disease therapy) that
typically occur during ON-time.

n order to acquire these data, accelerometer, magnetometer and gyroscope have been used as sensor sources and are easily
ntegrated into the architecture presented in Section 2. The feasibility of using accelerometers to estimate the severity of symptoms
nd motor complications in patients with Parkinson’s disease has recently been demonstrated [44] and previous works used
yroscopes to measure velocity and stride length, joint angle of lower limbs, the angular velocity of trunk rotation, and angular
isplacement of trunk motions [45]. In the study, the gyroscope is used with the scope of estimating the angular velocity of hand
otation.

Therefore, acquiring information about the patient’s perceived state can help the doctor in the right therapy. A graphical interface
as been implemented for the insertion of the perceived motor state.

As mentioned previously some symptoms, such as ‘ON-OFF’ swings, are related to taking medications. So it is crucial to have a
istory of drugs taken.

Additional information such as daily meals and sleep are acquired through graphical interfaces. Other data that are helpful
n assessing the patient’s clinical status include audio and video data. Videotaping of patients is a qualitative and quantitative
ethod useful for the analysis of motion disorders [46]. In addition, has been proved that Parkinson’s disease (PD) is characterized

y speech and voice symptoms that invariably impact the PD patient’s ability to communicate effectively. Described as hypokinetic
ysarthria [47], it has been estimated to be present in between 70 and 89% of PD patients [48]. The framework utilizes a smartphone
o get these data.

.2. PDRMA (Parkinson’s Disease Remote Monitoring Architecture)

PDRMA mirrors the architecture presented in Section 2 and adapts it to the application case. Additional consideration should
e made about the method of data transmission between smartphone and smartwatch. The smartwatch, to preserve battery life,
equires an energy-efficient transmission technology. So, the system uses a Bluetooth Low Energy (BLE) transmission between these
wo devices. The synergy between good performance and ubiquitous diffusion makes BLE an excellent candidate for a great variety
f applications and, among these, in the medical field for e-health applications [49–51]. In addition [52] shows BLE protocol and
MU sensor are used for the early diagnosis of Parkinson’s disease.

Whereas, the smartphone uses a high throughput data-intensive communication technique (HTTP requests) to update the
atabase with the smartwatch’s data. In Fig. 5 the sequence diagram of the logic of BLE and HTTP requests are shown. Regarding the
LE protocol, the smartwatch takes the role of server while the smartphone takes the role of client. The smartwatch exposes a service
nd a characteristic, with write and read permissions to send data and receive the therapeutic plan. Write and read operations must
e synchronized, so the smartphone implements a flow controller. If there is an update of the therapeutic plan, it is taken from the
ocal storage, and a write request to the characteristic exposed by the server is performed. The smartwatch saves the therapeutic
lan in local storage and sends a notification to the smartphone to start the transmission of the sensor data. So the smartphone
ends a characteristic read request, and the smartwatch sends sensor data. If the transmission has a positive outcome, the data are
eleted from the smartwatch’s local storage.

The data collected by the smartwatch are then sent via HTTP requests to the cloud and stored in the database. The API takes
are of saving the data in the right way.

Every day the smartphone checks if there is an update of the therapeutic plan through the API and if that is the case, the new
8

herapeutic plan is taken from the database and updated in the local storage of the smartphone.
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Fig. 5. Communication protocols sequence diagram. The smartwatch and the smartphone communicate through a BLE connection, in order to have an efficient
and low energy connection. While the smartphone and the cloud system communicate through the HTTP requests.

3.3. Edge/fog system choice

The edge system has been chosen in such a way as to avoid patient discomfort, have accuracy in acquired data, preserve battery
life, have a device that can be easily integrated with various types of systems, and finally, it has a low economic cost. So the device
chosen for the edge system is a smartwatch, the Samsung Galaxy watch4. The fundamental characteristics that justify the choice
are:

• Low-cost device (210$);
• Large local storage (16 Gb) and large RAM size (1,5 Gb);
• Built-in accelerometer, gyroscope, and magnetometer;
• Support of both low transmission rate (BLE) and high transmission rate (WiFi) technologies;
• Battery autonomy of approximately 40 h (in watch mode).

Regarding the data accuracy of sensors, some studies have proven that this type of device can be used for individual activity
recognition, major body movement location detection, activity intensity detection, and locomotion detection tasks [53].

To facilitate communication with the smartwatch, a Samsung smartphone was used for the fog system.

Patient inputs data. Along with sensor data, the smartwatch collects data from patient input. The application handles four types of
input: motor diary, taken drugs, sleep time information, and meal time information.

1. Motor diary: the database stores two types of information. Every hour an alert asks the patient to enter the perceived motor
state. The state inserted by the patient is stored in local storage with the relative timestamp. If there is an intra-hour change
in motor status, the patient can access the motor diary UI and enter the new status and, this new status is stored in another
section of the database with the relative timestamp.

2. Meal time information: when the patient has a meal, he has to open the meal activity and confirm the action. In this way,
the corresponding timestamp of the action is stored in local storage as meal time.
9
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3. Drugs information: the therapeutic plan is stored in local storage. Each drug has a relative timestamp that refers to the
time the drug should be taken by the patient. An alert is generated for each drug’s timestamp, and, through the UI (slider
with all drugs), the patient selects the drug and confirms the assumption. All drugs and related information (name, time, and
quantity) are visible in the drugs section of the application. Drugs taken during the day are colored green, while others are
red;

4. Sleep information: through the sleep UI, the patient can select sleep modality or wake-up mode. This way in the local storage
saves the time the patient goes to sleep and the time he wakes up. At the moment the patient selects sleep mode, the sensors
stop and no further data is recorded. However, by default, sensors record from 8:00 a.m. to 8:00 p.m., regardless of patient
entry.

4. Results and discussion

4.1. Smartwatch application

As mentioned in 3.1, an accelerometer, magnetometer, and gyroscope are used to estimate the severity of symptoms and motor
complications. The best choice for the logic of the architecture, and to avoid battery consumption is to run the sensors in the
background, even when the user is not interacting with the application. So in the system, a background service is implemented
(listed in the android documentation as a foreground service) and it performs operations that are noticeable to the user and show a
status bar notification. So that users are actively aware that the app is performing a task in the foreground and is consuming system
resources.1

To increase the responsiveness of the app, the application implements a multithread approach. Multithreading in an interactive
application may allow a program to continue to run even if part of it is blocked or is performing a long operation, thus increasing
responsiveness for the user. This allows us to optimize communication with the fog system, as we could have one thread for
communication and one for user interaction with the application. Also, a multithread approach allows sharing its resources such
as memory, data, files, etc. So a single application may have several threads within the same address space using resource sharing.
This aspect allows us to better manage the database interactions.

In the smartwatch application, there are three concurrent threads: the main thread for user interactions with the application,
the I/O thread for database interaction the network thread for data transmission. The application logic is shown in Fig. 6. When the
application is launched, a foreground service and the main thread are initialized. The foreground service initializes the I/O thread
and the network thread, which will start to record sensor data and transmit them to the smartphone. As soon as the user interacts
with the application to enter a value, the main thread passes the data to the foreground service that will provide to save them in
the local storage. The internal logical components of the foreground service block follow the logic presented in Section 2.1. While
the flow of configuration parameters is represented by the therapeutic plan.

4.1.1. Battery considerations
As mentioned early the objective is to ensure the longest continuous monitoring time of the patient without the need of

replacing or recharging the battery of the wearable device, and hence, some aspects must be considered to avoid excessive battery
consumption. The first aspect to consider is the sampling rate of the sensors, as the sampling rate has a high impact on the battery
consumption. In [13] is proved that with a Samsung Gear S3, with a sampling rate of 10 Hz and GPS on, the battery level after 2 h
of use drops from 380 mAh, on a full charge, to 76 mAh.

GPS data are not important, in general, for these types of applications, so we have decided to turn off the GPS and avoid its
unnecessary battery consumption. Also, the data are passed via BLE, so we can turn off the Wi-Fi (an item that can consume a lot of
battery power). The parameter on which we have control is the sampling rate: considering that tremor has frequency components
up to 12 Hz [54] and dyskinetic movements may have significant frequency components up to 8 Hz [55], in order to evaluate motor
symptoms, for the Nyquist–Shannon sampling theorem we have to implements a sampling frequency of at least 30 Hz.

So, having a constraint on the sampling rate, we could think about acting on the transmission policy between the smartwatch
and the smartphone, being data transmission is also involved in battery consumption. In particular, we can provide windows of
data transmission between the two devices, and windows in which transmission does not occur. However, not having a continuous
transmission, could lead us to lose the real-time condition. As mentioned earlier, the sampling rate of the sensors is 30 Hz. If each
row of data (consisting of the x, y, and z values of each sensor used, the timestamp, and, possibly, values entered by the user at that
related timestamp) takes up a space of 230 bytes, we store an amount of 24,84 MB per hour. The communication protocol chosen
between the smartphone and the smartwatch is the BLE protocol. Considering the BLE ATT Maximum Transmission Unit (MTU),
namely, the maximum length of an ATT packet, allows us to have a maximum frame size of 512 bytes, we could send two rows of
data at once without exceeding the limit. If we choose a policy of continuous data transmission, we could send 49,68 MB per hour,
and this allows us to have a real-time condition (the data on the server will be available in real-time). At the point when we choose
to adopt a data transmission policy, which restricts data to be sent only in predetermined time windows, we cannot guarantee the
real-time condition, having a size limit on the outgoing data for each sending. Therefore there is a need to do data operations to
ensure that the same amount of data is always sent. Specifically, we performed these operations:

1 As reported in https://developer.android.com/guide/components/foreground-services.
10

https://developer.android.com/guide/components/foreground-services


Internet of Things 20 (2022) 100614O. d’Angelis et al.
Fig. 6. Smartwatch application flow chart diagram.

• Vectorization: The data samples were encoded into JSON objects. To optimize their transmission over the EDGE channel, these
objects underwent a squeezing process, with the removal of implicit information, the keys of the elements, before transmission
from the smartwatch, and later reinsertion, after the reception on the smartphone;

• Data compression: we use the Deflate algorithm that allows lossless data compression [56];

By performing these operations, we reduced the size of the data sent by 90%. This allows us to adopt the policy in which transmission
occurs in predefined time windows, while still maintaining the real-time condition.

In order to evaluate battery consumption with this type of policy, we performed various tests by varying the time windows for
sending data. The smartphone systematically alternates time windows of data requests and time windows in which it is in sleep mode
on transmission. In particular, three different policies were evaluated by dividing a one-hour time window into two sub-windows:
one window in which data are sent, and one in which no transmission occurs. The subwindows evaluated are:

1. 10 min of sending data, and 50 min when there is no transmission (sleep mode)
2. 20 min of sending data, and 40 min when there is no transmission (sleep mode)
3. 30 min of sending data, and 30 min when there is no transmission (sleep mode)

To have a metric for comparison, a baseline corresponding to battery consumption under idle transmission was evaluated. Fig. 7
shows the graph of battery power consumption where the 𝑥-axis represents the time expressed in hours:minutes:seconds while the
𝑦-axis is the battery percentage.

Table 1 shows the results in detail. We report for the three modes of sending time (ST) and sleep mode (SM) the average battery
drain and the mean difference from baseline. The results of Table 1 and Fig. 7 show that increasing the sending time, increases the
battery drain.
11
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Fig. 7. Battery test. ST stands for ‘‘sending time’’, while SM stands for ‘‘sleep mode’’. Measures are in minutes. The 𝑦-axis represents the battery residual charge
level. Different colors correspond to different transmission policies.

Table 1
Battery drain measurements: ST stands for ‘‘sending time’’, while SM stands for ‘‘sleep mode’’. Both measures are
in minutes.
Mode Average battery drain

every two hours
Mean difference from baseline
every two hours

ST[m] SM[m]

10 50 5.5% 2.5%
20 40 7.5% 4.0%
30 30 10.5% 7.5%

Table 2
Battery draining and device temperature based on HTTP frequency requests.
Frequency [request/hour] Average Temperature [C◦] Average battery consumption [%]

Baseline 24.7 ±0.7 0.63 ±0.48
12 27.1 ±0.7 2.90 ±0.51
12 25.9 ±0.5 0.91 ±0.51
5 24.2 ±1.6 0.80 ±0.56

However, in some architectures, you may have a configuration in which there is no fog system. In this regard, we wondered
whether it is possible to optimize battery life in an architecture where the smartwatch directly sends data to the cloud via HTTP
requests. We hypothesized that device temperature may impact battery draining. Specifically, depending on the frequency with
which HTTP requests are executed, increasing battery temperature also increases battery draining. We performed four tests: an
HTTP request every 5 s, an HTTP request every 5 min, and an HTTP request every 10 min. Each test was performed by extracting
the temperature and battery level value every 20 min. All tests were executed with GPS and Wi-Fi turned on and to have a metric
for comparison, a baseline corresponding to battery consumption without data transmission was evaluated. Fig. 8 shows the graph
of battery power consumption and the temperature trend. For each test the 𝑥-axis represents the time expressed in minutes, the
𝑦-axis represents the battery level in percentage, while the second 𝑦-axis represents the temperature in Celsius.
12
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Table 3
Comparison of battery lifespan of some architectures in the literature.

Paper Sensors employed and device type Data transmission method Battery lifespan

Gonzalez C. et al.
[57]

Internal inertial system and an
external sensor node (Huawei Watch
2 with a battery capacity of 420
mAh)

Wi-Fi connection and BLE From 3.5 to 5 h

Robert Wu et al.
[58]

Optical sensor, accelerometer, and
gyroscope (LG Watch Urbane
Smartwatch Android Wear with a
battery capacity of 410 mAh)

The smartwatch sends sensor
information to the smartphone
(method not specified)

Battery life of 16 h (the smartwatch
recorded 2 out of every 10 min)

Anna L. Beukenhorst
et al. [59]

Accelerometer, gyroscope, and
magnetometer (Huawei Watch 2 with
a battery capacity of 420 mAh)

The watch was permanently
prevented from transmitting data (in
‘‘airplane mode’’) until it was
connected to a charger overnight

From 10 to 12 h

Virginia LeBaron
et al. [60]

Accelerometer and optical
sensor(Wear OS Fossil Sport Watch
with a battery capacity of 350 mAh)

The smartwatch sends sensor
information to a laptop (method not
specified)

7 h

Matin Kheirkhahan
et al. [13]

Accelerometer, gyroscope, GPS, and
optical sensor (Samsung Gear S2 and
S3 with a battery capacity of 380
mAh)

Wi-Fi or 4G network connection 12 h alternating non-wear times and
wear times: from 8 am to 8 pm
participants were prompted at four
random times with a minimum
three-hour gap between two
consecutive prompts

PDRMA Accelerometer, magnetometer, and
gyroscope (Samsung Galaxy watch4
with a battery capacity of 361 mAh)

Wi-Fi/BLE 12 h

Fig. 8. Battery temperature: For each test, the 𝑥-axis represents the time expressed in minutes, the 𝑦-axis represents the battery level in percentage, and the
second 𝑦-axis represents the temperature in Celsius. The red line refers to temperature, while the blue line refers to battery level. Baseline refers to a test where
no HTTP requests are performed. Fig A refers to the test in which HTTP requests are performed every 5 min, Fig B represents the baseline, Fig C refers to the
test in which HTTP requests are performed every 10 min and Fig D refers to the test in which HTTP requests are performed every 5 s.

It is clear from the graphs that the frequency of sending HTTP requests, has an impact on device temperature, increasing the
battery draining. In order to explain the results obtained in Fig. 8, in terms of the average consumption and average temperature
every 20 min, Bar plots are shown in Fig. 9 where 𝑦-axis represents the average consumption in percentage, while the 𝑥-axis the
tests. Table 2 summarizes the results. To optimize this aspect, one would need to have continuous control over the temperature of
the device and change the frequency of HTTP requests (also increasing or decreasing the throughput of data sending) in order to
have over time an average temperature equal to the ambient temperature.
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Fig. 9. Bar plot temperature study: Fig. 9(a) shows the bar plot relative to average battery consumption in all tests performed. 𝑌 -axis represents the average
consumption in percentage, while the 𝑥-axis the tests; Fig. 9(b) shows the bar plot relative to the average temperature in all tests performed. 𝑌 -axis represents
the average temperature in Celsius, while the 𝑥-axis the tests. For each bar, the exact value is reported on the top of the bar.

Specifically, the application monitors the ambient and the device temperature. These values are sent to the processing unit
where, having defined a threshold above which it should not rise relative to the ambient temperature, it sends the configuration
parameters to the workflow controller, which will set them in the transmission unit. If the device temperature is above the threshold
the frequency of HTTP requests is set to 5 requests/hour.

Comparing the proposed approach with similar architectures using smartwatches, we can easily ascertain its place in the spectrum
of monitoring solutions. These solutions with the most critical parameters for comparison are shown in Table 3, which shows that
although there are solutions that provide daily monitoring, none allow this while ensuring continuity and real-time updating of
results. In [58], the smartwatch’s battery life is sustained for 16 h by alternating two-minute recordings every 10 min. In contrast,
in [13], a battery lifespan of 12 h is achieved by alternating periods when the smartwatch is being worn and periods when it is
not. In both solutions, daily monitoring is ensured but at the expense of monitoring continuity. Conversely, in [59], a solution is
presented that allows continuous 12-hour monitoring in which, however, data transfer is postponed when the wearable device is
put on charge. In this solution, the immediate data transfer is completely penalized, destroying the possibility of real-time patient
monitoring. The PDRMA solution, in contrast to literature solutions, allows up to 12 h of continuous, real-time patient monitoring.
14
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Fig. 10. Smartphone application flow chart diagram.

4.2. Smartphone application

The smartphone application is used to store smartwatch data in order to send them to the cloud. Additionally, it implements
audio and video sections which in turn are stored in local storage and then sent to the cloud. To avoid data loss and obtain and
make the system stable, the application implements multithread operations. There are three concurrent threads: the main thread
for application level, the I/O thread for database interaction, and the network thread for data transmission.

As with the smartwatch application, a foreground service has been implemented, in this case, the foreground service handles
the BLE communication with the smartwatch and the HTTP communication with the cloud service. The logic of the application
is shown in Fig. 10. The application check if the user is authenticated. Following, if authenticated, a thread for data transmission
15
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Fig. 11. Web Portal Use Case Diagram: the main entities are the user and the doctor. The include relationship adds additional functionality not specified in the
base use case while the extend relationship describes additional behavior that can incrementally augment the behavior of the base use case.

(network thread) and a thread for database operations (I/O thread) are initialized. The main thread handles the application level. If a
parameter update is notified, sends configuration parameters to the smartwatch, the system is updated and operations are resumed.

Transmission methods and data storage mirror the logic presented in Section 2.2.

4.3. Parkinson cloud system

The cloud system is composed by Web portal, API, and database. Each component is located on a different server and the API
acts as a bridge between the systems and the database. In order to transmit patient data between systems, for security reasons, each
patient is assigned a commercial code of 16 bytes. This avoids the transmission of personal data to authorize services access. The
logic of the cloud system mirrors the logic presented in Section 2.3. In PDRMA for fog and edge data, we consider audio and video
acquired by smartphone and data acquired by smartwatch while, for configuration parameters we consider therapeutic plan data.
16
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Fig. 12. Fig. 12(a) represents the timeline of the motor diary. 𝑋-axis represents the daytime, while the 𝑦-axis is the motor state. Each time may have an
associated action and, in the plot, it is represented by an emoticon (meal, drug, and sleep). The red line represents the window time in which the user sleeps.
Fig. 12(b) represents the weekly distribution of motor states. For example, the context menu shows that in one week at 3:00:00 pm, the user 71.72% percent
of the time entered into the motor diary that perceived the state of ON.

Regarding the Web portal, Fig. 11 shows a use case diagram, which explains its logic: the physician, upon login, can view the
list of patients and therefore, by selecting one, can view the data collected by the smartwatch, the personal data and the therapeutic
plan with the possibility to modify the latter. Moreover, he could suspend a registered patient.

While the user, upon login, can view the personal profile (with the possibility of editing it) and the therapeutic plan.
An example of the patient details viewable by the doctor is shown in Fig. 12: the doctor can easily view the timeline of the user’s

motor states and their weekly statistics.

4.4. PDRMA reliability analysis

The architecture, depending on the use case, may rely on only edge or cloud systems. Indeed, choosing to implement a complex
architecture composed of an edge, fog, and cloud system make it possible to compartmentalize any issues that arise while using the
monitoring system.

Edge system. Common problems with the edge system are related to connectivity for sensor data transmission and battery
consumption. The smartwatch enables transmission via two protocols BLE and HTTP. Thus, in case of network problems, data
is sent to the fog system via BLE. The fog system subsequently sends the data to the cloud. In case of inability to transmit the data
with both protocols, the smartwatch stores the data in its internal memory of 16 GB. If the smartwatch collects 24 MB/h of data, it
will collect 288 MB of data in 12 h, so we will have a large margin before it runs out of memory.

Fog system. The fog system ensures that even if the HTTP protocol of the edge system is unavailable, the doctor will still be able to
view data in real-time, thanks to transmission via BLE between the smartwatch and the smartphone. Also, in case the smartwatch
runs out of battery or has a malfunction, the patient will still be able to consult the therapeutic plan and fill out the motor diary
on the smartphone. However, the smartphone may also experience battery drain or connectivity problems, but data are retained
thanks to the large local storage.

Cloud system. In case of cloud system failure, data are preserved by the internal storage of the fog and edge system. Restored the
cloud service, the system can automatically recover pending transmissions and restore regular functionality.

5. Conclusions

In this paper, we proposed a general IoT architecture for real-time and continuous monitoring of patients in healthcare
applications. Following a thorough requirements analysis and the identification of the main issues and technological limitations,
we designed all the components (edge, fog, and cloud) and the architecture model needed for the continuous long-term monitoring
of frail people and patients.

As analyzed in this work, one of the main limitations is related to wearable devices, and in particular, smartwatches, when
extended time window monitoring is an application requirement, due to their limited battery life. The problem becomes more
pronounced if all sensors simultaneously collect data at high sampling rates. One solution is to decrease the sampling rate, but this
is not always possible, especially for medical applications. Indeed, it is unthinkable to decrease the sampling rate without losing
17
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crucial information for all data types. To solve this problem, we showed that by using a stable and energy-efficient transmission
technology (i.e. BLE) and including a proper data transmission policy, battery life can be significantly extended.

Eventually, since there are applications that require a direct connection between the edge and the cloud systems, we analyzed
lso this scenario. This type of architecture translates into implementation susceptible to higher battery consumption due to the
equired transmission methods. We demonstrated that the frequency of HTTP requests can impact the device temperature and this
ranslates into increased battery drainage. Daily battery life can be improved through the implementation of a temperature control
lgorithm that varies the frequency of HTTP requests thereby allowing the device to re-establish the ambient temperature.
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