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A B S T R A C T

Internet of Things (IoT) is envisioned as the interconnection of the Internet with sensing and actuating devices.
IoT systems are usually designed to collect massive amounts of data from multiple and possibly conflicting
sources. Nevertheless, data must be refined before being stored in a repository, so as information can be
correctly extracted for further uses. Knowledge fusion is an important technique to identify and eliminate
erroneous data from compromised sources or any mistakes that might have occurred during the extraction
process. We propose a new multisensor knowledge fusion heuristic (MKFH) for IoT supporting the knowledge
extraction and transfer needed to further knowledge management, also discuss the role of reinforcement
learning over integration on a multi-application wireless sensor/actuator network (WSAN). Results shows
that the proposed multisensor knowledge fusion heuristic is compatible with the IoT paradigm and enhances
integration.
. Introduction

The Internet of things (IoT) environments are composed of ordinary
hings attached to computational devices from which information re-
arding the thing and its environment may be gathered, shared, and
onsumed by information systems to allow smart services [1]. Indeed,
ome IoT environments are not only resource-limited but also produce
ata in low semantic levels. A vital challenge from the IoT paradigm is
o permit the discovery, access, integration, and analysis of knowledge
o enable appropriate entity linkage. Once converted into information,
ata may be used to make better decisions and improve management.
reasoning process may trigger preconceived actions by assessing the

nvironment to add meaning to its behaviour [2,3]. It may identify
ore optimal strategies by selectively applying preconceived premises

knowledge) to assesses a situation [4]. Thus, the ability to extract and
ransfer knowledge through a network is essential to enhance decision
aking. A classical approach for knowledge management process states

hat data generates information, information produces knowledge, and
nowledge yields wisdom [4,5]. From the network perspective, knowl-
dge comes from the process flow which maps information on how
n application influences other application’s decision making, with
ifferent purposes.

The purpose of an application can be decomposed from how an
pplication assesses the situation. Can be described as:

𝑥̂ ∈ [𝑎, 𝑏]|𝑟𝑒𝑞)∴𝑥̂ → 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 (1)

∗ Corresponding author.
E-mail address: gmartinsoc@gmail.com (G. Martins).

where 𝑥̂ is an estimate [𝑎, 𝑏] data interval, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 an action and 𝑟𝑒𝑞 is
its requirements. Data fusion exploit existing synergies on data to reach
better decisions. In a way, fusing information about environmental
state with contextual information regarding entities relationship allows
data fusion based algorithms to avoid contradictory and redundant
actions. When comparing with data fusion, Knowledge fusion considers
an additional dimension of errors made by knowledge extractors to
decide whether an extracted candidate is consistent with the real world.
On IoT scenarios it provides insight to decide whether an application
decision is consistent with the real world, also mapping the decision
experience from which the relation among applications derive as a
common attribute of the linked entities [6]. On knowledge fusion,
knowledge is usually represented as a graph [7,8] to represent entities
connected by its relations.

In IoT scenarios, a knowledge graph is structured data grouping
relationships among applications due to its reasoning process (Eq. (1)).
Derived from each execution of its decision making updating a rela-
tionship and producing a new instance of the knowledge graph. Newer
instances can be stored in a central data repository and used for future
analysis allowing knowledge graph refinement.

Reinforcement learning teaches machines by its interactions among
the agent, its environment, and the embedded ability to learn from
previous experiences [9]. Thus, applying reinforcement learning to
map the decision making results allows changing the decision making
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hypothesis on the fly. In short, the ability to extract and transfer
knowledge is based on how to learn from feedback selectively applying
knowledge from previous decision making experience.

We used a multisensor knowledge fusion heuristic (MKFH) on a
wireless sensor/actuator network (WSAN) scenario to apply knowledge
fusion. Based on MKFH, we introduced two algorithms and proposed
architecture as a context model for knowledge, paving the road forward
integrated knowledge management on IoT [6]. We do not yet address
the challenge of knowledge refinement and validation, indeed essential
to create more suitable knowledge graphs. Results are validated by
simulation and tests in real nodes.

2. Related work

Knowledge fusion is a way to unveil correlations in a data set [10,
11]. Dong [11] proposed a modelling technique for exploiting cor-
relations among sources and applying it in truth-finding. By using
conditional probabilities to express precision and recall metrics, it
proposes a function for the occurrence and reliability of a source. The
objective of their framework is to distinguish true and false triples in
a collection of source outputs. In our approach, we do not assume any
knowledge of the inner workings of the sources and how they derive
the data provided. In the context of WSAN and IoT, knowledge fusion
can be considered as a way to automatically distinguish correct data
and erroneous data for creating cleaner sets of integrated data [6].

Indeed, this is the case in practice for many real-world data sources,
such as sensors — they provide the data without telling us how it was
obtained. Also, even when some information on the data derivation pro-
cess is available, it may be too complex to reason about; for example, an
extractor often learns many patterns (e.g., temperature monitoring may
apply differently in a different environment) and uses internal coding
to present them; it is difficult to understand all of them when let alone
to reason and compare them across sources.

Similarly to [11] our MKFH searches for correlation between
sources concerning the rate at which the data is generated and pro-
cessed. Nevertheless, our heuristic is designed to accomplish that in
a resource constraining scenario such as WSAN. Instead of search for
provenance, we focus on how an action interacts with the environment
when another action is also eligible. In sense, allowing on the fly
knowledge transfer and extraction for IoT applications.

Graph-based representation of knowledge allowing map large net-
works of entities with their relationships their semantic types and
properties. Shi [8], presented a framework for triple-context-based
knowledge graph that incorporates triple context into the score func-
tion, evaluating while learning embeddings instead of using each triple
independently. It states that 𝐾 is a knowledge graph, 𝐸 and 𝑅 the set
f all entities and relations respectively in 𝐾. Each triple is denoted
s (ℎ, 𝑟, 𝑡), in which ℎ is a head entity, t is a tail entity and r is the
elation between h and t. That way, all possible relationships regarding
he head entity can be mapped with a knowledge graph depending only
n its path and neighbourhood context. The neighbourhood context of
n entity is the surroundings of it in a knowledge graph and the path
ontext is the set of paths that goes from a head entity to another one
n a knowledge graph. Thus, The triple context can be considered to
mbody the surrounding structures of the graph. In general, the score
unction of a triple is only related to the embeddings of entities and
heir relations. By maximizing the joint probability of all triples in
he knowledge graph, it defines an objective function that considers
nformation concealed by the graph structures. They adopt a score
unction and take advantage of negative sampling to approximate it
o full softmax functions, having two parts. The first one represents
he conditional probability that ℎ is the head entity given the triple
ontext and the second part is the conditional probability that 𝑡 is the
ail entity given the head entity h and triple context. The authors have
valuated this model on link prediction, results have shown significant

mprovements over the major baselines. However, for real data sets
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the size of neighbourhood context and path context may be very large,
which is computationally expensive.

The creation of manageable knowledge bases be to map contex-
tual and domain-specific information is a way for representing more
complex relationships that bind entities in a graph. Likewise [8], this
research model the information about how a decision agent evaluates
the environment as contextual information, using knowledge graphs
embeddings to map previous decision making experiences. However,
our integrated approach is designed for resource constrained envi-
ronments and allow knowledge extraction to map insight on how
coexisting application behave together, also transferring knowledge to
further integration among different applications. Thus, It enriches data
into knowledge to build knowledge graph instances and selectively
applies knowledge to enhance the integration of application decisions.

Widely used on the web, knowledge fusion is a way to represent
refined knowledge as a graph [7] representing large networks of en-
tities, their relationships, semantic types, and properties. By fusing
source, provenance, correlation, or consensual information, it considers
errors made by knowledge extractors to automatically decides whether
an extracted candidate is consistent with the real world. Dong [11]
knowledge fusion method search form correlation between sources
concerning the rate at which the data is generated and processed.
Shi [8] presented a way to model complex relations among entities on
a knowledge graph. Indeed, an important feature for supporting the
design of smart services and optimizing the design of smart environ-
ments. The large amount of low semantic level data is a vital challenge
for allowing refinement of vast knowledge bases and the attainment of
knowledge graphs.

3. Knowledge fusion

Knowledge fusion paradigm focus on the integration of information
and knowledge from multiple sources to produce less uncertainty,
more preciseness, and comprehensible knowledge, as well as revealing
hidden and missing knowledge [12–14].Which is expected to be used to
enhance decision making, as it may provide better insight and facilitate
the situation awareness [10,11,15]. Among the most relevant important
applications for knowledge fusion are:

• Intelligent search — Semantic search systems goals are to un-
derstand its users and return intelligent answers, in this do-
main knowledge fusion allows intelligent answers to rise from
knowledge.

• Knowledge repositories creation — by providing knowledge that
is machine-processable, more complete, less uncertain, and less
conflicting, knowledge fusion allows discovering innovative and
hidden knowledge needed for the creation and refinement of
knowledge repositories.

• Knowledge sharing — is a cycle for knowledge acquisition, con-
version, and applicability. In this domain, knowledge fusion al-
lows the recognition and combination of knowledge located and
extracted from multiple, distributed, and heterogeneous sources.

• Decision support — regarding semantic content, knowledge fu-
sion is a way to deal with massive amounts of heterogeneous data,
information, knowledge compiling it to be used by systems and
humans as the basis for decision making.

According to Smirnov [10] Knowledge fusion is widely used to
create and refine knowledge repositories. knowledge fusion systems,
usually, compute the correctness of a relation among entities based on
the agreement between different extractors and priors [7,8]. Dong [15]
focus on resolving conflicts from different systems using data fusion
inspired technique. By assessing knowledge information regarding how
the relationship among two entities are the triples, likewise, [subject,
fact, predicate] and associating them with a prior probability allowing
the creation or enhancing the completeness of knowledge graphs.
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4. Multisensor knowledge fusion heuristic

To set up the environment to execute the MKFH, physical nodes
perform hardware initialization, establish communication, initialize
all data structures required, and synchronize the WSAN. Its decision
making can be divided into the following eight steps:

step 1 — Identify the Decision Environment — the decision making
problem is decomposed according to the requirements of its
application mapping how it infers the environment state. In this
step, the network became aware of each situation are under
consideration, and the way to assess them.

step 2 - Acquire the Evidence: encompassing the acquisition of sample
data and the estimation of the environmental stare. It consists of
reading and adding meaning to the environment, by gathering
information regarding its temperature, humidity, luminosity,
and so on.

step 3 -Weight the Evidence: processing evidence from each applica-
tion. The evidence is evaluated from the application‘s perspec-
tive producing a set of alternatives (designed actions).

step 4 - Rate the alternatives: after reaching the set of all suitable
actions, it assesses which of them may produce undesirable
consequences.

step 5 - Make the Overall Decision: removes from the overall decision
every action that may produce undesirable behaviour.

step 6 - Take Action: deals with the deployment of the chosen actions.

step 7 - Revise Overall Decision: after a set of actions takes place the
environment may or may not react as expected, in each case,
triggering adjustments on the criteria to transfer knowledge.

step 8 - Update the belief system: whenever new criteria emerge
from reviewing a decision producing knowledge, it must trigger
strategies to transfer this knowledge through the network.

The outcome of step 8 is the way to approach knowledge extraction,
this is step generates a history of knowledge graphs instances. Each
one represents changes in the cost of choosing a specific action. Thus,
those changes when put together map the overall decision making
experience, which could be stored in a central repository for future
analysis. From this MKFH we introduce two algorithms, Pallas and
Ergane.

4.1. System model

Our system model follows one published in [6]. In short, the
WSAN is modelled as an undirected graph 𝐺 = (𝑉 ,𝐸), where 𝑉 =
𝑣1, 𝑣2,… , 𝑣𝑛) represents the set of sensor nodes and 𝐸 = (𝑒1, 𝑒2,… , 𝑒𝑚)

represents the set of all possible communication links among them. For
any given sensor node (SeN), 𝑉𝑖 in 𝑉 , 𝑖 denotes the index of the SeN
that belongs to the WSAN. The SeN is the basic sensing, preprocessing,
and actuating unit equipped with at least one physical sensing device
or one actuator device. Also, capable of providing one or more tasks
depending on capabilities to sample different types of data. All the SeN
in the WSAN has a valid communication path to reach the sink node
(SkN) which is the gateway between the WSAN and external networks
as the Internet. Each SeN stores sensed data in a fusion window data
structure (FW) that is an array of readings whose elements have the
signal level of abstraction.

For this work, an application is defined by its requisites and the
logic from which it assesses a situation (Eq. (1)). Thus, each Application
𝐴𝑖 has its requisites mapped as a tuple (𝑆𝑠𝑅,𝐴𝐴, 𝑇𝑃 , 𝐼𝑅, 𝐹𝑅,𝐶𝑟). 𝑆𝑠𝑅

is a user-defined variable used to characterize the sensing capabilities t
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provided by a given node. 𝑆𝑠𝑅 denotes the data receiving/sensing
rate, meaning the time interval between consecutive readings. 𝐴𝐴
means the application’s action used to interfere in the environment. The
𝑇𝑃 (Type) element denotes the type of monitored variables, such as
temperature, humidity, current, and several others. 𝐼𝑅 and 𝐹𝑅 denote
the initial (𝐼𝑅) and final (𝐹𝑅) values of the application data range.
Finally, 𝐶𝑟 is a flag. To summarize, if set to true, the application is
critical meaning that its decision making fails whenever it does not
reach a decision within a time threshold. Thus, a decision reached on
the SeN is final and must bypass the integration procedure.

4.2. Decision context

Context and situation are defined concerning agents and their given
purpose. Context is domain specific and defines which situations are
under consideration, as situation derives from the perception of the
environment state. According to Devlin [16], a feature F is contextual
for an action A if the feature F constrains A, and may affect the outcome
of A, but is not a constituent of A". Therefore, context premises can
be seen as a set of constraints used to reason about a situation. So,
contextual information is usually seen as a set of variables or external
constraints used to bind entities, attributes, and entity relationships.

As a context-specific information, knowledge can improve situation
assessment [6], providing insight and understanding into situation
assessment [4,5]. Our contextual model embeds knowledge into au-
tonomous decision making by representing it with a Knowledge Data
Structure (KDS):

[𝜋𝑖(𝑎|𝑠);𝜋𝑗 (𝑎′|𝑠); 𝑓 (𝑠′|𝑠, 𝑎); 𝑞(𝜋𝑖(𝑎, 𝑠))] (2)

here, 𝜋𝑖(𝑎|𝑠) is an application 𝑖 action provoked by the state 𝑠; 𝜋𝑗 (𝑎′|𝑠)
s an application 𝑗 action provoked by the state 𝑠; 𝑓 (𝑠}|𝑠, 𝑎) function for
he expected transition from state s under action 𝜋𝑖; 𝑞(𝜋𝑖(𝑎, 𝑠)) value of
aking action 𝜋𝑖(𝑎) in state s when action 𝜋𝑗 (𝑎′) is also eligible.

.3. Neighbourhood context

In a multiapplication WSAN, a decision agent assesses environmen-
al readings triggering actions regarding the requisites of the applica-
ion. A relationship between coexisting applications (𝑟) is constituted
y all facts among its actions. A fact derives from the decision mak-
ng experience mapping how an action (𝜋𝑖(𝑎)) of an application (𝜋𝑖)
nterfere with other application (𝜋𝑗) decision making. Considering that
n application is an entity in a graph, an application neighbourhood
ontext is its surroundings in the knowledge graph. The knowledge
uple interlinks actions (𝜋𝑖(𝑎, 𝑠);𝜋𝑗 (𝑎′, 𝑠)) of different entities (applica-
ions) through a fact (𝑓 (𝑠′|𝑠, 𝑎); 𝑞(𝜋𝑖(𝑎, 𝑠))). So, The application context
C represented as a knowledge graph K is:

𝐶(𝜋𝑖) = 𝑔(𝑟, 𝜋𝑗 |𝜋𝑖(𝑎), 𝜋𝑗 (𝑎′))∀{𝜋𝑖, 𝜋𝑗 , 𝑓𝑎𝑐𝑡} ∈ 𝐾 (3)

The graph neighbourhood in Fig. 1 reflect many entity’s purpose as-
ects, such as the goals of 𝜋𝑖, what intersections 𝜋𝑖 decision making has
ith an 𝜋𝑗 , which are possible constructive and destructive interactions

an exist among them.

.4. System architecture

Since this study is an extension of Athena algorithm [6], it presents
he architecture shown in Fig. 2 to guide implementation of the Athena
ore Algorithms from our MKFH.

Knowledge consists of facts, rules, representations, and conceptu-
lizations regarding an observed phenomenon [17]. When comparing
ith data fusion, Knowledge fusion considers an additional dimension
f errors which is used to map context. While data fusion plays a vital
ole in enhancing data in low semantic level into decisions, knowledge
usion deals with the risk of combining these decisions concerning

he ownership of the decision in time. To combine data fusion and
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Fig. 1. Knowledge graph example.

Fig. 2. Logical architecture.

nowledge fusion we need to isolate both processes without losing the
ecision context. To accomplish that we use the concept of knowledge
xtractors to link local decisions to its owner as it oversees the overall
ecision-making process.

Our architecture is designed with a layered architecture pattern
ith three tiers represented by the following subsystems: (i) data

usion subsystem, (ii) extractor subsystem and (iii) knowledge fusion
ubsystem.

Data fusion subsystem is responsible for the decisions deployment.
It collects environmental readings and exploits synergies among
them, in a way to transform them into data with a higher
abstraction level.

i Extractor subsystem provides connection and interoperability
among SkN, actuators and SeNs. It manages the flow of infor-
mation throughout the decision making process. It is composed
of extractors, and function as a source of information for both
data fusion and knowledge fusion components.

ii Knowledge fusion subsystem handles an integrated reasoning
process and knowledge extraction. In a way, it revises the de-
cision making hypothesis and selectively applies contextual in-
formation to enhance the decision experience.

The decision making starts with the application’s arrival through the
nowledge base update component, which populates knowledge struc-
ures, deploys the application’s logic, and synchronizes the WSAN. The

SAN gets this information through control messages receipt by the

xchange manager component to set up the preprocessing component.

193
Fig. 3. SkN deployment architecture.

The preprocessing component gathers environmental readings pro-
cessing them into higher levels of abstraction, enhancing their meaning.
This enhanced information is sent to the knowledge base update com-
ponent with the aid of the exchange manager component. Then, the
base update component deals with the arrival of information, in a way
to allow extraction of newer knowledge instances on the learning com-
ponent and integrated decision making on the integration component.
The learning component revises the decision making hypothesis and
handles its new parameters to be stored by the knowledge base update
component. The integration component reaches an overall decision.
With aid from the knowledge base update component, the overall deci-
sion is sent to the exchange manager component. Which decomposes it
into actions and handles it to an actuator component or a preprocessing
component, whose must deploy such action.

4.5. Deployment architecture example

Regarding an example for centralized deployment, WSAN consists
of a sink node (SkN), several sensor nodes (SeN), and actuators. SkNs
are high-end devices acting as exit points from WSAN, SeN nodes
contain sensor units and are low-end devices powered by batteries,
and actuator nodes are responsible to interfere with the environment
according to the application’s design. The SkN contains the integration
component, learning component, and knowledge base component. The
deployment for a SkN follows Fig. 3 diagram. Thus, they are responsible
to perceive environmental conditions and to enhance their semantic
level of abstraction. SeN contains the exchange manager interface and
preprocessing component. The deployment for a SeN follows Fig. 4
diagram. Actuator nodes contain the exchange manager interface and
actuator component. The deployment for Actuator nodes follows Fig. 5
diagram.

An important challenge for integrated knowledge discovery and
management on IoT is how to extract knowledge regarding its ap-
plications decision making [4,18]. A vital constrain for knowledge
extraction in IoT systems derive from the vast amount of data in
low semantic levels of abstraction gathered by this systems [18,19].
As an MKFH for IoT is an approach towards integrated knowledge
management on IoT. It benefits from the Knowledge fusion paradigm to
propose a way to exploit synergies from the outcomes of an application
decision making, allowing the creation of knowledge repositories from
the decision making experience. Thus, this section models the structure
behaviour proposed to combine data fusion, learning, and knowledge
extraction techniques on IoT scenarios.

Since MKFH derive from an improvement of [6] its algorithms were
implemented based on Athena algorithm and we will address them as
Athena and Ergane Athena. They also intended to run on a resource-
constrained scenario using well-known data fusion, decision-making
techniques, and a very simple reinforcement learning approach to pave
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Fig. 4. SeN deployment architecture.

Fig. 5. Actuator deployment architecture.

he road to bolder and complex approaches. Both, Pallas and Ergane de-
ompose the local decision making of their applications into two stages.
tage one occurs on the preprocessing component and focuses on the
ecognition of events of interest in a resource-constrained environment

to transform data in low semantic level (signal data) into decisions.
he major difference between Pallas and Ergane is the way they in-
tance the data fusion model. Ergane completely decouples the logic of
ts applications from the sensing infrastructure, Pallas SeNs have to be
ware of how an application assess the environment. As consequence,
hile Ergane is a step forward to decentralized decision making, Pallas

an take into account if an application is critical allowing it’s SeNs to
ecide and act regardless of any integration. Stage two focus on how
he integration among the applications works as the learning agent
evise its hypothesis. While Pallas completes the data fusion cycle by
eaching a vector of local decisions, Ergane extractor subsystem has
o oversee a decision–decision fusion by consulting the application for
heir decision.

.6. Athena overview

The execution starts on the knowledge base update component by
aking the WSAN aware of the active applications — requisites and the

ogic from which it assesses a situation (Eq. (1)). The same component
heck for available knowledge data structures to initialize and popu-
ate the structures which map the decision context (Section 4.2) and
ynchronize the WSAN making it operational which ends the Identify
he Decision Environment step.

Step 2 (Acquire the Evidence step) start with the execution of the
eN monitoring cycle in the Preprocessing component. In a way, the
eNs collect singular pieces of data (signal level of abstraction), popu-
ate a fusion window (pixel level of abstraction), and step 3 (Weight the
194
Evidence) process it into a time-driven summary of the environment
condition (feature level of abstraction). On the next step (Rate the
alternative), the application logic is consulted to reach the decision
level of abstraction by choosing which actions are eligible (Eq. (1)).
However, since different applications assess the situation accordingly to
their own design, conflicts may emerge producing undesirable results.

To mitigate possible conflicts the Integration component assesses
another dimension of the problem and uses the provenance and the de-
cision context to remove actions that are associated with a destructive
relationship - a decision whose the risk of deploying them surpasses
the risk of not deploying them. That way, the output of step 5 (Make
the Overall Decision) is a set of decisions that are suitable and represent
minimal risk — the overall decision. Then, the Take Action step deploys
the overall decision to the WSAN, under the assumption that it will
change the environment behaviour as represented in the Knowledge
Data Structure.

Step 7 (Revise Overall Decision) take place at the Learning compo-
nent to evaluate if the overall decision has changed the environment
behaviour as expected — transition described by 𝑓 (𝑠′|𝑠, 𝑎) in the KDS.
The Learning component report to the Knowledge Base Update compo-
nent which adjustments must occur on the existent knowledge struc-
tures criteria. After making the suitable adjustments the Knowledge
Base Update component sends the new instance of the neighbourhood
context to external networks.

4.7. Athena core

Aware of the application requisites, the execution of a data fusion
Procedure starts reaching estimates. Then, applications consume the es-
timates to evaluate the environment reaching decisions and calculating
their probabilities. After that, a knowledge fusion procedure revises
reached decisions and its hypothesis reaching the overall decision
which is sent to physical nodes to deploy its actions. Athena core
procedure can be described by the following (Algorithm 1):

Algorithm 1 Athena Main Procedure
Require: Knowledge Set KDS= (k1,..,kn);

New application Set NAS = (A1,..,An).
Ensure: Overall decision set ODS= (od1,..,odn).
1: procedure Pallas(KDS,NAS).
2: if NAS is empty then
3: Apply Preprocessing Procedure
4: Exchange Manager Procedure
5: Apply Learning Procedure
6: Apply knowledge base Update Procedure
7: Apply Integration Procedure
8: Send ODS to SeN
9: end if

10: if NAS is not empty then
11: Apply knowledge base Update Procedure
12: end if
13: end procedure

4.8. Pallas athena

Pallas SeN executes the Moving Average Filter (MAF) algorithm
found on [2] to reach estimates. Then, applications consume the es-
timates evaluating them regarding their requisites, in a way reaching
decisions and calculating its probabilities. At the SkN the learning step
evaluates the previous execution modifying the costs value through
a reinforcement learning approach. A change on a knowledge tuple
element triggers the knowledge base update procedure. After that, the
integration procedure processes a set of Bayesian hypothesis tests to
decide which decisions must compose the overall decision. Which are
sent to the physical nodes capable of deploying these actions.
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4.9. Pallas data fusion subsystem

Pallas data fusion subsystem occurs only on SeNs and is responsi-
ble for acquiring environmental information, assess its situation, and
deploy actions accordingly. The preprocessing component implement
Steps 2 (Acquire the Evidence) and 3 (Weight the evidence) and the
Actuator component implements Step 6 (Take Action). The prepro-
cessing procedure (algorithm 2) periodically triggers the sensor unit
collecting (line 1) a sample of the environmental condition (signal-
level information). These environmental readings are stored in a Fusion
Window data structure. The pixel level is achieved by populating FW.
In possession of a pixel (a vector of samples), an estimate of the
environment state is reached, which has a feature level of abstraction.
Then, Pallas consult its applications that evaluate which action is
required, reaching a decision level of abstraction (line 5). Then, the
Cr flag is checked, if Cr is true the action is instantly deployed. After
reaching a decision the SeN calculates a probability for generating the
decision. In a way, each value of 𝑥̂ is an observed value of random
variable 𝑋, meaning the sensed data has triggered action. So there
is a probability function that describes the probability of the MAF
outcome trigger that action [20]. Finally, a symbol (also decision level
of abstraction) composed by the MAF outcome and a probability set is
compiled into a message in a way forming an occupancy grid feature
map described at [2]. The SeN and sent (line 6) to the SkN. Then
the SeN enters the power-saving state (line 7) until the next sampling
time to decrease the energy consumption. An Actuator procedure is
responsible to deploy each decision by triggering actuator units to
interfere with the environment accordingly.

Algorithm 2 Pallas Preprocessing Procedure
Require: Application set A = (a1,..,an).
Ensure: Decision set D;
1: procedure Preprocessing(A)
2: Collect ESD (environment sample data) ⊳ signal level
3: populate FW ⊳ pixel level
4: Apply MAF ⊳ infer the environment feature
5: for each application do
6: Consume MAF output ⊳ decision Level
7: if Cr is True then
8: Append D to ODS
9: send ODS to exchange manager procedure
0: end if
1: Calculate probabilities
2: end for
3: Compile D
4: Send D to SKN Procedure
5: Sleep for SsR time
6: end procedure

4.10. Pallas extractor subsystem

Pallas extractor subsystem is responsible to deal with the exchange
of information among SkN, SeNs, and external networks. The Knowl-
edge Base Update Component implement Steps 1 (Identify Decision
Environment) and 8 (Update Belief System) and the Exchange Manager
component implements Steps 1 (Identify Decision Environment). The
knowledge base update procedure described in algorithm 3 runs on the
SkN and is triggered by (i) application arrival, (ii) new version of the
knowledge base availability, (i) the receipt of a symbol from SeNs, and
(iv) new knowledge produced on learning procedure.

Concerning the case (i) when an application arrives in the network
(line 2), this procedure receives the knowledge tuple that complete
the knowledge base (line 4), the applications requisites, and its rules.
After that, Pallas checks the received knowledge tuple (KDS). When
a knowledge tuple is invalid. Pallas algorithm set a standard tuple in
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which the cost (C) is set equal to one and the ES is set to ‘‘equal’’.
Whenever all knowledge tuple is considered valid, the knowledge base
update procedure deploys the application’s logic into the network (line
7). This procedure also synchronizes the WSAN (line 8).

In case (ii) a new version of the knowledge base is available (line
10), This procedure receives the new version from outside the network
and updates the knowledge base with the newer knowledge tuple (line
11). Case (iii) occurs from symbol receipt from SeN, which triggers the
retrieval of information need by the integration procedure and learning
procedures In case (iv), the Knowledge Base Update Procedure updates
the value of a cost at the knowledge tuple (line 11) to meet the output
of the Learning Procedure (lines 10 and 18).

Algorithm 3 Pallas Knowledge Base Update Procedure
Require: Overall Decision set ODS,

Communication links E = (e1 ... , em),
New Application set NAS = (na1,..,nan),
New Knowledge set NK = (nk1,..,nkn),
New Cost set NC= (nc1,..,ncn),
Decision set D.

Ensure: Knowledge set KDS =(k1,..,kn);
1: procedure KB Update(NAS,NK,NC,D,E,ODS)
2: if NAS is not empty then ⊳ deal with new application
3: for each element in NAS do
4: Update KB ⊳ Knowledge base completeness
5: Prepare A
6: end for
7: Deploy A on WSAN ⊳ deploy application’s logic
8: Synchronizes WSAN
9: end if
0: if Nk is not empty then ⊳ new knowledge available
1: Update KB ⊳ updates the Knowledge base
2: end if
3: if D is not empty then
4: for each element in D do
5: get KDS ⊳ get relationship among actions
6: end for
7: Call Learning Procedure
8: Call Integration Procedure
9: end if
0: if ODS is not empty then
1: Send ODS to SeN
2: end if
3: end procedure

The Exchange Manager procedure (algorithm 4) occurs on the SeN
set the sample periodicity to meet application’s requirement and han-
dles all information exchange among SkN and SeNs.

4.11. Pallas knowledge fusion subsystem

Pallas Knowledge Fusion subsystem occurs on SkN and is respon-
sible to reach the overall decision and revise de decision hypothesis.
Pallas learning component implements Step 7 (Revise Overall Decision)
and the integration component implements steps 4 (Rate the Alterna-
tives) and 5 (Make The Overall Decision). Pallas learning procedure
(algorithm 5) adapt reinforcement learning to change the hypotheses
cost on the fly. It portrays the success or failure of the last overall
decision by comparing the expected state with the current decision
set (line 3). If the inferred state is equal to the expected state, the
overall decision was successful and the costs involved in it must be
lowered. Otherwise, the overall decision was a failure, so the costs must
be raised. That way, a reward (Eq. (11)) mapping positive or negative
feedback is applied to change the cost value. So, the Learning procedure
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Algorithm 4 Pallas Exchange Manager Procedure
Require: Application set A = (a1,..,an)

Communication links E = (e1 ... , em),
Overall Decision set ODS.

Ensure: Decision set D.
1: procedure Exchange Manager(A,E,ODS)
2: if A is not empty then
3: set monitoring requisites
4: Call Preprocessing Procedure
5: end if
6: if A is empty then
7: send D to SkN
8: end if
9: if ODS is not empty then

10: send ODS to actuators
11: end if
12: end procedure

result is a calibration for a decision expected loss, an update of the
beliefs involved in the decision making as a consequence of revising
the way a decision was made.

A cost maps an action relationship. This way, higher costs indicate
higher expected losses resulting from interference. Thus, bigger costs
must lead to smaller changes resulting from an experience. For this rea-
son, the cost increment is inversely proportional to the prior knowledge
about the relationship. However, this characteristic makes it possible to
output extremely large increments whenever the cost is small. They, in
turn, may lead to the undesired behaviour of the algorithm. To solve
this problem a specialist may set a proper upper limit for the increment
value (SL).

Algorithm 5 Pallas Learning Procedure
Require: Decision set D = (d1,..,dn),

Knowledge set KDS =(k1,..,kn),
Last MAF output = last_E,
Current MAF output = current_E.

Ensure: New Cost set NC= (nc1,..,ncn),
Decision set D = (d1,..,dn).

1: procedure Learning(D,KDS,last_E,current_E)
2: for each element in D do
3: distance = current_E - last_E
4: Compare distance with ES
5: Apply Reinforcement
6: end for
7: last_E = current_E
8: Call Knowledge Base Update Procedure
9: end procedure

In the integration procedure, the overall decision is reached by
hoosing the set of actions that lead to a smaller risk for the network.
n a way, the decision set with lower loss is achievable by mitigating
he contradiction or redundancy within the elements of this decision
et. Let us Consider a set up composed of two applications 𝐴 = 𝜋𝑖, 𝜋𝑗 .

Whenever an environmental reading belongs to an interest region for
𝜋𝑖 and 𝜋𝑗 , Pallas decision making process unfold into tree possible
utcomes: both decisions are right (i), one decision is right and the
ther is wrong (ii) and both decisions are similar (iii). Regarding case
i) both decisions must take place, will be a cost resulting from not
pplying one of them. In case (ii) the right decision must be deployed
nd the wrong discarded. Finally, in case (iii) only one of them must
e deployed, will be a cost resulting from applying them together.

Thus, Pallas assumes that its applications are trying to decide which
ctions are a better fit a monitored environmental behaviour. At algo-
ithm 2, Each application has compared the observed environmental
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Algorithm 6 Pallas Integration Procedure
Require: Decision set D = (d1,..,dn),

Knowledge set KDS =(k1,..,kn),
Current MAF mean = current_E,
Probabilities set P = (p1,..,pn).

Ensure: Overall decision set ODS.
1: procedure Integration(D,KDS,current_E,P)
2: for each element in D do
3: Calculate risk scores
4: if RiskH0 <= RiskH1 then
5: Add decisions in ODS
6: end if
7: end for
8: Prepare ODS
9: Call Knowledge Base Update Procedure

10: end procedure

Algorithm 7 Ergane Preprocessing
Require: Sensing rate SsR.
Ensure: Feature map FM;
1: procedure Preprocessing(SsR)
2: Collect ESD (environment sample data) ⊳ signal level of

abstraction
3: populate FW ⊳ pixel level
4: Apply MAF ⊳ feature level
5: Compile FM ⊳ decision level
6: Send FM to exchange manager procedure
7: Sleep for SsR time
8: end procedure

reading with its requisites and should opt to interfere or not interfere
with the environmental conditions. At algorithm 5, Pallas adjusts the
integration hypothesis, by changing the costs involved in previous
integration. This revision modifies the context in which the overall
decision was made, as well as maps it with a new instance of the knowl-
edge graph. At algorithm 6, Pallas assess the risk of every application
decision, as well as compiles the least risky one into an overall decision.
This step mitigates contradictions and redundancies, as such actions
represent losses over the decision experience. However, to reach de-
centralized decisions allowing to deal with critical applications, Pallas
preprocessing step is not fully decoupled from its knowledge fusion
step. Addressing this feature we introduce another algorithm, called
Ergane.

4.12. Ergane athena

Different from Pallas, Ergane approach completely decouples the
WSAN from its applications. So, SeN does not gain knowledge about
the requisites of Ergane’s applications, acting only as a collector node.
Instead, the SkN configures a sample time period meeting the most de-
manding application. Periodically, by executing the data fusion proce-
dure, Ergane’s SeNs reach symbols. Which are compiled into a message
and sent to the SkN (line 2). This approach does not deal with critical
applications, so all applications must became integrated before reach-
ing a decision. After configuring a sample periodicity and the WSAN
is synchronized, Ergane preprocessing procedure starts. Its execution
occurs only at the SeN and implements a data fusion algorithm. At
the SkN, first, the learning procedure (line 3) uses the information
gathered from the last execution of the decision making to generate a
new instance of the knowledge graph through a reinforcement learning
approach (line 4). After that, Acting as a decision node the SkN prepare
the symbols to be consumed by the applications reaching decisions. The

integration procedure calculates a probability for the symbol to trigger
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each decision. Then, apply the Bayesian hypothesis test to integrate the
application’s decisions forming the overall decision (line 5). Finally,
integrated decisions are sent to physical nodes capable of acting, in
turn, deploying the overall decision (line 6).

4.13. Ergane’s data fusion subsystem

Ergane’s data fusion subsystem occurs only on SeNs and is composed
of a preprocessing component that implements Step 2 (Acquire the
Evidence) and an actuator component that implements Step 6 (Take
Action). Ergane preprocessing procedure found on Algorithm 7 occurs
on SeN periodically triggering the sensor unit to produce a sample of
the environmental condition (signal-level information). The pixel level
is achieved by populating FW. In possession of pixel data (a vector of
samples), Athena applies a Data Fusion method (line 2), which output
has a feature level of abstraction and is a mean of FW. Finally, this
output is compiled into an occupancy grid feature map [2] containing
estimates for the monitored physical phenomena. That way, Ergane
reaching a symbol with a decision level of abstraction. An Actuator
procedure is responsible to deploy each decision by triggering actuator
units to interfere with the environment accordingly.

Algorithm 8 Ergane’s Knowledge Base Update Procedure
Require: Overall Decision set ODS,

Communication links E = (e1 ... , em),
Application set A = (a1,..,an),
New Knowledge set NK = (nk1,..,nkn),
New Cost set NC= (nc1,..,ncn),
Feature map FM.

Ensure: Knowledge set KDS =(k1,..,kn);
Decision Set D,
Probability Set P.

1: procedure KB Update(A,NK,NC,FM,E,ODS)
2: if NAS is not empty then ⊳ deal with new application arrival
3: for each element in NAS do
4: Update KB ⊳ ensures Knowledge base completeness
5: Prepare A
6: end for
7: Deploy A on WSAN ⊳ deploy application’s logic on SeNs
8: Synchronizes WSAN
9: end if
0: if Nk is not empty then ⊳ new knowledge available

11: Update KB ⊳ updates the Knowledge base
12: end if
13: if FM is not empty then
14: for each element in A do
15: for each element in FM do
16: Append decision to D
17: Calculate Probabilities
18: get KDS ⊳ get relationship among actions
19: end for
20: end for
21: Call Learning Procedure
22: Call Integration Procedure
23: end if
24: if ODS is not empty then
25: send ODS to SeN
26: end if
27: end procedure

4.14. Ergane’s extractor subsystem

Ergane extractor subsystem is responsible to deal with the exchange
of information among SkN, SeNs, and external networks. The Knowl-
edge Base Update Component implement Steps 1 (Identify Decision
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Environment) and 8 (Update Belief System) and the Exchange Man-
ager component implements Steps 1 (Identify Decision Environment).
In a way, the Knowledge Base Update procedure starts when (i) an
application arrives in the network, (ii) a new version of the knowledge
base is available, (iii) a new knowledge graph instance is extracted, and
(iv) an application reach a decision. The case (i) populate knowledge
structures add completeness for the knowledge graph (line 4) if a KDS
is invalid Athena algorithm set a standard tuple in which the cost (C)
is set equal to one and the ES is set to ‘‘equal’’. After that, the de-
ployment of the application’s most demanding sensing rate parameter
occurs through a set of control messages (line 7). Then, the WSAN is
synchronized (line 8). In case (ii) the knowledge graph is fully updated
(line 11), upon the receipt of a new version from outside the network
(line 10). Case (iii) occurs as a consequence of the leaning procedure
(line 10). The value of a cost C is updated (line 11). Case (iv) occurs as
preparation for the integration step and is responsible to retrieve the
KDS tuples related to the application’s decisions (line 18).

Ergane’s Exchange Manager procedure implements (algorithm 9)
occur on the SeN setting sample periodicity to meet application’s
requirement and handling all information exchange among SkN and
SeNs.

Algorithm 9 Ergane Exchange Manager Procedure
Require: Overall Decision Set ODS,

Sampling rate SsR,
Communication links E = (e1 ... , em);

Ensure: Feature map FM,
Overall Decision Set ODS.

1: procedure Exchange Manager(SsR,E,ODS)
2: if SsR changes then
3: set monitoring requisites
4: Call Preprocessing Procedure
5: end if
6: if SsR does not change then
7: Call Preprocessing Procedure
8: end if
9: if FM is not empty then
0: Send FM to SkN
1: end if
2: if ODS is not empty then
3: send ODS to actuators
4: end if
5: end procedure

4.15. Knowledge fusion subsystem

Ergane’s knowledge fusion Subsystem occurs on the SKN imple-
menting Steps 4 (Rate Alternatives), 5 (Make Overall Decision), and 7
(Revise Overall Decision) from the MKFH. Ergane learning procedure
applies the reinforcement learning approach described in algorithm 10.

The integration procedure (algorithm 11)receive a feature map as
input, then it consult the applications reaching decisions and calculat-
ing probabilities for each decision. These decisions are combined with
knowledge to produce the overall decision mitigating redundant nor
contradictory actions.

Likewise in Pallas, let us Consider a setup composed of two applica-
tions. When an environmental reading belongs to an interest region an
application will add an action to a decision set D. Ergane’s overall deci-
sion aims to be least costly and most beneficial as possible. Therefore,
whenever a reading triggers two applications to add an action in D.
Both actions are right and must be deployed. One Action is right and the
other is wrong or both decisions are similar, in each case, only one of
them must be deployed. To reach an overall decision, Ergane calculates
the probability of a decision is right and performs a hypothesis test for

each Action in D.
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Algorithm 10 Ergane Learning Procedure
Require: Feature map FM,

Knowledge set KDS =(k1,..,kn),
Last MAF output = last_E,
Current MAF output = current_E.

Ensure: New Cost set NC= (nc1,..,ncn),
Feature map FM.

1: procedure Learning(D,KDS,last_E,current_E)
2: for each element in FM do
3: distance = current_E - last_E
4: Compare distance with ES
5: Apply Reinforcement
6: end for
7: last_E = current_E
8: Call Knowledge Base Update Procedure
9: end procedure

Algorithm 11 Ergane Integration Procedure
Require: Decision set D,

Probability set P,
Knowledge set KDS =(k1,..,kn).

Ensure: Overall decision set ODS.
1: procedure Integration(FM,P,KDS)
2: for each element in FM do
3: Reach application’s decisions
4: Calculate risk scores
5: if RiskH0 <= RiskH1 then
6: Add decisions in ODS
7: end if
8: end for
9: Prepare ODS

10: Call Knowledge Base Update Procedure
11: end procedure

5. Use case implementation

This topic describes the elements applied to develop a prototype to
evaluate our MKFH when applied on a hypothetical Smart Grid scenario
found in [21–23].

5.1. Motivating scenario

From the IoT point of view, the Smart Grid concept aim increasing
efficiency in the delivery of electric power [24,25]. According to Mo-
moh [24] Smart Grids are a self-healing network which uses real-time
measurements to increase reliability and to improve assets management
for an electric grid. By allowing on the fly monitoring, the employment
of WSANs on Transmission towers support integrated management of
the electric power distribution networks concerning the Smart Grid
physical integrity and supply–demand balance [25].

In [22,23], a smart grid scenario was represented with two applica-
tions sharing communication and sensing infrastructure as described in
Section 5.2. According to [26], increasing loads of the power lines had
become an issue of great importance, indeed, as the load increases more
electricity turns into heat making high temperature values evidence of
energy waste and potential operational failures. Thus, knowledge about
the power line temperature is an important feature for making decisions
about how to manage the power line’s load. Also, batteries are used
as a solution to unexpected peaks in the electricity demand. However,
batteries may also overheat and cause structural damage to towers.

Our proposed scenario, transmission towers are electric power trans-
mission towers endowed with a redundant energy storage system (local
batteries) and sensors understood as a computational agent capable
198
of autonomous decision making and action. Also, the temperature
behaviour on the power line and the battery can affect the monitored
temperature of each other. On transmission towers with manageable
redundant battery system, on temperatures at 75 ◦C the power line
reaks [26], the safe line temperature is around 40 ◦C–65 ◦C and the

usual battery temperature goes from 40 ◦C–144 ◦C [26].

5.2. Applications description

Aligned with this hypothetical scenario, a smart grid composed of 4
power lines and a redundant battery system was considered. The OPLM
application goal is to preserve the power line health and optimize
the amount of energy transmitted. The presence of overheating in the
overhead power lines could endanger them. Batteries are seen as a solu-
tion to mitigate transmission failures, solving unexpected peaks in the
electricity demand and avoid damaging the battery due to overheating.
Regarding thermal models in [27], the applications decision making
problem could be decomposed into 4 situations as follows:

• Situation 1 (S1) maps a condition in which the power line and the
battery condition is considered normal, in a way the temperature
does not indicate imminent risk. For this situation temperatures,
readings are expected to vary from 40◦𝐶 to 65◦𝐶. To conclude,
the OPLM and battery application should not interfere with the
environment.

• Situation 2 (S2) maps the condition in which only the power
line is operating on a critical state, but temperature readings
do not indicate imminent risk for the battery. For this situation
temperatures, readings vary from 65◦𝐶 to 75◦𝐶, implying that
OPLM application must reduce the amount of energy transmitted
on the power line.

• Situation 3 (S3) maps a condition which the power line is operat-
ing normally and the battery is operating on a critical state. That
way, the temperature is being affected by the battery condition.
At this situation temperatures, readings vary from 75◦𝐶 to 144◦𝐶.
Thus, only the battery application should act, switching its energy
storage system.

• Situation 4 (S4) maps a condition in which the temperature in-
dicates the power line and battery failure. For this situation tem-
peratures, readings are expected to vary from 144◦𝐶 to 300◦𝐶.
Implying failure, so the energy load should be redirected and both
systems shutdown.

For situation 3 the OPLM application decision standalone is con-
radictory, by implying imminent damage on the power line when the
emperature change is a function of a battery overload. Situation 4
resent behaviour in which both applications could decide properly,
owever a combined decision from both application waste energy.
hat way, this implementation considers that only the OPLM decision
pplication must apply for situation 4.

.3. Environment description

The experiment was conducted on real and virtual Zolertia Z1
latform. Z1 nodes are endowed with 8 kB of RAM, 128 kB of flash
emory for program storage, 1 Mb for data storage and are powered by
800 mAh Li-ion battery. Our Algorithm was built by using Contiki OS
.7 [28]. Regarding the WSAN, is composed of 8 SeNs, 1 actuator node
nd 1 SkN. Its SeN can play the role of either a fusion node or a collector
ode, where the collector nodes are responsible for collecting data and
he fusion nodes are responsible for applying the MKF algorithm and
o manage all SeNs within the system. In this theoretical scenario,
ach power line has two sensor nodes, embed two temperature sensor
nits [21]. In a way, each collector node gathers four temperature
eadings, all simulations consider that at least one reading is wrong.
ach sensor node has an implementation of the rime communication
tack.



G. Martins, S.G. de Souza, I.L.d. Santos et al. Computer Communications 176 (2021) 190–206

w
s
l
o
o
b
E
e
t
s
9

5

s
T
a
l
u
l
s
t
m
d
a

i
b
t
s
r
o
r
g

5

w
s
w
c
n
c

m
a

A
a
n
p
s
d
p
d
s
s
c
s
d
c
a
a
w
i
o
o
v
u

𝑥

All simulations run on an Instant Contiki 2.7, a virtual environment
ith a single-core processor and 1 GB RAM and memory used Cooja

imulator, an accurate and scalable simulator for WSAN [29,30]. Simu-
ations considered three experiments setups. First, setup E1 assessed the
verhead in terms of resource consumption, then E2 and E3 assessed
ur MKFH in terms of its decision making accuracy. Setup E2 set a
aseline for comparing our algorithms with MAF [2,23] and setup
3 assessed the accuracy as a function of a value function. Each
xperimental setup executed simulations regarding the conditions of
he situations described in Section 5.2. For each situation, simulations
ustained at least 1 h and repeated to reach a confidence interval of
5% for its results.

.4. Experiment constrains

The development of the experiments unveiled two important con-
trains. First, the Smart Grid scenario deals with high temperatures.
hus, it was unfeasible to reproduce the physical conditions described
t Section 5.2 on a laboratory environment. A way to overcome this
imitation was the adoption of a simulation methodology which grad-
ally input temperature readings for each sensor unit. The second
imitation derives from the fact that by generating data for the de-
cribed scenario, is unfeasible to determine when error derives from
he environment model, from environmental changes or due hardware
alfunction. Also, for the situations described in Section 5.2, erroneous
ecisions occur more often as the environment temperature reaches the
pplication’s critical region boundaries.

Regarding the second limitation, experiments used thermal models
n [27]. Thus, the initial temperature was set at 40 ◦𝐶, the interval
etween samples were set to 15 s. As the simulation advances, the
emperature increases and a random error limited is added by the
ensor unit precision. Also, to map possible transitions, at least one
eading of the fusion window is generated randomly outside the range
f the considered situation. This approaches may not always represent
eal applications, however, the diversity provided is sufficient for this
roup of experiments as explained in [23,31,32].

.5. Metrics

To evaluate the overhead in terms of resource consumption this
ork has focused on memory and energy consumption. Memory con-

umption is defined as the amount of memory used by our algorithm
hen installed in the nodes (RAM and ROM). Analogously, the energy

onsumption is a measurement for the amount of energy a sensor
ode consumes on a time period. The metrics used in the resource
onsumption experiments were:

• Used bytes in % RAM memory — the proportion of the total
amount of RAM memory in the Zolertia Z1 platform.

• Used bytes in % program memory — the rate among the amount
of memory used to deploy our algorithms software components
on Zolertia Z1 platform and the total flash memory available.

• Average node energy consumption for decision cycle — the total
energy spent by a Zolertia Z1 node during a single execution of
the decision making.

To evaluate how often decisions correctly represent the experi-
ented situation, his study has used definition of trueness, precision

nd accuracy presented in [33,34].

• Trueness: is the closeness of agreement between the average
value obtained from a large series of test results and an accepted
reference value. Thus, It expresses the matching between a mea-
surement and an accepted reference quantity value. It derives
from how much a measurement is distant from the reference.
For example, as much as a sample mean estimate converges to
the population mean it may be considered the real value for
the population mean without being equal to it. The difference
between a single estimate and the real value express its trueness.
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• Precision: is the closeness of agreement between independent
test results obtained under stipulated conditions. Thus, precision
depends only on the distribution of random errors and does
not relate to the true value, is usually expressed in terms of
imprecision and computed as a standard deviation. Less precision
is reflected by a larger standard deviation.

• Accuracy: The closeness of agreement between a test result and
the accepted reference value. Thus, it derives from a combination
of random components and a common systematic error or bias
component. That way, accuracy derives explicitly from trueness
and precision, hence, accuracy would be linked to a quantity re-
lated to the total measurement error (both systematic and random
error).

ccording to [33,34], accuracy refers to the combined result regarding
systematic component of the measurement error (related to the true-
ess) and a random one (related to the precision). Trueness refers to the
roximity of a result to its true value, an estimate of a systematic mea-
urement error or a bias. Precision refers to the repeatability of a result,
escribes the spread of results obtained under a specific measurement
rotocol. Therefore, the MKFH decision making is accurate when its
ecisions meet the desired behaviour for the experimented situation, a
uitable integrated decision. To assess accuracy, our algorithms were
ubjected to a situation reaching decisions. Whenever a redundant or
ontradictory decision was detected or classified correctly as a healthy
tate, it was accounted as an accurate behaviour. Analogously, incorrect
etection of a situation or change on the environment is missed was ac-
ounted as inaccurate behaviour. Then, for each simulation execution,
measurement for the precise behaviour proportion was accounted and
n interval of plausible values for the proportion of suitable integration
as estimated following Eq. (4). As stated in [33], the precision on

ndependent test results obtained under stipulated conditions depends
nly on sample standard deviation (𝜎∕𝑛−1∕2). Thus, as the number
f repetitions the sample standard deviation converges to the true
alue [20]. For each simulation, we calculated a confidence interval
ntil reaching a confidence interval of 95%.

𝑋 ± 𝑇 −1
𝑛−1(𝑐)𝜎∕𝑛

−1∕2 (4)

where 𝑋 is precise behaviour proportion mean; 𝑇 −1
𝑛−1(𝑐) is a T-student

statistic; 𝜎 the standard deviation and; 𝑛 the number of repetitions.

5.6. Data fusion method

We used the Moving Average Filter algorithm (MAF) found in [2]
as data fusion technique which, as the name suggests, is filter computes
the arithmetic mean of a number of input measurements given an input
digital signal 𝐳 = (𝑧(1), 𝑧(2),…). The goal is to estimate the true value
of the environmental parameter 𝐱̂ = (𝑥̂(1), 𝑥̂(2),…) that is estimated by:

̂(𝑘) = 1∕𝑀
𝑀−1
∑

𝑖=0
𝑧(𝑘 − 1) (5)

For every 𝑘 ≤ 𝑀 , where 𝑀 is the number of input observations
to be fused and 𝑘 the current input measurement. The sensor nodes
estimate events based on simple Moving Average filters that is used to
improve the sensor readings. For evaluating our algorithms, MAF im-
plementation used a fusion window that stored 5 values. The collector
nodes were endowed with two sensor units, each of which were trigger
to collect two redundant environmental reading. Considering 𝑇𝑖 current
execution, the fusion window is populated as Fig. 6.

The use of the mean as an estimator may reduce errors of tracking
application‘s interest region. On a multi-application WSAN, to reach
decisions an application reasoning process may be implemented as
conditional rules (Eq. (1). Coexisting applications may assess the same
environmental reading differently, which may result in conflicting state
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𝜇

Fig. 6. MAF‘s fusion window example.

estimates (𝐴𝑐𝑡𝑖𝑜𝑛𝑖, 𝐴𝑐𝑡𝑖𝑜𝑛𝑗) for the environment condition described by
following equations:

(𝑥̂ ∈ [𝑎, 𝑏]|𝑟𝑒𝑞𝜋𝑖 , 𝜋𝑖)∴𝑥̂ → 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 (6)

(𝑥̂ ∈ [𝑎, 𝑏]|𝑟𝑒𝑞𝜋𝑗 , 𝜋𝑗 )∴𝑥̂ → 𝐴𝑐𝑡𝑖𝑜𝑛𝑗 (7)

Though the use of data fusion, MAF sends only higher abstraction
level data to the applications, as consequence it reduces the length of
sent messages which leads to a less energy consumption [21,35].

5.7. Probability estimates

Regarding the probability calculation, let’ consider the
vector (𝑍̂1,… , 𝑍̂𝑛) form a feature map. each 𝑍̂ is an estimate for the
environmental parameter obtained as a mean of FW, an environmental
readings sample. As a premise, the probability for an application’s
decision is right depends only on the trueness of its situation recog-
nition. So, the probability for an application to be right is the same
that model the probability distribution of the errors of 𝑥̂ regarding a
population parameter.[20,36], under the assumption that an estimate
error (𝜃𝑖 − 𝜃̂𝑖) is a normally distributed around the parameter true
value. An estimator 𝜃̂ is also normally distributed. However, values
of 𝜇 (population mean) and 𝜎 (population standard deviation) are
unknown and must be estimated from the application’s requisite. Thus,
the estimator 𝜇̂ and 𝜎̂ must be a function of the minimum and the
maximum value of the applicable interest region 𝐼 = [𝑎, 𝑏]. This work
uses a simple way to estimate population mean and standard deviation.

̂ = (𝑎 + 𝑏)∕2 (8)

𝜎̂ = 𝑏 − 𝑥̂∕3 (9)

𝑃 (𝑋 = 𝑥̂) = 𝛷(𝑧 ≤ (𝑥 − 𝜇)∕𝜎)𝑛 (10)

5.8. Knowledge fusion method

The MKFH deal with knowledge transfer and extraction through
the decision experience of an integration agent. The main goal is to
discover and embed knowledge from previous decision making expe-
rience. Building the understanding about how coexisting application
correlates from interaction with the environment and applying it to
enhance integration.

Bayesian test procedure provides a simple and consistent way to rea-
son in presence of uncertainty. To decide how to integrate conflicting
actions we use a Bayesian hypothesis test procedure. To accomplish
knowledge extraction, a reinforcement learning agent receive rewards
mapping the environment feedback into a value function 𝐶𝑖𝑗 (Eq. (11))
which is also context variable used to map 𝐴𝐶 (Section 4.3). To trans-
fer this knowledge, our heuristic uses the value function as problem
variable to perform integration, in a way the overall decision making
described at Section 5.10 derive from the value function stored on the
knowledge base (Section 4.2) and 𝜋 probability.
𝑖
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5.9. Reinforcement learning approach

When a puppy learning a new trick it has no one to make it easier to
understand what it is asked for, the only information source is how the
world around it reacts to its actions. By rewarding the puppy’s actions
to reflect which one was right or wrong, its owner may exploit a set of
interactions to produces a wealth of information about cause and effect.
That way, the puppy builds knowledge about what to do to achieve
goals. A similar approach is suitable to teach an agent who seeks to
achieve a goal about tradeoffs involved in making a decision.

The agent responsible for the overall decision derive its value
function from the costs involved in each possible combination of appli-
cations decisions. The reward is a function of environment feedback, in
a way positive feedback leads to a positive reward (decreasing costs)
and negative feedback to a negative one (increasing costs). The basic
idea is to reward interactions with the environment accordingly to its
feedback. The learning agent may capture the most relevant aspects of
the problem, also discovering which actions yield the most reward. So,
the Learning procedure result is a calibration for a decision expected
loss, as consequence, this procedure adjusts the understanding of the
relationship among different applications. The reward function follow
Eq. (11):

𝑟𝑒𝑤𝑎𝑟𝑑 =
{

−𝐶𝑜𝑠𝑡−1 ,positive feedback.
+𝐶𝑜𝑠𝑡−1 ,negative feedback. (11)

5.10. Integration approach

We consider a set up composed of two applications 𝐴𝑝𝑝 = 𝑎𝑝𝑝1, 𝑎𝑝𝑝2.
Whenever an environmental reading belongs to an interest region for
𝑎𝑝𝑝1 and 𝑎𝑝𝑝2 (Eqs. (6) and (7)), the decision making process unfold
into three possible outcomes: both decisions are right (i), one decision
is right and the other is wrong (ii) and both decisions are similar
(iii). Regarding case (i) both decisions must take place, maybe a cost
resulting in not applying one of them. In case (ii) the right decision
must be deployed and the wrong discarded. Finally, in case (iii) only
one of them must be deployed. For case (ii) and (iii) there are losses on
applying these decisions together, so a cost is produced from applying
both of them.

Therefore, an consistent way to produce an overall decision is to
choose which parameter space 𝛺0, 𝛺1 is the most probable origin for
the evidence with regard of the relative worth of a gain associated with
the decision, therefore, which hypothesis 𝐻0,𝐻1 minimizes the overall
decision risk. By choosing to reject 𝐻1 (alternative hypothesis) imply
that 𝛺0 is the parameter space which is the most probable origin for
the evidence. So, the decision 𝜋𝑖 minimizes the overall decision risk and
𝜋𝑖 must become part of the overall decision. Analogously, rejecting 𝐻0
(null hypothesis) means that the decision 𝜋𝑖 represent unnecessary risk.

As defined in [20] a function that assigns to each possible amount
𝑥 ∈ (−∞ < 𝑥 < ∞), a number 𝑈(𝑥) representing the actual worth
produced by a gaining 𝑥 is called an utility function. It is designed to
represent the relative worth of a gain obtained by considering that an
action 𝜋𝑖 is right a priori.

𝑈𝜋𝑖 = 𝑈𝑥∕∫𝐷
𝑈(𝑥)𝑑𝑥 (12)

The hypothesis test procedure follow the steps below:

• Calculate 𝑅𝑖𝑠𝑘(𝐻0) and 𝑅𝑖𝑠𝑘(𝐻1):
[

𝑅𝑖𝑠𝑘(𝐻0)∕𝑈𝜋𝑖
𝑅𝑖𝑠𝑘(𝐻1)∕(1 − 𝑈𝜋𝑖 )

]

=
[

𝑃 (𝑋 = 𝑥̂)
1 − 𝑃 (𝑋 = 𝑥̂)

]

[

∑𝑛
𝑗=1 𝐶𝑗𝑖

∑𝑛
𝑗=1 𝐶𝑖𝑗

]𝑇

(13)

𝑃 (𝑋 = 𝑥̂) is the probability of the sensed data trigger 𝜋𝑖,
𝐶𝑖𝑗 is the cost of applying 𝜋𝑖 given 𝜋𝑐

𝑖 ,
∑𝑛

𝑗=1 𝐶𝑗𝑖 is the cost of applying 𝜋𝑐
𝑖 given 𝜋𝑖 and 𝑈𝜋𝑖 is the utility of
taking 𝜋𝑖.
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Table 1
Pallas in terms of memory consumption.

Node/memory RAM Program memory

Collector node 6.9% 2.5%
Fusion node 5.4% 6.7%

Table 2
Pallas in terms of energy consumption.

MKF Pallas Collector node MAF Collector node

S1 (4.980 ± 0.538) μJ (4.540 ± 0.244) μJ
S2 (4.560 ± 0.260) μJ (4.516 ± 0.1800 μJ
S3 (4.833 ± 0.233) μJ (4.640 ± 0.0970 μJ
S4 (4.724 ± 0.336) μJ (4.680 ± 0.1270 μJ

• If 𝑅𝑖𝑠𝑘(𝐻0∕𝑈𝜋𝑖 ) > 𝑅𝑖𝑠𝑘(𝐻1)∕(1−𝑈𝜋𝑖 ); 𝐻0 is rejected and 𝜋𝑖 is not
appended to the joint decision set.

• If (1 − 𝑈𝜋𝑖 )𝑅𝑖𝑠𝑘(𝐻0) < 𝑈𝜋𝑖𝑅𝑖𝑠𝑘(𝐻1); 𝐻0 is not rejected and 𝜋𝑖 is
appended to the joint decision set.

The Hypothesis test output is whether to reject 𝐻1 meaning 𝐻0 leads
to the smaller posterior expected loss, otherwise reject 𝐻0. Considering
𝑑0 the output that reject 𝐻1 and 𝑑1 the one who rejects 𝐻1. When 𝑑1
is chosen and 𝐻0 is actually the true hypothesis (type I error), then
the loss is (

∑𝑛
𝑗=1 𝐶𝑗𝑖)∕𝑛. If decision 𝑑0 is chosen and 𝐻1 is true (type

II error), then the loss is 𝐶𝑖𝑗 meaning the cost of 𝜋𝑐
𝑖 |𝐷. If the decision

𝑑0 is chosen when 𝐻0 is the true hypothesis or if the decision 𝑑1 is
chosen when 𝐻1 is the true hypothesis, then the correct decision has
been made and the loss is 0.

6. Resource consumption results

As a MKFH, is intended to function on a resource-constrained sce-
nario such as WSANs. E1 was designed to assess the impact of in terms
of resource consumption. It assesses in terms of memory and energy
consumption, to assess

6.1. E1: Pallas in terms of resource consumption

To assess memory consumption, implementation of Pallas was de-
ployed on Zolertia Z1 real nodes alongside Contiki OS 2.7 and the total
amount of flash memory was gathered. The total consumed amount
was compared with the total amount Zolertia Z1 specified on [37]. To
check the amount of RAM memory consumed, Pallas run the scenario
described in Section 5.1 with two applications deployed (Overhead
power line and battery applications), then the total amount of RAM
memory was collected. Table 1 shows the results for both flash and
RAM memory consumed by Pallas.

In short, using the instant contiki 2.7 version we were able to deploy
the Algorithm on real nodes and estimate its usage of RAM and flask
memory. The Zolertia Z1 sensor platform, the proposed MKF in this
work requires around 7% of total RAM memory and around 3% of total
Flash memory for collector node. The fusion node requires around 6%
of total RAM memory and around 7% of total Flash memory. It may be
noted that none of the nodes exceeds the 8 kB RAM available. Never-
theless, we can conclude that in terms of memory usage, the proposed
Algorithm is feasible to be employed in a real WSAN deployment.

To assess energy consumption we used cooja simulation with aid of
a powertrace tool [30]. The implementation of both MAF (Section 5.6)
and Pallas algorithms were deployed on simulated Zolertia Z1 nodes.
Each simulation lasted 1 h and was repeated 30 times, obtaining a
confidence interval of 95%. With aid of power trace tool, [30] present
at Cooja simulator we were able to estimate the average node energy
consumption for one cycle. Table 2 provide its result.

A battery commonly used by Zolertia is a Li-ion battery of 3.7 V and

800mAh (2,96 J) capacity. Considering that battery loses energy only
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Table 3
Ergane in terms of memory consumption.

Node/memory RAM Program memory

Collector Node 6.3% 2.4%
Fusion Node 6.3% 7,5%

Table 4
Ergane in terms of energy consumption.

MKF Ergane Collector node MAF Collector node

S1 (4.640 ± 0.248) μJ (4.540 ± 0.244) μJ
S2 (4.810 ± 0.175) μJ (4.516 ± 0.180) μJ
S3 (4.780 ± 0.270) μJ (4.640 ± 0.097) μJ
S4 (4.810 ± 0.313) μJ (4.680 ± 0.127) μJ

from Pallas consumption and the average node energy consumption is
expended every cycle, Pallas Collector node can last around 594377
cycles in S1, 649122 cycles in S2, 612456 cycles in S3 and 626587
cycles in S4.

For S1 and S2 Pallas Collector node behaviour is similar to MAF’s
Collector node behaviour, regardless of the probability calculation. So,
Pallas overhead for S1 is about 2% and the results for S2 are similar
for both algorithms. Regarding S3 and S4, Pallas has a slightly higher
energy consumption 2.5% as MAF energy consumption remains the
same. The major fact that explains this behaviour is that for S3 and
S4 Pallas send alongside MAF’s output a set of probabilities, which
increase the message size for each application decision. In short, The
IEEE 802.15.4 standard supports the maximum frame size up to 127
bytes including 25 bytes of MAC header and 102 bytes of payload.
MAF’s output has size of 3 bytes and pallas need to append the out
put of a set of probabilities, which increase the message size by 4 bytes
for each application. When Pallas runs with more then 24 applications
the number of messages sent by Pallas doubles.

6.2. E1: Ergane in terms of resource consumption

Similarly to Pallas approach, implementation of Ergane was de-
ployed on Zolertia Z1 real nodes alongside Contiki OS 2.7 and the
total amount of flash memory was gathered and compared with the
total amount for Zolertia Z1 [37]. To check the amount of RAM
memory consumed, Ergane has run the application scenario described
at Section 5.1. Then the total amount of RAM memory was collected.
Table 3 shows the results for both flash and RAM memory consumed
by Ergane.

Ethe range does not provide the overhead of storing the applica-
tion’s logic, the only information needed to its execution is the period
of time between readings. So it is feasible to attend any number of
applications. In the Zolertia Z1 sensor, Ergane requires around 6% of
total RAM memory and around 3% of total Flash memory for collector
node. The fusion node requires around 5% of total RAM memory and
around 8% of total Flash memory. It may be noted that none of the
nodes exceeds the 8 kB RAM available. So, we can conclude that
the proposed Algorithm is feasible to be employed in a real WSAN
deployment.

To assess energy consumption, simulated Zolertia Z1 nodes we
deployed first with MAF’s algorithm Section 5.6 and then with Ergane’s.
Each simulation lasted 1 h and was repeated 30 times, obtaining a
confidence interval of 95%. Using the power trace tool [30] present
at Cooja simulator [29] values of nodes energy consumption were
collected and an estimation for the average node energy consumption
of a cycle made. Table 4 provides its result.

As expected, for all situations Ergane Collector node behaviour is
similar to MAF’s and the energy consumption is the same for both algo-
rithms. Therefore, Ergane energy consumption behaviour is compatible
with the WSAN paradigm.
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Fig. 7. Pallas accuracy results in function of Costs.
T
M

7. Accuracy results

Decision making for multiapplication WSAN scenarios may raise
destructive relationships among application’s decisions as contradictory
or redundant outcomes, our MKFH deals with such a challenge. In
a way, it allows the application’s decisions integration reducing its
contradictions and redundancies. As a study case for this challenge,
E2 and E3 were designed to assess the impact in terms of decision
making accuracy. E2 target is to provide a baseline for comparing MAF
with our algorithm. Regarding E3, its objective is to assess how the
MKFH enhances the decision making experience as it reaches more
accurate integrations. For evaluating the integration standalone, both
cases run on Cooja simulations for every situation under consideration
and generated a log report for the communications among the SkN
and SeNs. Those log reports were given as input for Pallas and Ergane
integration algorithm setting up the Costs according to Table 5 for
E2 and Tables 6 and 7 for E3. Results for Pallas were depicted in
Section 7.2 and for Ergane in Section 7.3.

The initial air temperature, battery temperature and the overhead
power line temperature were respectively set as 25 ◦C, 44 ◦C and 44 ◦C.
Experiments for each situations reached a 95% confidence interval for
its results and were presented at Table 5 for E2 and Tables 6 and
7 for E3. The fusion window and the interval to collect samples are
set according to the most demanding application, in this case, OPLM
application. Four-time slots called S1, S2, S3 and S4 were considered.
Each time slot represents a particular situation submitted to the appli-
cations in time, meaning a particular event to be detected. S1 represents
ideal conditions for both applications is a safe condition, where there
is no need for preventive actions. S2 represents an increase in power
line temperature. S3 represents an increase in the battery temperature
representing a risk for battery integrity. At last, S4 represents the occur-
rence of an increase in both power line and battery temperature. During
S1 the temperatures vary from 44 ◦C to 65 ◦C both in the Overhead
power and in the battery. During S2, temperatures vary from 65 ◦C to
5 ◦C in the Overhead power line. During S3, the temperatures vary
rom 44 ◦C to 65 ◦C in the overhead power line and are over 140 ◦C in
he battery. Finally, S4 temperature in the Battery is over 144 ◦C and
ver 80 ◦C in the overhead power line. At S3 the expected behaviour
f both applications combined is considered contradictory. At S4 the
xpected behaviour of both applications combined is redundant.

S1 maps a condition in which the condition is ideal. For S2 only the
ower line is affected and the correct action is implemented by OPLM
pplication. Regarding S3, only the battery is the one responsible for
ncreasing the environment temperature. Also, applying OPLM and Batt
esigned actions together means that the transmission tower will be
ffline when operating on safe conditions wasting energy. The expected
ehaviour for this situation is one in which only the Batt application
s triggered to act. S4 maps a failure condition in which both systems
ust be shut down by the OPLM application. Experiment E2 set the
osts to 1 and compare its results with MAF. In E3 the Costs were set
o investigate how it changes the decision making process.
202
able 5
AF accuracy baseline.
Algorithm MAF Pallas Athena Ergane Athena

S1 (99.7 ± 0.003)% (99.7 ± 0.002)% (99.7 ± 0,003)%
S2 (98.4 ± 0.010)% (98.4 ± 0.010)% (98.4 ± 0.008)%
S3 (43.3 ± 0.007)% (58.7 ± 0,005)% (62.7 ± 0.004)%
S4 (63.4 ± 0.006)% (89.6 ± 0,003)% (92.3 ± 0.004)%

7.1. E2: MAF accuracy baseline

Setup E2 compare our algorithms with MAF in terms of accuracy for
its decision making, setting a baseline needed to assess Athena’s results
as the Costs changes. The results are shown in Table 5 and Fig. 7.

For S1 and S2 MAF, Pallas and Ergane function very similarly.
Results show that the precision and accuracy of both algorithms are the
same for S1 and S2 situations. Nevertheless, when it comes to situation
S3 and S4 contradictory and redundant behaviour start to occur. The
results show that our MKFH supports better integration, as well as
increases substantially the accuracy on events of interest recognition,
at least 15% without compromising its accuracy.

7.2. E3: Pallas in terms of accuracy

To assess Pallas accuracy, E3 provided a baseline to compare our
algorithm with MAF. However, the MKFH reviews how the decision
making agents weight the information on the fly to enhance integration.
In a way, this reviewing leads to better event recognition, allowing
more accurate decisions. In summary, as a learning component ac-
cumulates reward, a value function map the overall experience into
a variable meaning the loss which is expected to occur from the
deployment of action when other actions were into consideration. That
way, E3 run tests for S1, S2, S3 and S4 situations under the same
variation of Costs in KDS. That way, E3 evaluate how a change in
the KDS is translated into precision and accuracy on the recognition
of the Overhead power line and Battery events of interest. As stated
earlier MAF and our algorithms were expect to function very similarly
at S1 and S2 conditions. E3 showed us that for every combination of
experimented Costs Pallas results are the same as MAF for S1 and S2
conditions.

Table 6 and Fig. 8 provides the results of S3 and S4, first the baseline
set in E2 is provided. Lines 2 to 4 maps a change on the ratio of
application’s Costs, meaning only Batt’s decision is expected to be right
when the OPLM’s decision is also under consideration. Line 5 to 7
maps a change on the ratio of application’s Costs, meaning only OPLM’s
decision is expected to be right when the Batts’ decision is also under
consideration.

Regarding lines two to four, the results show that by changing the
Cost’s ratio to favour Batt, Pallas can better assess the environment

behaviour, also reaching more suitable decisions for S3. For S4, lines
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Table 6
Pallas accuracy results in function of cost ratio.

Batt/OPLM Cost S3 S4

1/1 (58.7 ± 0,003)% (89.6 ± 0,003)%
1/5 (58.7 ± 0,004)% (89.0 ± 0,005)%
1/10 (73.0 ± 0,002)% (64.7 ± 0,006)%
1/15 (73.0 ± 0,002)% (64.7 ± 0,006)%
5/1 (58.3 ± 0,007)% (90.2 ± 0,002)%
10/1 (42.0 ± 0,012)% (94.2 ± 0,001)%
15/1 (42.0 ± 0,012)% (94.2 ± 0,001)%

Table 7
Ergane accuracy results in function of Costs.

Batt/OPLM Cost S3 S4

1/1 (62.7 ± 0,004)% (92.3 ± 0,004)%
1/5 (67.2 ± 0,006)% (92.1 ± 0,006)%
1/10 (78,1 ± 0,002)% (92.1 ± 0,006)%
1/15 (78.1 ± 0,003)% (92.3 ± 0,010)%
5/1 (61.5 ± 0,007)% (98.2 ± 0,002)%
10/1 (60.3 ± 0,090)% (98.2 ± 0,001)%
15/1 (60.3 ± 0,007)% (98.2 ± 0,002)%

Fig. 8. Pallas accuracy results in function of Cost ratio.

ive to seven, the results show that Pallas reaches more suitable deci-
ions, by changing the Cost’s ratio to favour OPLM. When compared to
aseline results (line one), the learning factor explains the enhancement
f around 14% in precision for S3 (line 3) and S4 (line 6). When
ompared directly to MAF, best case scenario indicates a decision
nhancing around 30% more for S3 and S4. Worst case scenario Pallas
as around 1% less precision for S3 and S4 1% more precision for S4.

Our MKFH try to decide which of two joint distributions better de-
cribes environmental changes. In situations that produced redundant
r contradictory behaviour, choosing a set of action that minimizes
ndesirable behaviour risk. It may choose as most probable scenario
joint distribution that models the temperature as deriving from the

ower line or one that model de temperature as deriving from batteries.
he first case, OPLM will have priority, minimizing the error from
hoosing Batt’s actions when OPLM’s actions are most desirable. The
econd case, Batt will have priority, minimizing the error from choosing
PLM’s actions when Batt’s actions are most desirable.

On Bayesian hypothesis test procedures, the priority as stated is a
unction of its prior function and the loss function. The prior function
oses weight as new evidence comes up. Thus, the ratio of the costs is
he most important variable to map the priority feature. Our learning
omponent value function accumulates rewards to adapt its hypothesis
oss function. In a way, the decision making agent who uses the test to
ssess the situation is learning how to decide in an uncertain context.
hus, as it revises its decisions receiving rewards from it, it accumulates
nowledge regarding the decision making.

.3. E3 — Ergane in terms of accuracy

To assess Ergane integration’s behaviour, E3 evaluates how a change

n the KDS affects the recognition of the Overhead power line and

203
Fig. 9. Ergane accuracy results in function of Cost ratio.

Battery events of interest. MAF, Pallas and Ergane were expected to
function very similarly at S1 and S2 conditions, that way E3 showed us
that for every combination of experimented Costs that Ergane results
are the same as MAF for S1 and S2 conditions. For S3 and S4, results
were shown on Table 7 and Fig. 9.

Regarding lines two to four, the results show that by changing
the Cost’s ratio, Ergane can better assess the environment behaviour,
also reaching suitable decisions. In a way, it increases the frequency
Ergane successfully decides over S3 conditions. This behaviour change
occurs at the expense of precision and accuracy on recognition of
the S4 condition where OPLM decisions are more desirable. At lines
four to seven, the situation turns completely. With the increase in the
Costs ratio can better map the Batt behaviour, causing an increase
in the frequency in which the MKFH successfully decides over S4
conditions. This behaviour change occurs at the expense of accuracy
on the recognition of the S3 conditions where Batt decisions are more
desirable.

When compared to baseline results (line 1), the learning factor
explains the enhancement of 14% in precision for S3 (line 3) and S4
(line 6). When compared directly to MAF, best case scenario indicates
a decision enhancing 35% more for S3 and S4. Worst case scenario
against MAF, Ergane has around 17% more precision for S3 and S4
28% more precision for S4. When compared directly to Pallas, best
case scenario indicates a decision enhancing around 37% more for S3
and S4. Worst case scenario against Pallas, Ergane has around 5% more
precision for S3 and S4.

On Bayesian hypothesis test procedures, the priority as stated is a
function of its prior function and the loss function. The prior function
loses weight as new evidence comes up [20]. Thus, the ratio of the
costs is the variable to map how the learning agent value function
accumulates rewards. In a way, the decision making agent who uses
the test to assess the situation is learning how to decide in an uncertain
context. Thus, as it revises its decisions receiving rewards from it, it
accumulates knowledge regarding the decision making and uses it to
reach better decisions.

The general idea is to choose the action that leads to the smaller
risk, which is a function of Cost ratio, prior probability function and
likelihood function. Tables 5–7 each line carries the same cost ratio and
prior distribution. Thus, Ergane benefits from an environment that has
a larger pool of computational resources to model the event probability
as a continuous likelihood function. As consequence, it can capture
more subtle changes allowing it to use better and more complex models
for event probabilities enhancing its situation assessment, as well as
reaching better results on Ergane.

Indeed, the behaviour above mentioned it is due to the capability
to perform the integration between these two applications. In the
aforementioned scenario, for S3 and S4, the OPLM and Batt decisions
are redundant or contradictory, so only one of them can respond
successfully to the problem without non-desirable energy consumption.
The learning agent allows Ergane to summarize into a score each
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previous decision making experience. This feature in addition to priori
allowing our algorithms to adapt part of its hypothesis to reach a
Bayesian hypothesis test procedure more suitable to assess a situation.

8. Results summary

The conducted experiments focused on assessing if our algorithms
were compatible with the WSAN scenario, their ability to recognize
events of interest in a resource-constrained environment and how the
integration among applications work as the learning agent revise its
hypothesis. Experiments were made on two possible implementations
of our MKFH — Pallas and Ergane.

Memory consumption results for Pallas showed that it is compatible
with the scenario under consideration. However, as the number of
applications increase memory consumption also rise. Regarding Ergane,
its centralized nature makes it unsuited for critical applications. Its
memory consumption remains unchanged for any number of appli-
cations. Energy consumption results for Pallas showed that for the
scenario under consideration, its energy consumption is similar to MAF.
However, a simple analysis of its messaging behaviour is sufficient to
show that its energy cost increases with the number of applications
deployed. Regarding Ergane, its energy consumption is identical to
MAF’s and does not increase with the number of applications.

The second assessment set a baseline to evaluate integration be-
haviour. Pallas, Ergane and MAF were compared due to its accuracy
results without any intervention by the learning agent, differing only
by a probabilistic data fusion. Results For situation S1 and S2, MAF
and the behaviour of our algorithms were the same. When compared
to MAF, Pallas has increased in 15% the accuracy on recognition of
the power line overload event on situation S3. For the same situation
Ergane’s results points for a gain of 20% in accuracy over MAF.

The third assessment evaluates the integration behaviour regarding
changes in the ratio of the costs. Results showed a great impact on
the integration process due to changes in cost ratio, which highlight
the ability of selectively applying knowledge from previous experience
to enhance accuracy. Regarding situation S1 and S2 Pallas and Ergane
behaviour derive only from data fusion, so the results for Pallas and
Ergane were the same as MAF. For situation S3, the learning factor
explains the enhancement of around 15% on Pallas accuracy as the
cost of the OPLM application increase, which is the desired effect for
this situation. So, for the best-case scenario, Pallas has an increase
of 30% of accuracy when compared to MAF. The worst-case scenario
occurs when the cost of the right decision increase when the cost of the
battery application increase Pallas has shown a loss of 1% of accuracy
if compared to MAF. S4 showed similar results, the cost ratio favouring
the right application resulted in an enhancement of 30% of accuracy.
When the cost ratio favoured the wrong application, Pallas accuracy
was only 1% greater then MAF’s. Regarding Ergane, when compared
to MAF the best case scenario showed that Ergane accuracy increase
around 35% S3 and S4. At the worst-case scenario, Ergane’s accuracy
was around 17% better for S3 and 28% better for S4.

9. Final remarks

This study presented a multisensor knowledge fusion heuristic
(MKFH), which combines data fusion and knowledge fusion to allow
changes to the integration hypothesis to occur on the fly. Our MKFH
aims at integrating a multilevel decision making process compatible
with resource-constrained scenarios which produce large amounts of
data in lower semantic levels. It uses data fusion to fuel applications
decision making, assessing environmental changes, adding meaning
to it and enhancing the semantic level of gathered data. Knowledge
fusion manages how consistent the environment feedback is due to
an overall reasoning process. By mapping and introducing changes on
decision hypothesis, It extracts and selectively applies knowledge to

enhance the overall decision making. To allow combining data fusion

204
and knowledge fusion, a contextual information model was proposed.
This model captures particularities on how different applications assess
an environmental change storing it on a knowledge data structure. In a
way, the contextual information represents a fact, from which different
application‘s decisions correlate.

Following Schmidt [38] classification for decision making level.
Application’s decision is on the operational level, aiming to reach
decisions that suit local needs. Integration is on the tactical level,
deciding on a more complex picture and dealing with conflict. In this
context, our MKFH provides a way to integrate both by extracting and
transferring knowledge. In a way, a knowledge graph instance map
knowledge about conflict and its history how it has changed. Therefore,
multiple instances could be compiled to picture the long term system
behaviour — the decision experience and to provide insight for the
strategic level.

We used a Smart grid scenario found in [23]. Experiments have
shown that first introduced an algorithm, Pallas Athena is compati-
ble with the scenario under consideration. However, to allow Pallas
to deal with critical applications, sensor nodes must be aware of
the application‘s decisions causing overheads on memory and energy
consumption. When compared to MAF for setting the baseline, has in-
creased in 15% the accuracy on recognition of the power line overload.
Also, as a semi-centralized approach, it allowed knowledge extraction
and integration of critical and non-critical applications. On the scenario
when all applications are set as critical, its behaviour is identical to
its data fusion method plus knowledge extraction. Regarding Ergane,
memory and energy consumption was unchanged by the number of
applications. When compared with MAF for setting the baseline, its
results were 20% better in terms of accuracy. Third assessment results
for both algorithms showed that changes in the ratio of the costs had
a great impact on integration.

Both algorithms data fusion and knowledge fusion components are
completely independent, so changing a single component does not
affect the whole algorithm. However, Pallas preprocessing component
is not completely decoupled from its applications. This causes over-
heads in terms of memory consumption and threatens the viability of
a decentralized approach. Ergane allows complete decoupling of the
applications from the infrastructure, also completely decouples data
fusion from knowledge fusion. Providing insight for complex strategies
regarding the management of energy resources

As Future research, we highlight: (1) study how different data
fusion algorithm could support our MKFH; (2) research how to model
knowledge extraction and transfer and its behaviour when supported by
single and multi-agent approaches; (3) investigate MKFH core compo-
nents under a decentralized approach; (4) apply the MKFH for a wider
spectrum of IoT applications; (5) research how to create manageable
IoT knowledge bases supported by our MKFH:

(1) Data fusion based algorithms are a key component for our
MKFH. Thus, it is important to evaluate the impact on the accu-
racy and resource consumption when supported by different data
fusion algorithm. Replace MAF with other approaches may make
some trade-off more suitable for some IoT applications. New
implementation can be made to assess the impact of changing
the data fusion component, which should contribute to more
suitable applications design for the IoT paradigm [2].

(2) A key component, reinforcement learning was designed to be as
simple as possible. That way, more complete and complex re-
inforcement learning approaches may be implemented [9]. The
evaluation of the MKFH behaviour, when supported by different
reinforcement learning approaches, is challenging and has many
opportunities. Markov model can be used for a certain reinforce-
ment learning schemes, as well as Q-learn schemes [39–41].
Analytical models can be developed to obtain a more in-depth
understanding of learning [42,43]. Single-agent learning, where
sink nodes or sensor nodes learn independently from the envi-

ronment or Multi-agent, where they learn cooperatively could
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be investigated [44]. Multi-agent RL is a potential technique to
improve performance, however information exchange increases
overheads, so the trade-off needs to be considered [45].

(3) Pallas and Ergane were designed in a centralized manner, in-
vestigating its core components under a decentralized approach
could expose interesting features [46]. Also, allowing manage-
ment of WSANs constrained resources more efficiently with
more refined strategies [25]. As consequence, increasing WSAN’s
lifetime and supporting faster and more accurate decisions.

(4) Applying over different scenarios under the IoT paradigm. The
IoT paradigm is vast in terms of complex applications, under-
standing how our MKFH performs under different IoT use cases
should incrementally strengthen its generality [18,19]. Newer
use cases for the MKFH, using real nodes or real data sets could
be a way to polish it into knowledge management for a wider
spectrum of applications. In a way, contributing to creating
large knowledge repositories mapping how different application
performs under a different context.

(5) Finally, investigate the use of MKFH as the main component in
intelligent fusion systems to support refinement of vast knowl-
edge bases and the attainment knowledge graphs [18]. As con-
sequence, allow mapping the fit of an application to a spe-
cific scenario, as well as support learning newer and more ef-
ficient strategies hidden under the correlations among different
applications.
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