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a b s t r a c t

Following the recent successful examples of large technology companies, many modern enterprises
seek to build Knowledge Graphs to provide a unified view of corporate knowledge, and to draw
deep insights using machine learning and logical reasoning. There is currently a perceived disconnect
between the traditional approaches for data science, typically based on machine learning and statistical
modeling, and systems for reasoning with domain knowledge. In this paper, we demonstrate how
to perform a broad spectrum of data science tasks in a unified Knowledge Graph environment. This
includes data wrangling, complex logical and probabilistic reasoning, and machine learning. We base
our work on the state-of-the-art Knowledge Graph Management System Vadalog, which delivers highly
expressive and efficient logical reasoning and provides seamless integration with modern data science
toolkits such as the Jupyter platform. We argue that this is a significant step forward towards practical,
holistic data science workflows that combine machine learning and reasoning in data science.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, organizations and enterprises increasingly depend
n intelligent information systems that operationalize corporate
ata and knowledge in a unified way across system boundaries.
uch systems crucially rely on insights produced by data scien-
ists, who use advanced data and graph analytics together with
tatistical models. The general objective of such intelligence sys-
ems is to create predictive actionable knowledge from suitably
reprocessed organizational and corporate data by means of data
rangling.

eterogeneous Data Sources. One of the central challenges for
takeholders dealing with data is incorporating multiple hetero-
eneous sources of information. The past two decades witnessed
n explosion of data resources that have been made publicly
nd proprietarily available (e.g., DBpedia [1], Wikidata [2]), or
xtracted from web pages via web data extraction [3]. Such
esources originate from data streams collected from internal
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167-739X/© 2021 Elsevier B.V. All rights reserved.
systems (e.g., Enterprise Resource Planning, Workflow Manage-
ment, and Supply Chain Management) and external resources
(e.g., news, social media feeds and the Common Crawl1).

The integration and management of such heterogeneous in-
formation is a non-trivial task that presents data scientists with
a number of challenges including: handling schema differences
as well as heterogeneous data types, managing updates in fre-
quently changing content and structure, knowledge extraction
from diverse resources, dealing with the uncertainty of the in-
tegrated data, handling data quality and consistency from inde-
pendent providers, and finding ways of unifying them.

Knowledge Graphs. Following the increasing use by large tech-
nology companies such as Google, Amazon, Facebook, and
LinkedIn, it is becoming common for enterprises to integrate their
internal and external sources of information into a unified Knowl-
edge Graph. A Knowledge Graph typically is representable as a
set of triples (subject, predicate, object) where subject, object refer
to entities and predicate refers to the relation between two en-
tities. Such graph-structured data allow smooth accommodation
of changes in their structure.. Examples of data formats include
traditional graph data formats (e.g., RDF2 used by triple stores

1 http://commoncrawl.org/
2 https://www.w3.org/RDF/
ience with Vadalog: Knowledge Graphs with machine learning and reasoning in
.2021.10.021.
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Fig. 1. Data Science Workflow integrated with Machine Learning.
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uch as GraphDB3, Property Graphs used by graph databases
like Neo4j4, and JanusGraph5) as well as relational or other
semi-structured data exposing graph structure.

In this paper, we show how to support the data science work-
flow using a state-of-the-art Knowledge Graph Management Sys-
tem (KGMS). In our case, this is the Vadalog system, which
combines an expressive, scalable Knowledge Graph engine with
good support for the data science workflow. The Vadalog system
is Oxford’s contribution to VADA [4,5], a joint project of the
universities of Edinburgh, Manchester, and Oxford.

The Vadalog system is designed to be used in AI-driven appli-
cations. Currently, the system fully implements the core language
and is in use for a number of industrial and commercial customer-
based applications. In [6], we provide performance analysis of
the Vadalog system in comparison to other systems namely RD-
Fox [7], LLunatic [8], DLV [9,10], Graal [11], and PDQ [12]. The
results show that the Vadalog system outperforms all systems
both in synthetic and real-world use cases. Further discussions
can be followed in the corresponding research work [6]. A use
case where the Vadalog system is used in a financial domain is
introduced in [13].

Context and Goal. We reported first work on the overall VADA
approach to data wrangling in [14]. The Vadalog system has been
covered in detail in the following of its principal aspects.

• The vision for a KGMS and the requirements of its compo-
nents [15].
• The technical algorithms and system implementation of the

system [6].
• The use of the system for building Enterprise AI architec-

tures [13].

Further works have been presented on practical combinations
of machine learning and logic-based reasoning [16], as well as
giving a broad overview of the topic of reasoning in Knowledge
Graphs in general [17–19].

What has been missing so far, and is a frequently requested
work, is one showing how to actually build a data science pipeline,
not from the perspective of a system architect (as in [13]), but on
how to do this as a data scientist .

For many data scientists, building a data science workflow
these days is synonymous to working with notebook environ-
ments such as Jupyter. Such a notebook environment will also
be a connecting thread through this paper.

In this paper, we aim at providing a step-by-step guide to
Vadalog’s support of data science tasks. We introduce the main
components with regard to the workflow of data science when
combined with machine learning techniques. The services for
each step of data science tasks and requirement for a system to

3 http://graphdb.ontotext.com/
4 https://neo4j.com/
5 http://janusgraph.org/
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support them are shown in Fig. 1. We will discuss these steps
in detail in the following section, but want to highlight already
here the ‘‘big picture’’ of data science and how a Knowledge
Graph-based approach in general, and a Vadalog-based approach
in particular, can support the data scientist.

Let us consider an example first. A basic classification model
(e.g., a linear classifier) used in a data science workflow typically
has no access to complex graph-based concepts (e.g., new parts
of the dataset derived through highly recursive exploration of,
potentially missing or incomplete, parts of the dataset). One such
concrete example that will accompany us as a running example
through this paper, is in the context of financial Knowledge
Graphs: concepts such as company control or close links between
ompanies or individuals are essential on the one hand, but also
ery hard to derive in general — often depending on complex
egal regulations. We will use this and similar examples in the
ontext of financial Knowledge Graphs as our running example
hroughout the paper. For further details on the financial setting,
.g., how to apply this during the COVID-19 induced crisis, we
efer to the literature [20].

Going back to the big picture, in summary, Vadalog and KGMSs
llow data science processes to leverage such complex concepts
hrough the data science process, e.g., by seamlessly integrating
hem into statistical models. We will discuss this concrete aspect
n more detail in Section 5.2, and show the general support
hroughout this work, and in particular in the following Section 2.

rganization. Each component of Fig. 1 is discussed in the follow-
ng sections: Section 2 provides an overview of data science in the
ontext of the Vadalog system. Section 3 provides an overview of
he core Vadalog language and system. Section 4 describes the
arious features of the system within a typical data scientist’s
orkflow in Jupyter. Section 5 demonstrates the system’s integra-
ion with machine learning and algorithmic modeling on typical
se cases. Section 6 describes the support of the system for prob-
bilistic reasoning. Finally, Section 7 provides positioning of the
adalog system in the database literature and a comparison with
elated work and systems. The conclusion is given in Section 8.

. Data science and Vadalog system

The term ‘‘data science’’ has emerged as an interdisciplinary
rea that, among others, is rooted in the field of knowledge
iscovery. The field of knowledge discovery from databases (KDD)
s sometimes characterized as the application of quantitative
tatistical methodologies to extract actionable knowledge from
ata [21]. Predictive modeling and machine learning are increas-
ngly becoming central for any enterprise or ecosystems dealing
ith data. The predictive power of management systems heavily
efines the role of such actionable knowledge in analytics and
ecision-making processes.
This emerging landscape requires integrated skills for data sci-

ntists including data management, statistics, machine learning,
nd optimization. Considering the characteristics of Big Data, a

http://graphdb.ontotext.com/
https://neo4j.com/
http://janusgraph.org/
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Fig. 2. Data Science Workflow integrated with machine learning in Vadalog System.
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olution is to provide expressive and scalable knowledge man-
gement systems supporting each of such required aspects. In
his section, we first take a close look into the workflow of data
cience in general. Further, we explain the support for each of the
equired processes empowered by Vadalog.

.1. The data science spectrum

In Fig. 2, we align the data science process and required
asks with their support in the Vadalog system for each of them.
espite the different data science tasks in terms of domain and
cale, the workflow of such projects can be generalized into five
ain steps which we list next.
1. Data Integration and Pre-processing: Data pre-processing

s a crucial step in the data science workflow. Vadalog sup-
orts integration of data from heterogeneous data sources, which
nclude relational and graph databases, as well as web data ex-
raction. Once the data is integrated, it typically needs to be
re-processed so that statistics, algorithms, or machine learning
odels can be applied to it. Vadalog is a suitable tool for pre-
rocessing tasks, which include data cleaning, such as getting rid
f the null values, as well as data transformation. Once the data
as been pre-processed, a number of approaches can be applied
o get further insights.

2. Statistical Analysis: Statistics is crucial to help a data
cientist get initial insights about the data. Vadalog supports all
asic operations for statistical understanding of the data, such
s computing the maximum and the minimum, the average, the
edian, the mode, the variance, and the standard deviation of a
ataset.
3. Machine Learning: It is often the case that machine learn-

ng needs to be applied to the data in its supervised form (such as
inear or logistic regression or a decision tree) or in unsupervised
orm (such as k-means clustering) to make predictions or classifi-
ations for previously unseen data, or to get better understanding
f the underlying structure of existing data, like in the case of
lustering. Vadalog supports the regime of machine learning
ntegration where the features are created and/or imported from
adalog into an external ML library such as WEKA [22] or Scikit-
earn.6 An ML model such as linear regression or a J48 decision
ree [23] is learned and serialized on this feature set, and this
odel is employed to be applied on newly unseen data also

6 https://scikit-learn.org/
 w

3

imported from Vadalog. The output prediction or classification
produced by the model is then imported back into Vadalog and
can be treated as the final output or used in further steps of the
data workflow, e.g., for post-classification reasoning. Note that
this regime is agnostic to both the model and the ML library used,
so we can seamlessly switch between models and libraries.

4. Algorithmic Modeling: Another very common case for
data processing is when an algorithm needs to be applied to the
data. Many popular algorithms, in particular graph algorithms
and dynamic programming algorithms, such as Dijkstra’s short-
est path, DBScan, or knapsack, can be seamlessly integrated in
Vadalog. The reason it is particularly convenient to implement
graph algorithms in Vadalog is that nodes and arcs can be nat-
urally represented as unary and binary predicates, and recursive
steps can also be trivially represented in Vadalog. The same
applies to dynamic programming algorithms, as recursive opti-
mality equations underlying these algorithms can be naturally
expressed.

5. Probabilistic Reasoning: In many cases, the outcome of
process applied to the data is non-deterministic and requires
ssigning probabilities. This gives the rise for probabilistic reason-
ng over the data, which is tightly integrated into Vadalog. One
f the classic applications of probabilistic reasoning is Bayesian
nference, which is based on the fundamental Bayes’ theorem,
hich in its simplest form can be written as P(A|B) = P(B|A)P(A)

P(B)
here A and B are events and P(B) ̸= 0. P(A|B) is called posterior
robability, and P(A) is called prior probability. We use Bayesian
nference to draw posterior probabilities and update probabilities
or a collection of hypotheses based on the knowledge drawn
rom the priors. It is possible to represent priors and do Bayesian
nference in Vadalog through probabilistic reasoning.

.2. Connecting the dots

Knowledge Graphs are today’s solution for the unification of
eterogeneous data sources. The creation of a coherent Knowl-
dge Graph from multiple sources of unstructured, semi-
tructured, and structured data is a challenging task that requires
echniques from multiple disciplines. In particular, there are
arious approaches in the field of information extraction to auto-
atically extract structured data from plain text [24] (e.g., news
nd social media feeds) and in the field of web data extraction
or semi-structured heterogeneous sources [25,26] (e.g., websites

ith prices and product characteristics). Thus, for example, the

https://scikit-learn.org/
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news feed item ‘‘PayPal buys Hyperwallet for $400M’’ could re-
sult into the structured statement ‘‘acquire(PayPal,Hyperwallet)’’.
Information extraction from plain text and web data extraction
from semi-structured documents are typically used along with
entity resolution to incorporate the extracted information within
an existing knowledge graph correctly. Entity resolution [27] com-
ines multiple sources of (semi-)structured data that do not
hare common identifiers. The goal is to identify pairs of entities
hat refer to the same real-world object and merge them into
single entity. The matching is performed using noisy, semi-

dentifying information (e.g., names, addresses) and relationships,
nd employs specialized similarity functions for strings, numbers,
nd dates, to determine the overall similarity of two entities.
Publicly available datasets are often equipped with ontolo-

ies which describe relationships between entities. In such cases
ntological reasoning needs to be applied to validate whether
he results of entity resolution and information extraction vi-
late any of the constraints imposed by the ontology as well
s to enrich the data with new information stemming from the
ewly produced facts. Further note that, unsurprisingly, the use
f machine learning is pervasive throughout the stages of the

data scientist’s workflow: from semantically annotating web page
elements during web data extraction, through deciding whether
entities should be matched during entity resolution, to predict-
ing numerical trends during data analytics over the Knowledge
Graph.

Finally, observe that although uncertainty is intrinsic to many
of the tasks in the data scientist’s workflow, it is typically resolved
by means of a threshold. For example, during entity resolution,
the similarity of the attributes of two entities is typically con-
verted to a probability for the two entities to be the same, and
they are matched if the probability exceeds a certain threshold.
Similarly, the information extraction stage typically associates
output facts with a level of uncertainty stemming from the ex-
traction process, but likewise to the case of entity resolution, the
uncertainty is converted into a probability for a fact to hold, and
a hard decision is made on whether it should be included or not.
One may want to impose levels of uncertainty using business
rules to inform the decision of whether and how the Knowledge
Graph should be updated. One such rule, for example, could be
that public companies are much more likely to acquire private
companies than vice-versa (reverse takeover). Such rules can be
produced by a domain expert or learned from the data using rule
learning [15]. Furthermore, instead of ignoring the uncertainty,
after it is being used to determine whether to accept a fact or
a match, for example, one could alternatively incorporate this
uncertainty into the knowledge graph and propagate them into
the further stages of data wrangling and data analytics.

To carry out the different stages of the described workflow
data scientists need to use and coordinate a number of tools,
languages, and technologies: for data access they require tools
for web data extraction, various database management systems,
triple stores and graph databases; during Knowledge Graph con-
struction they require tools for entity resolution, information
extraction, ontological reasoning, and uncertainty management;
and during the analysis stage they require tools for graph analyt-
ics, machine learning and statistical modeling. The coordination
of all these tools can be very challenging.

3. An introduction to Vadalog

This section is for making the paper self-contained. It is par-
tially derived from [6,13,15]. If you are already familiar with the
Vadalog system and language, you can safely skip it, the first
novel part of this work is found in Section 4.
4

3.1. The Vadalog core system

We represent the functional architecture of the Vadalog KGMS
in Fig. 3. The central point of the Vadalog core system consists
of a rule-based reasoning engine. Rules are stored in a repository
which is in direct interaction with the reasoning engine and a rule
management user interface (e.g., Jupyter). The system is designed
to be easily extendable with multiple protocols of communication
between different parts via application programming interfaces
(APIs). For example, it supports plug-ins from Relational or Graph
databases, Resource Description Framework (RDF) stores as well
as NoSQL. The detailed discussion about the components of the
system can be found in in [15].

3.2. Vadalog core language

The Vadalog system heavily relies on the reasoning engine and
its rule-based repository. Rules are written in Datalog± language
which is an extension of a logic programming language named
Datalog [28].

Datalog is a declarative rule-based language. A Datalog program
consists of a set of rules and a set of facts (triples in knowledge
graphs). Every rule is a function-free Horn clause, intuitively a
first-order implication of the form head :- body., where head
is an atom and body is a conjunction of atoms b1, . . . , bn,
with the comma denoting the logical and. The :- symbol denotes
the logical implication ←. The body variables are considered as
universally quantified and a program is said to be safe if all head
variables also appear in the body.

The use of Datalog appeared in recent years as a common
thread across general-purpose systems such as integration, ex-
traction, networking, analysis, security, and computing as a higher
level abstraction [29].

Datalog± is a family of languages that provide important ex-
tensions to Datalog in order to enable ontological reasoning. In
particular, Datalog± extends Datalog by existential quantifiers
in rule heads, as well as by other features, and at the same
time restricts its syntax in order to achieve decidability and data
tractability; see, e.g., [30,31]. Let us consider the following simple
Datalog± program:

Rules: controls(Z,X) :- company(X).
company(X) :- controls(X,Y).

Facts: company(ACME). controls(UBA,UBE).

The first rule establishes that, for each company X, there exists
a company Z, such that Z controls X. Then, with the second rule,
we make sure that controlling companies are in turn companies.
Note that the two rules are mutually recursive, as the result of
the former being an input to the latter and vice versa. The rules
of a Datalog± program can be seen as a set of constraints on a
database D, where the data, i.e., the tuples, are considered logical
facts. The semantics of a rule is often defined operationally via
the chase [32], a procedure that enforces database constraints
and produces the reasoning results as consequence. Intuitively,
for each binding of the body that does not correspond to a binding
of the head (i.e., the rule as a logical implication is violated), the
chase ‘‘triggers’’ the rule and adds the facts that correspond to
the rule head to D. This process possibly involves the creation
of new symbols, namely, fresh labeled or marked nulls for objects
introduced via existential quantification.
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Fig. 3. KGMS Architecture [15].
Starting from the database D composed of the facts in
ur example, for company(ACME), the chase generates con-
trols(Z1,ACME), controls(Z2, Z1) with the first rule; com-
pany(Z1), company(Z2), and so on with the second rule. Ob-
serve that Z1, Z2, Z3 are fresh symbols denoting the labeled nulls
and stand for arbitrary companies, whose identity is unknown.

Warded Datalog± is the specific Datalog extension adopted in
the core of the Vadalog system [33,34]. It has been shown that
the computational complexity of logical reasoning tasks originate
from the way in which the labeled nulls are allowed to propagate
in the chase. We have seen, for instance, that the nulls produced
by the first existential rule in our example, propagate to the
second and finally back to the first one. If arbitrary propagation
is allowed, reasoning is undecidable. Specific syntactic conditions
can be adopted in order to constrain the positions where nulls can
appear, achieving decidability or even tractability in this manner.
In Warded Datalog±, the syntactic restrictions are mild to the
point they almost do not hamper the expressive power of the
language, while achieving tractability at the same time.

Let us give an intuition of such ‘‘wardedness’’ property. Spe-
cific body variables are flagged as dangerous if they are bound
to contain labeled nulls and also appear in the head of a rule. In
other words, this ‘‘danger’’ encodes certain propagation of nulls
throughout the reasoning process. Wardedness constrains that all
the dangerous variables in a rule appear in one single body atom,
namely the ward. Moreover, the ward must respect the property
of being able to share variables with other body atoms only under
the condition they are harmless, which means they cannot contain
labeled nulls. Consider for example the following set of rules:

∃Z controls(Z,X) :- company(X).
company(X) :- controls(X,Y).

The variable X in the body of the second rule is dangerous.
Considering for example the database D = {company(ACME)},
we have that the chase applies the first rule and generates con-
trols(Z1,ACME), where Z1 is a witness for the existentially quan-
tified variable Z; then the second rule is applied, and the variable
X is unified with Z that is propagated to the head company(X).
1

5

Observe that, throughout this paper, we will mix the logical
notation adopted in formal contexts and the ‘‘code’’-like Prolog-
inspired notation, that is used in systems, such as the Vadalog
system. Consider now the following set of rules:

∃Z holding(Z,X) :- company(X).
business(X,Z) :- holding(X,Y), business(Y,Z).
partners(Y,Z) :- holding(X,Y), holding(X,Z).

It is easy to verify that the rules are warded. In the second
rule, the first position of holding contains a dangerous variable
X; yet X does not appear in business, and Y cannot host nulls.
Therefore, holding acts as the ward and the rule is warded.
In the third rule, X can indeed host null values, but it does not
appear in the head, making it in fact not dangerous. Therefore all
the rules in our example are warded.

Beyond the direct application of such rules, it is important to
know that rules of this kind have been used in data exchange and
integration for many years. This includes advanced concept such
as updatability [35], the role of function symbols [36], and the
(mathematical) concept of limits being extended to them [37].

Vadalog is based on Warded Datalog± as its core and extends
it with several features of practical utility such as an extension
of the notion of monotonic aggregation [38] (min, max, sum, prod,
count) and a rich annotation mechanism (syntactically denoted
by the @symbol), to define interactions with data sources, ex-
ternal libraries, and so on. Reasoning in Warded Datalog± has
been shown to be PTIME-complete in data complexity [33,34],
which bodes well for an effective use of Vadalog in real-world
large-scale settings. However, specific reasoning scenarios (e.g., in
the area of computational social choice [39]) need to cope with
extreme-scale data processing, for which polynomial complexity
is not a viable choice. Warded Datalog± provides interesting
subfragments, such as Linear Piecewise [40], for which reasoning
is subpolynomial, thanks to a stricter limitation of the allowed re-
cursion. In summary, Vadalog addresses also ‘‘Big Data’’ settings,
by carefully reducing the expressive power of the rules.
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Reasoning in Warded Datalog± is PTIME-complete in data
omplexity [33,34]. Although polynomial time data complexity
s desirable for conventional applications, PTIME-hardness can
e prohibitive for ‘‘Big Data’’ applications. One such example is
owards building knowledge graphs that consider huge elections
n the area of computational social choice [39]. Yet, in fact, this
s true even for linear time data complexity. This is discussed in
ore detail in [15].
This core language has a number of extensions to make it prac-

ical, among them: data types, arithmetic, (monotonic) aggrega-
ion, bindings of predicates to external data sources, binding func-
ion symbols to external functions, and more. The Vadalog system
s able to perform ontological reasoning tasks. Reasoning with the
ogical core of Vadalog is computationally efficient and captures
WL 2 QL7 and SPARQL (through the use of existential quan-

tifiers), and graph analytics (through non-trivial support for re-
cursion and aggregation). The declarative nature of the language
makes the code concise, manageable, and self-explanatory.

Vadalog supports aggregation (min, max, sum, prod, count),
by means of an extension to the notion of monotonic aggrega-
tions [38]. The syntax of Vadalog for any aggregation function
and operations is to use @function. For example, the @bind and
@mapping annotations allow to customize the data sources for
the @input function to print results.

3.3. A technical setup of a user interface for the Vadalog system

Vadalog conveys a universal system to integrate various ap-
proaches and tools into a unified framework. Such a system re-
quires a user-friendly platform for the complex tasks running be-
hind the data science and machine learning components. Jupyter-
Lab is a well-known platform for data analysts and scientists with
a convenient interface for data processing and visualization. It
was chosen as the setup of user interface for Vadalog. The Vadalog
system has seamless integration with JupyterLab with the use of a
Vadalog extension and kernel. A typical JupyterLab with a running
Datalog program is shown in Fig. 4. Jupyter has a multi-user
support, in which dedicated resources and the environment are
associated with a concrete user. The Vadalog extension and kernel
for JupyterLab give data scientists the possibility to evaluate the
correctness of the program, run it, and analyze the derivation
process of interesting output facts. All output is rendered in
JupyterLab’s output area.

Vadalog was developed with modular design. Each program
snippet that contains a @module("ModuleNameA") annotation
statement is treated as a module, and it can refer to other mod-
ules with a @include("ModuleNameN") statement. Within the
JupyterLab environment each code cell represents a module and
refers to other cells with respect to @include annotations. While
running a Vadalog program, a selected code cell is considered
as the main program, Vadalog takes a transitive closure over
all dependencies and resolves them accordingly. This approach
allows partitioning the logic of reasoning and making the code
reusable.

The correctness of the program is assessed with the use of
the code analysis functionality. This functionality gives the user
the ability to catch common semantic errors when writing a
Vadalog program. In particular, it gives a warning when a user
introduces a cross-join in a rule, or when an undefined predicate
is being used in the body of a rule, or when the given program is
non-warded. Additionally, our JupyterLab extension has the code
linting functionality that allows to catch syntactic errors in the
process of Valadaog program development.

The analysis of derivations can be performed with the use of
explanations.

7 https://www.w3.org/TR/owl2-profiles/
6

For instance, in Fig. 5, a derivation tree is presented that
explains how the fact control("A", "C") is derived given the
data and the rules. Note that instead of provenance tracking,
where one typically constructs a provenance Boolean formula
or a semi-ring expression, in Vadalog the original program is
augmented, given an atom to explain, with additional rules that
together infer a set of atoms that participate in any proof of
the atom that in turn form a proof tree. This construction is
similar to [41]. The consolidated and enriched Knowledge Graph
is then processed using the standard data science toolkit for graph
analytics (including languages such as Cypher,8 SPARQL,9 and
remlin10).

. Data integration strategies in the Vadalog system

As the importance of data science constantly increases, the
adalog system can support the entire spectrum of data science
asks and processes to a certain extent. For data integration
asks, two main strategies have been implemented in the Vadalog
ystem. In this section, we introduce data bindings as Vada-
og’s support for data science in integration of heterogeneous
nformation.

In terms of data binding, Vadalog has two principal extension
oints: (1) predicates and (2) functions. For predicates, Vadalog’s
indings mark them as input or output, which can be bound to
ny particular data source. For functions, Vadalog’s bindings are
efined either as system built-in functions or bound to a partic-
lar library defined in a multitude of languages such as Java or
ython. Data extensions provide access to relational data stored
n the underlying database management system (e.g., Postgres
r MySQL). As a second approach, Vadalog integrates storage of
ata as graph data using tools such as Neo4j. Further library
xtensions also allow the integration of state-of-the-art machine
earning tools such as Weka, Scikit-learn (see Section 5.1), and
web data extraction tool, OXPath [3,42,43] (see Fig. 6). An

dditional integration with libraries for string similarities and
egular expressions allows for defining complex entity resolution
orkflows.
Predicates. Bindings give the possibility to connect an auto-

ated reasoning workflow with external systems for data ex-
hange.
External data sources and systems can be declared by adopting

input and @output annotations. Annotations are special facts
ugmenting the existential rules with specific characteristics. The
input annotation defines that the facts for a predicate should
low from a data source into the Vadalog program, while the
output annotation specifies what facts should be produced as
result of the program and, if needed, stored into a data source.
dditional annotations such as @bind are used to interact with
xternal systems. A query bind annotation @qbind is a special
ariant of @bind that supports binding predicates to queries
gainst inputs and outputs in the external language (e.g., SQL-
ueries for a data source or a system that supports SQL). The first
arameter of @bind and @qbind specifies the external resource
predicate is bound to; the second parameter defines the type
f the target (e.g., ‘‘postgres’’). In case the schema of an external
esource cannot be derived automatically, or should be overrid-
en, additional @mapping annotations can be used to define a
apping strategy for tuples between Vadalog and an external
ystem.
In Fig. 4, we give a synthetic example of a Vadalog pro-

ram to infer a company control indicator. It can be formulated

8 https://neo4j.com/developer/cypher-query-language/
9 https://www.w3.org/TR/rdf-sparql-query/

10 https://tinkerpop.apache.org/gremlin.html

https://www.w3.org/TR/owl2-profiles/
https://neo4j.com/developer/cypher-query-language/
https://www.w3.org/TR/rdf-sparql-query/
https://tinkerpop.apache.org/gremlin.html
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Fig. 4. An example of the Vadalog program for inferring a company control indicator.
Fig. 5. A screenshot of the output depicting a ‘‘yes’’-explanation for the fact controls("A", "C") in the company control example.
t
t
c

s follows: A company A ‘‘controls’’ company B if A owns di-
ectly or indirectly (i.e., via shares in other companies) more than
0% of B’s shares (lines 20–22). As we can see, various strate-
ies for binding external resources can be used in the Vadalog
rogram. For example, the facts ownsDirectly can be prop-
gated into the program from the query binding denoted by
qbind (lines 6–7 for Postgres, via facts for ownsDirectlyDB)

or @bind (line 14 for CSV, via the facts for ownsDirectlyCSV).
In @qbind, the SQL query is instantiated with the parameter
from the predicate relevant_country (line 8). The query in-
tantiation takes place in the context of the join, in which the
arameter C from relevant_country is propagated into the
7

fourth term of ownsDirectlyDB. In contrast, in case of @bind,
he data is streamed into the Vadalog system and filtered on-
he-fly by selecting only the information regarding the ‘‘relevant
ountry’’ (line 14). The tuples for ownsDirectly can also be
specified within the program in terms of facts (line 3). The result
of the program can either be shown in the standard output, or
saved into a database or any supported target system (via an
appropriate @bind annotation).

In Fig. 6, we illustrate an example of binding with OXPath.
OXPath [3] is a web data extraction language with several

extensions interacting with web applications and extracting data
from them. Fig. 6 presents the OXPath binding for all the relevant
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Fig. 6. Integration of OXPath, a web data extraction tool.
nformation about a company called Shopify from the Crunch-
ase website is shown. The extracted information can be rep-
esented as a relation NumberOfEmployees(X,N). The example
also highlights that several types of information including text,
numeric values, and so on can be extracted by the integrated
component of Vadalog.

Functions. Besides bindings, functions provide a data scientist
with a rich set of value transformations and operations for differ-
ent data types supported in Vadalog. A user can write expressions
of different complexity with the use of operators and functions
to perform arithmetic, manipulate strings, dates, and compare
values. Examples of supported data types are string, integer,
double, date, boolean, set, and a special identifier for un-
known values, marked null. A data scientist can also extend
the set of supported functions with custom Python functions,
supported by the Vadalog framework. Functions can be combined
into libraries. For example, @library("sim:", "simmetrics")
enables the ‘‘simmetrics’’ library, whose methods can be invoked
with the prefix sim:, as in sim:removeDiacritics(Text) to
remove diacritics from Text. We also provide libraries for build-
ing regression or classification models on-the-fly and applying
them on the data derived via reasoning.

Vadalog directly interacts with various data sources regardless
of their nature, be they databases or the Web. Furthermore,
thanks to its rich reasoning capabilities, Vadalog can lift the
analysis up from basic values, tuples or relations within databases
to semantically richer structures, e.g., from property graphs such
as of Neo4j to concepts of a domain ontology.

5. Machine learning in the Vadalog system

The Vadalog system is a universal tool that can reconcile
two opposite paradigms of data scientists and domain experts,
so-called ‘‘inductive’’ (or bottom-up) and ‘‘deductive’’ (or top-
down) approaches. An inductive paradigm goes along with a
statement that ‘‘patterns emerge before reasons for them become
apparent’’ [21]. It certainly refers to data mining and machine
learning approaches which are used for deriving new knowledge
and relations from data. As all data scientists face in practice,
‘‘all models are wrong and some are useful’’ [44, p. 208], which
explains problems of finding the best model given a dataset.
Furthermore, limitations related to labor-intensive labeling for
some machine learning algorithms can also cause incorrect or
incomplete results. Thus, the knowledge from a domain expert,
obtained with a deductive approach, is also important to correct
8

errors originating from the machine learning models, as we shall
see.

Vadalog is particularly useful for processing Big Data, as the
engine allows to continuously update the Knowledge Graph with
new data coming in from different sources, such as multiple
databases and the web, with a very high performance. Hence,
also taking into account the reasoning power of Vadalog that can
be used for statistical and algorithmic analysis of the data, Vada-
log addresses the four main challenges of Big Data: acquisition,
storage, processing, and analysis. The proposed framework can
be scalable to hundreds of databases and terabytes of data. In
particular the storage and processing of the data can be done in
the cloud platform.

The veracity aspect of the proposed data analysis can be ad-
dressed through the post-processing verification rules that can
also be easily encoded in Vadalog. For example, if a certain
statistical or machine learning model is deployed to predict com-
pany shares in Europe, a set of post-processing rules can be
introduced to check the veracity of this prediction. These rules
can be about the range of the shares, or the active years of
companies constrained by their profit and other companies they
are controlling.

In this section, we will discuss how to integrate machine
learning directly. In the first subsection, we will concretely talk
about Weka and Scikit-learn integration. The system’s Tensor-
Flow integration is similar in style to the Scikit-learn integration.
This will be followed in Section 5.2 by a case study on feature
engineering. We will conclude in Section 5.3 on how to include
custom ML algorithms directly into the system.

These integrations cover a range in terms of whether they are
specific to a tool, and whether they require Datalog expertise.
The direction integration discussed in Section 5.1 requires for its
use no particular Datalog or Vadalog expertise, but is specific
to each tool. We note though that while specific to each tool
on the technical level (i.e., the person integrating a particular
machine learning library for the first time to the system), to the
user, the integration is accessed using a uniform syntax. That is,
given that, e.g. TensorFlow and Weka are two machine learning
libraries integrated into Vadalog already, to the user they are
accessed in the same way, without requiring a high degree of
Datalog or Vadalog expertise, and without any additional integra-
tion effort. Of course, for the overall Knowledge Graph using such
machine learning integration, basics of Datalog and Vadalog will
be required to benefit from the combination of KGs and ML. The
second integration covered in Section 5.2 has a very different pro-
file in terms of tool-specificity and Datalog expertise: It requires
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Fig. 7. Weka decision tree training and classification.
f
i

ood working knowledge of Datalog or Vadalog (or in general
ogic programming), but is then largely independent of the actual
L library utilized. The third integration discussed in Section 5.3

equires a higher level of knowledge of logical programming, but
lso provides a standalone solution not requiring any additional
ibraries.

.1. Direct integration with a machine learning framework

The Vadalog system offers integration facilities with most
ommon data scientists’ tools, for instance Jupyter for both data
rocessing and visualization. The integration with most used ma-
hine learning tools is also supported by the system thanks to an
nnotation mechanism. We will concentrate on Weka and Scikit-
earn, showing a multi-value classification use case, in particular
n the credit risk domain. We are going to show two exam-
les of how these machine learning libraries are integrated into
adalog and how they are used by data scientists. The approach
s of course not limited to these two specific machine learning
ibraries.
eka is a comprehensive open source machine learning toolkit.
he integration of Weka in Vadalog is demonstrated in Fig. 7.
ne of the clustering and classification algorithms of Weka is the
mplementation of Iterative Dichotomiser 3 (ID3) decision tree
lgorithm, namely, the J48 model [45]. By applying a decision
ree like J48 on a dataset with a list of predictors or indepen-
ent variables and a list of targets or dependent variables, one
an predict the target class of a new dataset record. Fig. 7(a)
llustrates a J48 model generation example for a financial credit
isk model of companies. The dataset containing four features
nd the corresponding risk class for each company is stored in
he predicate training_data.

Here the training data is propagated to the bound decision tree
classifier associated with the predicate j48 and stored in a file.
The mapping annotations in this program specify attributes and
the class of tuples streamed into the underlying machine learning
model. Fig. 7(b) depicts an example of the classification process
given an id of a model stored in the j48 model.

The attributes of the entries in the predicate new_data to
e classified and the generated model are streamed into the
nderlying Weka framework via the predicate j48. Note now
hat the predicate j48 has an additional attribute storing the
d of the model. The results of the classification are instantiated
n a relation classified_data. In the @qbind expression, the
hird parameter defines nominal attributes, a class in our case,
hich had index 4 in the training phase. The fourth parameter
f @qbind defines the parameter propagation template from

the predicate j48 into the underlying model. As the result of
the execution of the program, the predicate classified_data
contains the class that is predicted by the model for the given
input.
Scikit-learn. An external Python library such as Scikit-learn can
be utilized for machine learning tasks over predicates, through
9

the Vadalog Library framework. One basic linear regression ex-
ample is shown below. The input consists of predicates in the
form of training_set(ID, X, Y). The sk:fit function feeds
the input data one by one and returns the current training set
size. Once a sufficient training set size is reached, the sk:train
function is called with a Boolean return value. The returned
Boolean value stands for whether the training is successful on the
errors occurred or not. This true value is used as a guard in the
result calculation rule to ensure the prediction part is called after
the training is finished. The last rule takes predict inputs one
by one and retrieves the output from a trained model. The value
#T stands for the Boolean value ‘‘true’’.

@library("sk:", "sklearn").
training_set("ID1", [1, 1], 2).
training_set("ID1", [2, 2], 4).
training_set("ID1", [3, 3], 6).
predict("ID1", [17, 17]).

training_size(ID, C) :- training_set(ID, In, Out),
C=sk:fit(ID, In, Out).

classified(ID, R) :- training_size(ID, C), C>=3,
R = sk:train(ID).

result(ID, In, Out) :-
predict(ID, In), classified(ID, #T),

Out = sk:predict(ID, In).

5.2. A data science workflow

We consider the case study of implementing a supervised
machine learning framework and post-classification reasoning
with Vadalog. Our implementation consists of three phases: (1)
feature extraction with Vadalog, (2) interaction between Vadalog
and a serialized classifier, (3) post-classification reasoning. We
assume that the classifier has already been trained and serialized.

1. Feature extraction with Vadalog The task of selecting
useful input attributes for machine learning models and leading
their attention often relies on two major aspects, namely, feature
selection and feature extraction. Let us assume we target the
problem of classifying companies by sector of economic activities,
i.e., automatically telling what the industry is they are active in,
such as crop, manufacturing, building, transporting, and so on.
A company has a set of basic features, which we capture via
Vadalog EDB atom in simple join rules, as exemplified in the case
of number of employees.

feature("NEmployees",N,X) :-
numberOfEmployees(X,N), company(X).

@output("feature").

The idea is accessing, for each company X, the value N of the
eature. All the features are then harmonized in a relational form
n the feature atom, which will be fed to a pre-trained classifier,
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as we shall see. The @output annotation is self-explanatory and
simply defines the output of the reasoning process.

The power of reasoning in feature extraction becomes par-
ticularly visible when the features are not directly available as
attributes of the entity of interest, like for instance our companies,
but derive from a more general analysis of the data, driven by do-
main knowledge. Consider, for example, in our company domain,
the knowledge of the number of direct and indirect shareholders
of a company; it is indeed a good indicator of the sector of the
company, as specific fields, e.g., professional investments, tend
to be more subject to share dispersion, while other kinds of
companies, e.g., food or manufacturing, are more often held by
a smaller set of shareholders, or are even family businesses.

feature("NShares",C,X) :- nShareHolders(X,C).
ShareHolders(X,C) :-

ownsDirectly(Y,X,W), C=mcount(Y).
nShareHolders(X,C) :-

nShareHolders(Y,Z,W1), owns(Z,X,W2),
C=mcount(Y).

Beyond the first basic examples, features could derive even
from the application of very complex domain knowledge, for
instance representing a financial regulation, a common case in
the FinTech realm. For example, the following set of rules defines
a feature counting the number of subjects in ‘‘close link’’ with a
company X. According to the regulation of the European Central
Bank [46], two companies are in a close link if one controls more
than 20% of the other or if a third party owns more than 20%
of both. Assuming that the totalOwn(X,Y,W) atom stores the
total amount of shares W that X owns of Y, we can define the
nCloseLinks feature with the following Vadalog rules:

feature("NCloseLinks",C,X) :- nCloseLinks(X,C).
nCloseLinks(X,C) :- totalOwn(Y,X,W),

Y > 0.2, C=mcount(Y).
nCloseLinks(X,C) :- totalOwn(Z,X,W),

totalOwn(Z,Y,V), W > 0.2,
V > 0.2, C=mcount(Y).

In the above Vadalog program we omitted the @output
("features") annotation, for the sake of simplicity. This is
indeed needed to specify the expected output of the reasoning
process, the result of feature extraction in this case.

2. Interaction with a Serialized Classifier All of the extracted
eatures are passed into a serialized classifier through the @bind
operator. For the case presented above we use Weka as the
machine learning library and J48 decision tree as the classifier.
The implementation of the framework in Vadalog is both library
and classifier agnostic, e.g., we can seamlessly integrate Vadalog
with Scikit-learn, as demonstrated in Section 5.1. The J48 decision
tree classifier can also be seamlessly replaced with any other
classifier, e.g., Support Vector Machine (SVM). The classifications
produced by the classifier are then passed back to Vadalog, also
through the @bind operator.

3. Post-classification Reasoning We can now apply post-
lassification reasoning that cannot be easily represented by ma-
hine learning classifiers to the classifications computed in the
revious phase.
In the following basic example, the rule is designed to reason

ver the classification information of companies and their sectors
ogether with their control information. In particular, the classifi-
ation for a company X is overridden by that of Y which controls
t.

lassification(X,A) :- controls(Y,X),
classification(Y,A).
10
We further extend this example through a more complex
rule where the reasoning of company classification depends on
the family connections. For this we consider the information of
companies that can be controlled by people or other companies.
Here we present an example with three rules about companies
controlled by people, and their family information. We assume
that company X is controlled by person P who is from family
F. Similarly, company Y is controlled by person S who also has
roots in family F. Based on the rule below, it is possible to infer
the sector of company X by knowing only the sector of company
Y. In addition, the presence of information about families and
last names, supports the possibility for reasoning about families.
These rules in the post-reasoning phase show how we aim at
allowing machine learning models to access complex features
that facilitate the inference of hidden knowledge.

classification(X,A) :-
controls(P,X), controls(S,Y),

Family(S,F), classification(Y,A).
∃F Family(F,P) :- Person(P).
F1=F2 :- LastName(P1,L), LastName(P2,L),

Family(F1,P1), Family(F2,P2).

Discussion. The benefits of employing Vadalog in data science
workflows can be summarized in the gained access to hidden
knowledge in different steps of the process, so that it can be lever-
aged in typical machine learning tasks. Such hidden knowledge is
the one obtained via the reasoning process and seamlessly inte-
grated into the statistical models. Let us discuss such advantages
more in detail with respect to our exemplifying classification
problem.

Basic classification models (e.g., linear classifiers) adopted in
data science workflows have no access to network-based features,
which derive in a complex way from the interaction of many enti-
ties. In our example, the number of shareholders and the number
of close links are considered good ‘‘predictors’’ for the specific
sector of economic activity, and thus represent an input for the
machine learning model. On the other hand, such features are not
immediately available and even depend on sophisticated regula-
tions. A declarative encoding of the feature extraction builds a
hybrid cohesive model, inheriting the advantages of declarative
programming over a basic algorithmic approach. Furthermore,
the kind of knowledge encoded in regulations, representing do-
main experts’ opinions and modeling best practices, can hardly
be encoded in the form of statistical models, and is best suited
for a KRR representation.

The interaction with the classifier is straightforward and tech-
nically based on a relational interface. The application of Vadalog
in post-classification is interesting and beneficial. It is our ex-
perience that the results of machine learning models must be
verified and in certain cases complemented or even overrid-
den by business knowledge. In our example, we assume that
a shared company control implies the coincidence of economic
sector; likewise, the same controlling family is an indicator of
coinciding economic sectors. This relation is clearly probabilistic,
though we are simplifying it as deterministic in this case and
will discuss probabilistic reasoning in Section 6. Essentially, the
post-classification reasoning contributes to the performance of
the classification, by injecting ex post knowledge. While, for the
sake of simplicity, in the example we show rules that operate
in override mode with respect to machine learning classification,
more sophisticated cases propose a mutual interaction between
the decisions achieved by the classifiers and the conclusions of
the rules. It is the case of link prediction scenarios in the financial
realm [47], where we experienced the powerful combination of
recursion and standard classification.
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In recent work [47, Sec.6] we have provided experimental evi-
ence of quantitative gains achieved by the presence of reasoning
ules in our hybrid pipeline in terms of classification performance.
n particular, our validation technique consisted in the setup of
blation studies for the case of predicting family links for company

control purposes. We observed a shift of recall from 100% to 90%,
with the progressive deactivation of logical inference steps (cor-
responding to the suppression of specific clustering decisions).
It is interesting to observe that in this process, reasoning rules
also affect the overall scalability with nontrivial dynamics. Rules
allow to tune the trade-off between the accuracy of the results
and the efficiency of the response. Stricter rules improve the
performance, while providing more filtered test data to the ma-
chine learning model and thus lowering recall; on the other hand,
more tolerant rules, produce a less substantial cut in the search
space, with a more accurate final result and a longer elapsed time.
Furthermore, in general, as far as scalability is concerned, the
theoretical tractability of Warded Datalog± already bodes well
or the feasibility of real-world settings. In practice, we could
erify the system scalability of Vadalog reasoning for KGs in data
cience scenarios with tens of millions of nodes and hundreds of
illions/billions of edges [48].

.3. Direct implementation of algorithmic modeling

A core benefit of declarative approaches to data management
s the independence of the specific algorithm. Our data science
ramework is fully declarative in the sense that both the reason-
ng components and the pure machine learning models do not
equire the user to provide algorithms, conveying high control
n the overall application. As a consequential benefit, we ob-
ain robustness to change, modularity, and explainability of the
rocess.
Nevertheless, in specific situations, a real-world platform calls

or ad-hoc implementations of data processing algorithms, for
erformance reasons or for peculiar functional requirements.
Our framework can be used at a lower level and, thanks to

he high expressive power of Vadalog, the explicit encoding of
achine learning algorithms is possible. Clearly, the actual im-
lementation strategy is still delegated to the reasoning engine,
hich can take arbitrary optimization choices. However, unlike
lack-box machine learning algorithms, the user has a higher
evel of control.

So far, we presented how Vadalog can support relevant AI-
asks that could be used in data science workflows such as classi-
ication. We now show a lower level implementation of a popular
ensity-based spatial clustering algorithm [49].
The algorithm takes a set of points in some metric space as in-

ut and clusters together points that are closely packed together,
arking as outliers points that lie in low-density regions. The two
ain parameters of the algorithm are a real ϵ (distance threshold)
nd an integer minPts (the minimal number of points for a dense
egion). Intuitively, the algorithm performs the following steps.

1. Find the points in the ϵ neighborhood of every point.
2. Identify the core points, i.e., points with more than minPts

neighbors.
3. Find the connected components of core points on the

neighbor graph, ignoring all non-core points.
4. Assign each non-core point to a nearby cluster if the cluster

is an ϵ-neighbor, otherwise assign it to noise.

We concentrate on Steps 2–4, while Step 1, which is a con-
truction of the ϵ-neighbor graph, is usually the task of a down-
stream application where, e.g., points are keywords with a string
similarity function as the distance, or points in multi-dimensional
space with the Euclidean distance. We assume that the binary
 b

11
relation graphEdge storing ϵ-neighbors has been computed.
Moreover, the relation minPts contains the input parameter.
Step 2 is described by:

corePoint(Point) :-
graphEdge(Point, Point1),
minPts(CorePointThreshold),
Count = count(Point1),
Count > CorePointThreshold.

Step 3 can be formulated via the rules expressing the transitive
closure:

connected(Point1, Point2) :-
graphEdge(Point1, Point2),
corePoint(Point1),
corePoint(Point2).

connected(Point1, Point3) :-
connected(Point1, Point2),
graphEdge(Point2, Point3),
corePoint(Point3).

For Step 4, we associate a cluster ID with its designated core
point and assign a non-core point to a nearby cluster. We omit
the rule computing the noise points, i.e., the points not associated
with a cluster.

clusterMembers(Cluster, Point, "core") :-
connected(Point, Point1),
Cluster = min(Point1).

clusterMembers(Cluster, BorderPoint, "border") :-
clusterMembers(Cluster, Point, "core"),
graphEdge(Point, BorderPoint),
not corePoint(BorderPoint).

@output("clusterMembers").

As the last step, we output the computed clusters.

Summary. In this section we have seen how the Vadalog system
can be used in a wide variety of data science settings. We first
showed the direct integration with machine learning frameworks.
We then proceeded to showcase the overall data science work-
flow by going through our running example in great detail to
enable data scientists to see how to design such workflows in
Vadalog. We concluded the section by showing that, in special
cases, the Vadalog system is flexible enough to directly encode
and execute algorithmic models.

6. Probabilistic reasoning

In the design of data science solutions, it is more and more
clear that completely neglecting domain knowledge and blindly
relying only on inductive models (i.e., with parameters learnt
from data) easily leads to sub-optimal results, subject to over-
fitting, when not to wrong conclusions. Thus, data scientists tend
to integrate inductive reasoning with complementary deductive
approaches that can in certain cases overrule machine learning
models with domain knowledge.

In the Vadalog system, we introduce Probabilistic Knowledge
raphs, a valuable tool to craft a new kind of data science solu-
ions where statistical models incorporate and are driven by the
escription of the domain knowledge.
The combination of uncertainty and logic describing rich un-

ertain relational structures is not new and has been the primary
ocus of Statistical Relational Learning (SRL) [50,51] and Proba-

ilistic Logic Programming (PLP) [52]. A prominent representative
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of an SRL language are Markov Logic Networks (MLN) [53], which
allow one to describe relational structures in terms of first-order
logic.

MLNs have been successfully applied in many areas such as
atural language processing [54], ontology matching [55], and
ecord linkage [56]. Yet, one common limitation of SRL models
s their logical reasoning side: logic in SRL is not utilized for
educing new knowledge, but rather serves the role of a con-
traint language. Most probabilistic programming languages such
s ProbLog adopt the Sato distribution semantics [57], where
robabilistic choices are made on the underlying extensional
ata, and the rules are then applied to form the possible worlds.
e find the languages from the PLP family to be very suitable for
any use cases for combining uncertainty and rules. However,
one of them support the creation of new values (either via ex-
stential variables or arithmetic operations), which is an essential
eature for reasoning over knowledge graphs and for data science.

Therefore, systems that can be built on top of these models
re of limited applicability in data science tasks. Consider the
ollowing example. Let G be a knowledge graph, which contains
he following facts about the ownership and link relationships be-
ween companies, augmented with a Vadalog program composed
f rules (1) and (2):

own("a", "b",0.4). own("b", "c", 0.5).
own("a", "d", 0.6). own("d", "c", 0.5).

linked(X, Y) :- own(X, Y, S), S > 0.2 . (1)
@weight(0.8). own(X, Z, W) :-

own(X, Y, S), own(Y, Z, T), W = sum(S * T). (2)

Rule (1) expresses that company x is linked to y if x owns
irectly or indirectly more than 20% of y’s shares. Rule (2) is a
ecursive rule with an aggregate operator and expresses indirect
hareholding: when x owns a number of companies y, each hold-
ng a different share ty of z, then x owns

∑
y(s · ty) of z. Moreover,

he rule (2) is uncertain and has the weight 0.8, as specified
y the weight annotation. An example of a ‘‘traditional’’ logical
easoning task is answering the following question over G: ‘‘which
ompanies are linked to a?’’. The result of the reasoning task is
rovided by the companies b and d, as directly specified by G,

and, additionally, c , which is implied by the program. Indeed, by
Rule (2) we first derive the fact own("a", "c", 0.5), as 0.4×0.5+
0.6 × 0.5 = 0.5, and thus, by Rule (1), we deduce linked("a",
"c").

However, here we are in an uncertain setting: rule (2) is not
definitive, but holds with a certain probability. We say that G
is a Probabilistic Knowledge Graph. Probabilistic reasoning on G
would then consist in answering queries over such uncertain logic
programs, i.e., when we can only access the distribution of the
entailed facts. The answer to the question – which companies are
linked to a – would contain companies b and d with probability
one and c with some probability p depending on the ‘‘ownership
distance’’ between a and c.

In spite of its high relevance, surprisingly, none of the exiting
KGMSs allow for uncertain reasoning, crucial in many contexts.
The Vadalog system aims at filling this gap.

The Vadalog system provides a form of hybrid logic-
probabilistic reasoning, where logical inference is driven and
aided by statistical inference. We adopt the novel notion of
Probabilistic Knowledge Graph, and propose Soft Vadalog, an ex-
tension to Vadalog with soft, weighted rules for representing and
supporting uncertain reasoning in the Vadalog system [58]. A Soft
Vadalog program is a template for a reason-tailored statistical
model, namely the chase tree, the semantics of which is based
on a probabilistic version of the chase procedure, a family of
12
algorithms used in databases to enforce logic rules by generating
the entailed facts.

In particular, the system adopts the MCMC-chase algorithm:
a combination of a Markov chain Monte Carlo method with the
chase. The application of the chase is guided by the MCMC, so
that logical and statistical inference are performed in the same
process.

7. Vadalog: Related work, systems and database literature

In this section we cover the extensive related work associated
to the topic. We put a particular focus on the database part, as it
likely is less familiar to a data scientist interested in this topic.

Ontological Reasoning. Vadalog is a state-of-the-art KGMS, based
on expressive logic languages for Knowledge Representation and
Reasoning (KRR). In the database literature, the main focus of
logic-based KGMSs stems from the longstanding attention to the
problem of ontological reasoning [31], which, in its essence, con-
sists in answering a query Q over a database D, in the presence of
a set Σ of schema constraints that model the domain of interest.
In the query answering process, thanks to these constraints that
act on D, new knowledge is generated in the form of new facts for
the answer set. The reasoning research field inherits the extensive
experience of the database community in query answering [59]
and data exchange [60], where many fundamental results of
applied logical inference have been laid out. For example, the
chase procedure [32], a seminal technique to enforce constraint
satisfaction, has become a central technique to perform reasoning
inference steps, to the point that we witnessed the proliferation
of chase variants, extensions, and practical applications [30,61],
in an effort to make it suitable for ontological reasoning.

Key requirements. A crucial challenge that arose in the reasoning
research area is the need for chase-based procedures to jointly
handle existential quantification, which is the creation of new,
fresh objects, and recursion, essential to implement Knowledge
Graph traversals and, more generally, algorithms requiring the
expressive power of the transitive closure. As the arbitrary in-
terplay of these two features leads to undecidability of query
answering even in very simple cases [34,62], a broad research
stream started to dedicate attention to the design of KRR lan-
guages able to strike a good balance between expressive power
and computational complexity, that is, they had to be sufficiently
rich to model real-world problems and, at the same time, simple
enough to be tractable and scalable [15]. Vadalog takes on most
recent results in this wake, in particular by focusing on Warded
Datalog± [34], which is at its core.

Knowledge Graphs. The link between general purpose reasoning,
intended as ontological query answering, and Knowledge Graphs
is based on a specific angle we consider for both the extensional
(EDB) and intensional (IDB) data. In many domains of interest
where KGs can be applied, the extensional data, i.e., the database
D, can be effectively represented in the form of a usual graph,
so by means of a set of nodes and relationships between them,
or triples, as we have seen. Then, unlike usual graphs, in KGs
such extensional knowledge is augmented by Σ , a set of rules
intensionally defining new nodes, edges, or derived knowledge.
In this sense, we adopt an operational definition of KGs in terms
of their ground extensional, intensional, and derived intensional,
i.e., the result of the reasoning process, components [13].

Data Science Workflows There is extensive related work that
discusses the overall data science pipeline from data exploration,
passing through data wrangling, and ending with ML models [63,
64]. A data science workflow is presented in [65] for managing big
data analytics. The fundamental environment for the considered
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workflow mainly is a data warehouse. However, the objective is
to fit the scalability aspects of this environment to be able to deal
with big data challenges in a data science workflow. In order to
do so, a local approach is proposed to include preprocessing, com-
puting models, data cleaning, aggregation, column transforma-
tion, and scoring datasets inside a relational database system. The
challenges in each of these steps are discussed, and possible ap-
proaches are presented, mainly using SQL queries. Although some
steps correlate with what we present here, their approach does
not support rule-based reasoning, which is the main strength
of Vadalog. In another work [66], such a workflow is discussed
in the presence of Apache Spark and focuses on handling the
memory and data locality appropriately. The given solution is
a parallel scientific workflow engine called TARDIS. Similarly,
in [67], an approach is represented for distributed caching of
scientific workflows in a multi-site cloud. Although these and
other similar works are mainly targeting the scientific workflow
of data management, they are not mainly focusing on data science
tasks to be solved with reasoning approaches.

Other Systems and Languages. Several reasoning systems can be
onsidered as related work to Vadalog in the database literature.
ome of them have been already cited and include DLV [10],
raal [11], LLunatic [8], RDFox [7], and PDQ [12], as well as
EMo [68], Pegasus [69], E [70], and ChaseFUN [71]. In this paper,
e build on the mentioned body of knowledge from the whole
atabase community and from our direct experience in develop-
ng the Vadalog system [40]. Our aim is pushing the boundaries
f a joint use of machine learning and reasoning, paving the way
o a hybrid data science process thanks to a fully engineered
ystem and language. In particular, Vadalog extends the set of
ools that are available to a data scientist and provides a cohesive
ramework to integrate all of them, as we have exemplified with
pecific reference to a classification problem. In this sense, the
lurry of popular machine learning programming, scripting and
tatistical languages such as Python, R, STATA, eViews, as well as
he most used libraries such as Keras, TensorFlow, Scikit-learn,
park MLib, should all be considered fundamental components of
ur approach. Vadalog allows to inject a-priori business knowl-
dge into the data science process, in the form of reasoning rules
hich provide the input to the mentioned tools – and models
hey offer – in the form of training sets and, in turn, receive
utput datasets from them. Vadalog bridges libraries and rules by
eans of a relational interface. We can say that our approach is
ybrid, in the sense that the reasoning models we support consist
f both reasoning rules and mathematical, quantitative models.
Injecting a-priori knowledge into statistical models is not new

n general, and, for example, is of the essence in Bayesian models,
here such knowledge is also updated in the process. Vadalog
ffers a compact, expressive, and elegant form to specify this
nowledge in such a way that its contribution in the final data
cience decision is fully explainable and logically consequen-
ial. It is our experience that in domains where the business
nowledge is available, sometimes even with some level of for-
alization or encoding, and is highly data-driven, reasoning rules
re an extremely effective means to make the statistical models
ware of the context. Beyond that, it goes without saying that
ur reasoning rules are not necessarily certain, but can well
epresent probabilistic knowledge, even encoding sophisticated
raphical models like Markov Networks, as we have seen in
ection 6.
We conclude with some more detailed motivation for the

hoice of a Datalog-based KRR language for a data science frame-
ork. One common option for reasoning with KGs represented
s triples is SPARQL, typically adopted under the set semantics
nd the entailment regime of OWL 2 QL [15]. However, as shown
y Krötzsch [72], reasoning with multi-attributed graphs (which
13
represent n-ary relationships), very common in real-world set-
tings like in financial KGs, is not possible with such language. On
the other hand, support for full recursion is essential for graph
traversal and is not natively supported by SQL or only in an
extremely laborious or inefficient form. In fact, our experimental
evidence and SQL code analysis show how Vadalog outperforms
SQL even for isomorphism check, which is the standard operation
to avoid duplication in the answer set as well as non-termination
of the reasoning process [6, Sec.7]. More generally, while SQL is
indeed a valuable choice for data analysis tasks, and thus plays
the same role as R, Python, and other statistical tools that are
complementary to our framework, SQL does not lend itself to
effectively represent the reality of interest and encode business
knowledge.

8. Conclusion

In this paper we showed how modern KGMSs such as Vadalog
can be used to support a wide spectrum of data science tasks in
a unified way. We described a five-stage template for practical
data science workflows going through all of the major tasks in
the spectrum: We started by describing (i) data wrangling, which
is considered to be up to 80% of typical data science workloads.
We also considered data extraction as another important way
to ingest data into a data science workflow. We then consid-
ered how to integrate (ii) statistical reasoning and (iii) machine
learning into such workflows. We then showed how to build (iv)
algorithmic modeling tasks and concluded with (v) probabilistic
reasoning, important in typical data science scenarios with un-
certain data. Through this, we followed the workflow of a data
scientist going through these steps in our running example based
on financial Knowledge Graphs. While real-world data science
workflows differ widely in scale and objective – the focus could
be on either of our presented tasks, or even tasks only touched
upon very briefly – we believe that our five-stage template is a
good starting point for practical engineers to start using Knowl-
edge Graphs for data science workflows. As ongoing and future
work, we are deploying this process in industrial scenarios rang-
ing from the financial space scenario described in this paper to
aircraft engineering, consumer appliance manufacturing, supply
chain management, and many more.
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