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A B S T R A C T

Simulation is capable to cope with the uncertain and dynamic nature of industrial value chains. However, in-
depth system expertise is inevitable for mapping objects and constraints from the real world to a virtual model.
This knowledge-intensity leads to long development times of respective projects, which contradicts the need
for timely decision support. Since more and more companies use industrial knowledge graphs and ontologies to
foster their knowledge management, this paper proposes a framework on how to efficiently derive a simulation
model from such semantic knowledge bases. As part of the approach, a novel Simulation Ontology provides
a standardized meta-model for hybrid simulations. Its instantiation enables the user to come up with a fully
parameterized formal simulation model. Newly developed Mapping Rules facilitate this process by providing
guidance on how to turn knowledge from existing ontologies, which describe the system to be simulated, into
instances of the Simulation Ontology. The framework is completed by a parsing procedure for an automated
transformation of this conceptual model into an executable one. This novel modeling approach makes model
development more efficient by reducing its complexity. It is validated in a use case implementation from
semiconductor manufacturing, where cross-domain knowledge was required in order to model and simulate
the impacts of the COVID-19 pandemic on a global supply chain network.
1. Motivation

For global supply networks with multiple participants and interre-
lations, ever-changing market conditions lead to volatility, uncertainty,
complexity and ambiguity [1]. In order to secure competitiveness,
companies strive to achieve utmost flexibility and to adapt their supply
chain efficiently in a timely manner. An emerging decision support
strategy is based on semantic web technologies and incorporates on-
tologies that capture the knowledge required to make meaningful
decisions. Ontologies in this sense serve two main purposes. First, they
allow dynamic retrieval of yet implicit information. Second, ontologies
act as lingua franca between domain experts due to their inherent nature
of being broadly understandable and open to interpretation [2,3].

Despite the established usage of ontologies in complex, inter-
disciplinary or ambiguous industrial environments, this decision-
support strategy is limited due to its merely static representation.
Facing dynamic scenarios, separate technologies such as simulations
are required for an effective analysis. Although simulations are widely
used across manufacturing domains, related projects tend to lack gen-
eral efficiency, especially when dealing with novel or domain-agnostic
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scenarios. Since a profound system understanding is required to de-
velop simulation models, this process yet is very time-consuming and
complex [4–6]. Usually ensured by knowledgeable experts, the model
development is decelerated when external information is required to
build up the model. This leads to long development times in simulation
projects, which are contrary to the need for fast and agile decision
making.

However, the spread of ontologies described above represents an op-
portunity to overcome the challenges in simulation projects and make
their development more efficient. As pre-existing collections of knowl-
edge, they can serve as a starting point for simulation development.
Initial approaches from the literature already confirm that the use of
ontologies has a beneficial effect on the development of simulation
models [7,8]. Nevertheless, there is a lack of methods and tools in the
industry on how to leverage knowledge from existing knowledge bases
for more efficient simulation model development. With the help of such
tools, companies can efficiently take advantage of simulation studies for
their decision making, achieve better decisions, and ultimately secure
competitive advantages.
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The paper on hand presents a framework for efficiently transferring
knowledge from existing knowledge bases into executable simulation
models. For this purpose, a general model for hybrid simulations in the
form of an ontology is developed as part of the framework. Instantiated,
this so-called Simulation Ontology represents a fully parameterized
formal model within a simulation project. With the development of
Mapping Rules as a further component of the framework, a structured
procedure is created, with which knowledge from existing ontologies,
the so-called Use Case Ontologies, can be efficiently transferred into
instances of the Simulation Ontology. The transformation of the formal
model into an executable simulation is fully automated by the third
component of the framework, the Parser.

We evaluate the framework with a contemporary relevant use case
scenario, investigating the impacts of the COVID-19 pandemic on a
globally distributed semiconductor supply chain. The use case is chosen
for two reasons: First, semiconductor manufacturing with its dynamic,
complex and uncertain environment requires simulation models to
provide decision support in disruptive situations [9]. Second, as such a
disruptive situation is given in the course of the COVID-19 pandemic, it
makes expert knowledge from different domains (epidemiology, supply
chain management e.g.) necessary to be incorporated in the simulation
model [10].

The remainder of this paper is structured as follows. Section 2
provides fundamentals on ontologies and simulation studies. Section 3
analyzes related work and shows respective limitations that the pre-
sented approach aims to address. Section 4 illustrates the developed
framework and ontology together with mapping rules and parser de-
tails. Section 5 describes the use case application before discussing the
framework based on the gained findings. Finally, Section 6 concludes
the work and provides an outlook for future research.

2. Background

Ontologies are based on natural language design and serve as struc-
tured representation of knowledge in a specific domain [11]. This
knowledge is represented by a set of uniquely defined terms (classes),
which are related by certain attributes (relations). Attributes are further
specified by restrictions, which represent the cardinality, i.e. the range
of values an attribute can take [12]. Ontologies thus make it possible to
formalize knowledge and information, so that it can be shared between
people and machines and create a common understanding. In addition,
they ensure easy extensibility as well as efficient reuse of knowledge.
The instantiation of ontologies enables the separation of operational
and domain-specific knowledge. An ontology with its class taxonomy,
properties and relations represents a generalized model of the domain-
related concepts, which integrates knowledge of the specific use case by
instances. Through axiomatization, reasoning and query languages, one
can obtain correlations and logical inferences in the domain. Ontologies
thus represent a central tool for knowledge management and have
been used increasingly in industry for the collection, structuring and
storage of knowledge since the spread of the idea behind the Semantic
Web [11–13].

In dynamic and complex systems, decision support systems solely
based on the collection and evaluation of knowledge are not sufficient.
The dynamic behavior of the system under different conditions over
time is also to be studied in order to make meaningful decisions. Sim-
ulations, as model-based decision support systems, are suitable for this
purpose and widely used in industrial practice [14,15]. A simulation is
a virtual representation of a system, which can be used for experimental
studies [14]. Simulations offer the possibility to investigate the system
behavior in scenarios without interfering with the real system, and thus
to make statements about its possible future development [15,16]. In
the manufacturing and supply chain area, mainly three types of simu-
lations are used: (1) Discrete-event Simulation (DES) for the analysis of
processes, (2) Agent-based Modeling (ABM) for modeling the behavior
and interaction of independent objects within a certain system, and (3)
2

System Dynamics (SD) approaches for the continuous investigation of
causal relationships between different parameters [17]. Often, given
problems cannot be assigned to one particular type, so they are mapped
in hybrid models that combine various submodels to address strategic,
tactical as well as operational problem settings and dependencies at
once [17]. Nevertheless, the general procedure behind all modeling
approaches follows the same underlying logic.

According to Milde and Reinhart [6] and VDI [14], a simulation
project can be divided into an introductory task definition followed
by model development and generation, which is further composed of
system analysis, creation of a conceptual model and its implementation
into simulation software. In parallel, the process of data management
identifies and prepares the required data. After a successful verification
and validation, the model can be used for experimental simulation
studies and thus to develop scenarios for decision support.

The burden of time-consumption in the current best practice of
industrial simulations as well as the capabilities of semantic knowledge
management regarding an efficient understanding and communication
of complex systems raise the question of how to convert the knowledge
within ontologies into simulation models in order to support fast and
efficient decision making in complex and dynamic environments.

3. Related work

With regard to previous research, Fishwick and Miller [7] already
emphasized in 2004 that the simulation domain should leverage the
potentials of the Semantic Web. This section first presents further rather
general related work. Subsequently, we follow McGinnis et al. [18] in
distinguishing the research streams on ontologies for domain modeling
and for simulation modeling. Whereas the former focuses on conceptual
models for explicit application domains, the latter aims at a general
knowledge representation for simulation studies.

Benjamin et al. [19] argue for a specific benefit of ontologies for
every process step related to a simulation project. In particular, a
harmonized terminology helps to establish its purpose and scope. The
different levels of abstraction and the ease of analyzing an ontology can
strongly support the identification of roles and relationships and thus
the formulation of a conceptional model. Furthermore, the mining of
data and interpreting text mitigates the challenges of data acquisition
and analysis.

A theoretical concept for linking simulations to a semantic knowl-
edge base is proposed by Rabe and Gocev [20]. A Web Ontology
Language (OWL)-based reference ontology for manufacturing systems
builds the backbone of a framework for the continuous enrichment of
knowledge by the aids of human experience, an inference engine as
well as simulation results.

The recent framework of Du et al. [21] addresses a prefabricated
component supply chain of the Chinese construction industry. Local
ontologies are used to store the specific information of each partici-
pant. Mapping to a global ontology of the entire supply chain enables
information integration and knowledge sharing. To finally support
decision making, the individual behavior of the agents is analyzed in a
simulation model.

Research on ontologies for domain modeling particularly addresses
the challenge of system understanding by provision of a general knowl-
edge model. However, their interface to simulations is usually limited
to ad-hoc transformations, which leads to an overall lack of general-
izability. For instance, Fayez et al. [22] propose an ontology based
on the Supply Chain Operations Reference (SCOR) model, from which
specific simulation configurations can be derived. Being dynamic, large
and complex with regard to space and time as well as based on various
heterogeneous information technologies, the supply chain domain is
stated to be particularly challenging for simulations.

A similar approach is presented by Cope [23]. The main contri-
bution is a stand-alone tool for building simulation models from a
SCOR-based ontology. In contrast to Fayez et al. [22], the ontology
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of Cope [23] not only contains supply chain knowledge but also the
knowledge required for building a related simulation model. In partic-
ular, classes for resources that perform a certain process and for the
specification of the process duration are added.

Similar to the work of Cope [23], Chen and Chen [24] develop a
knowledge model for supply chain simulation. This knowledge model
also integrates supply chain knowledge and simulation know how in
equal measure, focusing on modeling supply chain planning processes
and the data and information exchanged between them. The knowledge
model is not built as an ontology but as an object model and imple-
mented using Extensible Markup Language (XML). By developing an
interface, the XML model can be read into a simulation software and
used for simulation studies.

Wagner et al. [25] provide an ontology-driven simulation frame-
work for the specific application of automated material handling sys-
tems in semiconductor factories. The authors strive for fast decision
support in this highly dynamic and complex environment by the use
of simulation experiments. Nevertheless, their simulation interface only
aims at direct experiments on specific KPIs in one particular problem
setting and thus also lacks generalizability.

The counterpart to these domain-specific publications is represented
by approaches for simulation modeling. However, since such simula-
tion ontologies are in need of an appropriate interface to potential
domain ontologies, further developments resulted in two major com-
bined approaches [18]. Silver et al. [26] present the Discrete-event
Modeling Ontology (DeMO), an OWL-based ontology derived from the
mathematical foundations of a DES. DeMO is composed of four main
parts, since the authors propose to distinguish models according to the
general perspectives of activities, events, processes as well as states.
A self-developed tool suite supports the user in mapping any domain
ontology to DeMO. The resulting process instances are stored as a
directed graph of activities. A transformation schema based on Java,
the SPARQL Protocol and RDF Query Language (SPARQL) and XML is
able to translate those graphs to actual simulation models. In the course
of a case study from the biochemical domain, the general complexity
of mapping properties from a domain ontology to corresponding classes
of DeMO is mentioned. This can be reasoned by the general focus on
the theoretical fundamentals of simulation modeling rather than on
application-oriented concepts. Nevertheless, the works around DeMO
provide valuable insights on how to bring a domain ontology, a simu-
lation ontology as well as a transformation procedure into a conceptual
framework.

The research of McGinnis et al. [18] can also be classified to the field
of approaches that combine a simulation ontology with domain knowl-
edge. But unlike OWL in [26], Systems Modeling Language (SysML) is
used as a formal language for modeling discrete-event logistics systems.
Their transformation procedure is based on the four-layer meta-object
facility. The concept from software engineering implies the actual
model being an instance of a user model and further has to be conform
to a meta-model, i.e. a modeling language specification such as SysML.
The definition of this meta-model is provided on the highest layer,
the meta-meta-model. The authors present respective meta-models for
both, SysML as well as the simulation applications Arena and AnyLogic
and case-dependent transformation procedures to partially generate
respective simulation models. Proofs-of-concept are provided for an
electronic assembly system [27] as well as for general test problems
from semiconductor manufacturing [28]. However, this approach also
lacks practicability. Ehm et al. [29] argue, that trying to fit a company
in a top-down meta-model architecture rather fits the world view of a
computer scientist – mainly talking about objects and classes instead
of machines, jobs or processes – than of particular domain experts or
model developers.

Previous works share two major deficits. None can be classified
as a holistic approach, leveraging all potential benefits of ontology-
based simulations, as argued by Benjamin et al. [19]. They either
3

relied on ad-hoc transformations of a specific domain ontology or came
up with a general model for simulations but lacking an appropriate
mapping of domain knowledge. In order to leverage the capabilities
of semantic knowledge for both the understanding of the underlying
system and of the general concepts of simulations, guidelines on how
to transfer objects and constraints from the real world to a digital
replica are crucial. Furthermore, all previous works are limited to DES
applications but the increasing complexity of modern manufacturing
and supply chain systems is expected to raise problems that might be
best addressed by an ABM, a SD or even a hybrid approach. Especially
for the investigation of supply chain behavior, SD simulations are
often used in literature (see [30,31]). Transferring these studies to
actual supply chains in practice remains a challenge due to the lack of
methods to support model building. Since simulation engineers usually
have their personal expertise and experience in only one particular
modeling technique, a standardized knowledge representation of all
potential concepts is thus expected to facilitate the development of
more profound simulation models.

4. Bridging ontologies and simulations

This section presents the framework proposed for the transformation
of semantic domain knowledge to a hybrid simulation model. It exploits
a given semantic knowledge repository of an industrial system and
leads to a model executable in simulation software and thus capable
for decision support. The knowledge-intensive tasks of system analysis
and model conceptualization, i.e. the decisions of how to model the
main objects and interrelationships, highly depend on the underlying
problem setting and thus remain manual. The subsequent model gen-
eration is labor-intensive but with a conceptual model on hand rater
straightforward and thus automatized. One can therefore classify the
entire framework as semi-automatic.

4.1. Ontology-based simulation development framework

Fig. 1 depicts the general process of simulation projects [6] in the
upper part and below how the respective tasks are addressed by our
ontology-based approach. As outlined in Section 2, a simulation study
can be split into an initial phase of orientation and project definition,
followed by model building, running and result interpretation. The part
in focus of our work, namely model development, is usually further
accompanied by a verification and validation procedure as well as by
an appropriate data management procedure. However, we assume the
latter to be an integrated part in our approach, since ontologies and in
particular knowledge graphs are sophisticated for managing complex
input data.

The proposed framework aims at more efficient model development
by supporting the respective tasks between the overall problem def-
inition and the actual simulation analyses. It bases on a pre-existing
industrial knowledge base, which is assumed to contain domain on-
tologies for the system to be analyzed. To better distinguish such
domain ontologies from the later presented ontology for simulation,
they are referred to as Use Case Ontology in the following. It may
not contain knowledge explicitly related to simulations, but rather
sufficient information and data of the system to understand its causal
interrelationships. It is therefore expected to serve as central place for
knowledge exchange between various stakeholders, such as simulation
engineers.

In order to efficiently derive an executable simulation that is ca-
pable of providing insights into the dynamics and uncertainties, a
transformation approach is proposed. Its core component is a novel
Simulation Ontology, representing a formal meta-model for hybrid sim-
ulations. Aiming for an applicability to a broad range of potential
problem settings, it brings all major elements a simulation model might
be composed of in an appropriate class taxonomy and further adds
semantics to improve their tangibility. One can formally define any

simulation model by instantiating the respective classes and properties
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Fig. 1. Framework for ontology-based simulation development.
within the Simulation Ontology. This represents a novel approach for
simulation modeling and in particular for model conceptualization.
To support such a procedure, a set of general Mapping Rules provide
guidance on which objects and constraints from the Use Case Ontology
might be best addressed by which elements within this Simulation
Ontology. Since one cannot directly conduct experiments on such a
conceptual model, it still has to be transformed to source code in the
model description language of an actual simulation application. This is
addressed by the second step of knowledge transformation, namely a
Parser for automated model generation.

From a technical perspective, OWL is recommendable for knowl-
edge modeling within the Simulation Ontology and thus for model
conceptualization. Being part of the backbone of the Semantic Web,
it is proven to be powerful in practical applications. Despite a semantic
triplestore and a structural class taxonomy, its additional constraints
and characteristics enable a respective ontology to be reasoned. Fur-
thermore, the related SPARQL protocol can query for any information
or data and thus provides a flexible and efficient interface to other
applications [8,32]. The latter also applies for AnyLogic Project (ALP),
the model description language of AnyLogic. It brings the use of Java
for simulation modeling in a text-based XML meta-structure. AnyLogic
is further recommendable as simulation software due to the support
of all techniques associated with hybrid modeling [33]. The entire
framework can also be enabled for the use of other simulation software.
For this purpose, the specific parts in the parser must be adapted to the
corresponding model description language.

Further details on the three components proposed for ontology-
based simulation model development are provided in the following.
Insights into the structure and concepts of the novel Simulation On-
tology are followed by the two-fold transformation procedure, namely
the related Mapping Rules and the exemplary parsing procedure to
AnyLogic.

4.2. Simulation ontology for hybrid modeling

The engineering process of the Simulation Ontology [34] followed
the formal procedure of Noy and McGuinness [12]. Its overall scope is
to represent a meta-model for hybrid simulations with a high degree
of practicability. The latter is of particular importance since it enables
users to directly define a formal simulation model by creating suitable
instances of the required classes and properties. Previous works such
as DeMO [26] merely addressed DES models. Furthermore, they lack
wording and concepts of actual applications. The main approach to
extend their general constructs is to use the set of all potential com-
ponents or building blocks of a hybrid model as baseline for the class
taxonomy. These elements are further distinguished as dependent on
the model type and independent (i.e. global) in turn. Another important
assumption is that each type implies a certain kind of control logic for
4

the system interrelationships. For instance, a DES can be generalized
as a flowchart, i.e. a diagram with nodes and directed edges to model
the process. Table 1 shows, which general OWL concepts are used to
model this novel Simulation Ontology.

Its core components, the various building blocks a simulation model
might be composed of, are modeled in respective classes, which are
further classified in a taxonomy that follows the structure of the dif-
ferent model types. The highest level therefore contains the Model,
the corresponding Controlchart and BuildingBlocks as well
as the type-independent GlobalElements and a general ModelDe-
scription. Since each modeling method has a certain type of control
chart, one distinguishes DiscreteEvent, AgentBased, System-
Dynamics as well as Flowchart, Statechart and StockFlow-
Diagram, respectively. Hybrid models are then just a combination
of submodels from different types. A flowchart is defined by instances
of an Activity, with Ports linked via a Connector, as well as the
processed Entity and some sort of Resource. Furthermore, a state
chart is at least composed of an EntryPoint, State, Transition
and AgentType, whereas a stock and flow diagram implies instances
of Stock, Flow and Link. Subclasses of the type-independent and
thus global model elements are among others a Parameter or a
Variable.

The interrelationships between the classes are modeled by object
properties. The actual triples are defined by respective domain and
range restrictions. For instance, the Entity in a process-oriented
model is linked to the different types of Activity building blocks,
depending on whether they generate, delay, queue, route or
dispose the entity. Despite such rather descriptive notions, there are
also existential relationships in place — such as a Connector always
has to be linked to exactly1PortIn and exactly1PortOut of an
Activity block to model the particular step of the process flow. In
general, the object properties provide semantics to support the user in
understanding each potential component.

Data properties and respective domain restrictions define the pa-
rameters each building block might have. Despite rather general ones
such as a Name or a Location, some solely have a single seman-
tic domain. For instance, only the queue might have a Capacity.
The amount of data properties modeled depends on the simulation
application which the framework is applied to. Our implementation
focuses on the ones required for modeling the in Section 5 presented use
case in AnyLogic. However, we avoid highly software-specific elements
for the sake of generalizability and rely on the ones that are most-
likely transferable to other applications. Fig. 2 depicts the Simulation
Ontology with this particular scope.

4.3. Mapping rules for guided model conceptualization

With a thorough understanding of the Use Case Ontology and thus
the actual system, the simulation engineer can define a conceptual
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Table 1
Ontology concepts within the Simulation Ontology.

OWL concept [8] Modeling purpose Example

Classes Model elements (building blocks) Delay

Class hierarchy Classification of building blocks (taxonomy) SubclassOf( :Delay :EntityActivity)

Class disjointness Incompatibility relationships among building blocks DisjointClasses( :Delay :Queue)

Object properties Semantic relationships between building blocks delaysAgentType

Data properties Parameters of building blocks DelayTime

Domain and range restrictions Interconnection of building blocks by a certain object property or
interconnection of a building block with a certain data property

ObjectPropertyDomain( :delaysAgentType
:Delay) ObjectPropertyRange( :delaysAgentType
:Entity)

Property restrictions (Complex
classes)

Existential quantification relationships among building blocks EquivalentClasses( :EntityActivity
ObjectSomeValuesFrom( :isPerformedOn
:Entity))

Property characteristics Inverse, symmetric, functional or reflexive properties InverseObjectProperties( :hasIncomingRate
:hasSinkStock)

Individuals Elements of an actual model InternalShipment1
Fig. 2. Simulation Ontology for hybrid modeling [34].
model by instantiating the Simulation Ontology accordingly. Since this
represents an entirely novel modeling procedure, a set of general Map-
ping Rules serves the need for appropriate guidance. Table 2 presents
an overview of all modeling questions, inferred rules as well as the
corresponding ontology classes.

It is recommendable to go through the rule set in a hierarchical man-
ner since they closely follow the taxonomy of the Simulation Ontology.
Hence, one preferably first defines the scope of the project and provides
5

sufficient description. Subsequently, the level of abstraction or detail
of the underlying system provides a key indicator for the best fitting
modeling technique. For instance, a rather detailed operational process
usually implies a DES approach, whereas a rather abstract compilation
of general global relationships is better addressed by a SD model. In
case the system cannot be clearly assigned to one of the three types,
one might try to split it into subproblems and thus most likely come
up with a hybrid model, i.e. a composition of different submodels.
The third modeling question is independent of this decision, since it
addresses the group of type-independent building blocks. In case of a
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Table 2
Mapping rules for domain knowledge with Simulation Ontology.

What is the simulation project all about?

1 Sufficient description of the project is to be provided. ModelDescription

Which level of abstraction/detail is intended?

2 The system to be analyzed implies a certain model type. Model
2.1 The system can be represented as an operational process. DiscreteEvent
2.2 The individual behavior of objects shall be observed. AgentBased
2.3 The system continuously observes global relationships. SystemDynamics
2.4 The problem infers an interaction of systems/individuals from different levels of abstraction. Hybrid

Which global elements are referred to the model?

3 Model components that are type-independent. GlobalElements
3.1 An action triggered under a certain condition. Event
3.2 A numeric factor with a fixed value, e.g. input data. Parameter
3.3 A numeric factor with a varying value. Variable
3.4 A plotted observation of a variable over time. Statistics

Of which type-dependent building blocks is the model composed?

4 Each model type implies a certain kind of control chart. BuildingBlocks
4.1 Discrete-event models are controlled by a flowchart. Flowchart
4.1.1 An object that flows through the process. Entity
4.1.2 An object which is used by an entity within the process. Resource
4.1.3 A group of a certain kind of resources. ResourcePool
4.1.4 A location/node defining a discrete process step. Activity
4.1.4.1 A process step where an entity ... EntityActivity
4.1.4.1.1 ... is generated, i.e. the initial process step. Source
4.1.4.1.2 ... is disposed, i.e. the final process step. Sink
4.1.4.1.3 ... is queued. Queue
4.1.4.1.4 ... is delayed. Delay
4.1.4.1.5 ... is routed. SelectOutput
4.1.4.2 A process step where a resource ... ResourceActivity
4.1.4.2.1 ... is seized by an entity. Seize
4.1.4.2.2 ... is released from an entity. Release
4.1.5 The transition/edge between two successive activities. Connector
4.2 Agent-based models are controlled by a state chart. Statechart
4.2.1 A certain kind of an individual or population. AgentType
4.2.2 A condition an agent can be in at a specific point in time. State
4.2.3 The condition for an agent to change its current state. Transition
4.2.4 The marker that defines the initial state. EntryPoint
4.3 System Dynamics models are stock and flow diagrams. StockFlowDiagram
4.3.1 An element that retains a value at a discrete point in time. Stock
4.3.2 The continuous change rate of a stock per time interval. Flow
4.3.3 Implicator of a math. relationship between elements. Link
f
p
l
S
d
c
I
a
d

hybrid one, the notion of global gets even more clear, since respective
lements might be linked to several subsystems at once. This decision
or a certain model type is crucial for the last and most detailed part
f model conceptualization, namely the actual building blocks, since
ne can only choose from the subset corresponding to the implied
ype. In the fourth and last section of simulation modeling, the actual
lements and thus the required type-dependent building blocks are to
e identified. These nodes finally form a flowchart, a state chart or a
tock and flow diagram by defining the required arcs, i.e. connectors,
ransitions or links, respectively.

Once an instance of a class is defined to represent an object or
onstraint from the real system, it inherits all properties of its parenting
lass. The aforementioned object properties further guide the user in
ow the different elements might interrelate and thus support the
onceptualization of the formal model. Its parametrization is enhanced
y the inherited data properties, since they show the user which param-
ters a certain object might have and thus which data is to be gathered.
or instance, the simulation engineer is provided with information on
ow many ports for connectors an activity object in a DES model has
nd further that all connectors are forced to have a single particular
ource and target.

.4. Parser for automated model generation

The mapping procedure of the required system knowledge results
n a fully-instantiated Simulation Ontology and thereby completes the
6

ask of model conceptualization. However, this formal model still needs s
to be transferred to appropriate simulation software in order to conduct
the desired experiments. Since this implementation becomes highly
labor-intensive with an increasing number of elements but does not
directly add value, a parsing script for the automation of this task
is proposed. In a nutshell, the Parser [34] is supposed to take the
instances of the Simulation Ontology as input and translates them
into the required model description language to receive an executable
simulation model.

Since the SPARQL protocol is applicable to OWL-based ontologies,
respective queries can be made on the Simulation Ontology in order
to export the formal model. The first query retrieves a list of all
building blocks by composing all defined class instances. The second
one retrieves a list of the corresponding parameters and their respective
values, i.e. the inherited and instantiated data properties per building
block.

It shall be noted, that the argument of the VALUES statement in the
irst query can be extended to all classes of the Simulation Ontology. As
resented here, only the elements required by the formal model of our
ater use case are considered for the sake of clarity and consistency.
imilarly, the scope of the respective statement in the second query
epends on the amount of implemented data properties and here only
ontains the ones necessary for the case study conducted in Section 5.
n the example above, the user for instance retrieves information such
s the number of intended delay building blocks and their respective
elay time parameters as well as all connectors with their respective

ource and target.
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SELECT ? type ? ins tance
HERE {
? ins tance a owl : NamedIndividual .
VALUES ? type { : P ro j e c tDe s c r i p t i on : Stock : Flow : Parameter : Link : Connector : Event : Source : SelectOutput : Delay : Queue

: Sink } .
? ins tance ? property ? type .

}
RDER BY ? type
SELECT ? sub j ec t ? property ? value
HERE {
? ins tance a owl : NamedIndividual .
VALUES ? property { : Action : Capacity : Condit ion : DefaultValue : DelayTime : Formula : I n i t i a l V a l u e : Modelname : PushProtocol

: Runtime : Source : Target : XCoordinate : YCoordinate } .
? sub j ec t ? property ? value .

}
RDER BY ? sub j ec t
The script used to finally transform this query output into an
executable simulation model is supposed to run through the following
general logic:

(I) A blank ALP file is read-in and the lists of elements and param-
eters are retrieved via SPARQL. The latter two are preferably stored in
a file format for flexible and efficient data exchange, such as Comma-
separated Values (CSV). The use of a dummy model is recommended
over a direct encoding of the entire model description schema, since it
enables the approach to be easily adjusted to potential future version
of AnyLogic.

(II) Depending on the actual data formats, the input might have
to be cleaned with regard to textual spelling for an easier processing.
For instance, the ontology prefix or the CSV delimiters are redundant
information for the simulation.

(III) An algorithm then runs through the list of building blocks and
creates a respective element at the right position in the XML-tree. After
a single element is inserted, it first checks the list of parameters to cre-
ate a respective tag for each parameter related to the current element,
before going to the next item and repeating the parameter insertion.
However, the list of building blocks is not simply processed from top
to bottom but rather according to the general sequence required by
the ALP schema. In particular, all elements of the Variable class are
followed by Dependences, Connectors, StateChartElements,
Events, AnalysisData, AgentLinks, as well as EmbeddedOb-
jects sequentially. Besides the actual elements, general data such
as the name or the runtime of the model have to – if defined in the
Simulation Ontology – replace their preexisting dummies.

(IV) The fully tagged XML-tree has to be written into a new ALP file
in order to represent the source code of the desired simulation model,
which is then executable in AnyLogic.

The resulting model generation workflow is summarized in Fig. 3.
It further highlights which tasks remain manual, namely the SPARQL
querying process, and what is automated by the Parser. Overall, the
user only has to execute three codes in order to generate the simulation
model from the instantiated Simulation Ontology.

So far, the script is able to build up any simulation model for Any-
Logic. In case of an application to another simulation application, only
step (III) of the script needs to be adapted. In particular, the structure of
the XML-tree has to follow the general schema of the respective model
description language. The underlying logic and the sequence however
can remain unchanged. Besides, the simulation software needs to be
able to execute all desired model types. For instance, many common
tools such as Arena are only capable of DES models and would therefore
7

limit the potentials of the entire framework.
5. Application and validation

To proof this novel approach for developing a decision-support
model based on a semantic knowledge base, it is applied to a recent
use case problem, namely the COVID-19 pandemic and its impact
on the global supply chain of a semiconductor manufacturer. Based
on the derived insights, the general validity of the approach and its
practicability for industrial applications are discussed.

5.1. Use case: Semiconductor SCM in times of a pandemic

The unforeseeable emergence and spread of COVID-19 not only
astonished governments and the general public but was and is still
challenging industrial corporations with regard to best possible adop-
tion on heavily disrupted business conditions. Due to the lack of prior
knowledge and experience, the semiconductor manufacturer tried to
gather as much data and information as possible in order to derive
all potential implications. The resulting pandemic knowledge base was
built by use of an ontology, since its semantic capabilities can cope with
the broad range of affected domains and incorporate the ever-changing
opinions and new findings. It further enabled the stakeholders to find a
consensus on the core impact factors. However, the related uncertainty
with the future development of the pandemic led to the additional
and urgent need for profound scenarios in order to proactively define
countermeasures. Since semiconductors typically have a cycle time of
several months as well as and highly expensive production capacities,
simulations are a proven tool for proactive decision support [9,25]. The
main problem in the course of simulating COVID-19 is that simulation
engineers might be familiar with the overall supply chain but lack
knowledge on how to model a pandemic as well as its impacts — which
argues for an ontology-based modeling approach.

An abstract version of the company’s ontology for the impacts of
COVID-19 on its supply chain is depicted in Fig. 4 and for this purpose
referred to as Use Case Ontology. It includes the main strategic echelons
along the internal supply chain, such as the factories or distribution
centers, as well as the key drivers of related planning decisions. Since
semiconductors tend to require a comparably high number of internal
shipments along their operational journey from a silicon wafer up to a
final product for the customer, their routing and thus the accumulation
of all transit times in between the different supply chain echelons is
crucial. Despite the knowledge area of supply chain management, the
domain of COVID-19 and its affects with a certain population is incor-
porated. The ontology shows the semantic interrelationships between
general notions such as the reproduction rate, the capacity of hospitals
or governmental restrictions. The latter factor further represents the
key connection to the supply chain knowledge area, since governmental

reactions on the pandemic spread in form of legal restrictions occurred
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Fig. 3. Workflow of the parsing procedure.
Fig. 4. Use Case Ontology for the impacts of COVID-19 on a semiconductor supply chain.
to be the main disrupting factor. In particular, it could be observed
that regional lockdowns heavily delay the transit times of affected
shipments. In order to predict these restrictions and thus be able to
proactively define countermeasures for the supply chain, a third knowl-
edge area on the dynamic development of the pandemic over time
is incorporated. The so-called Susceptible–Infected–Recovered (SIR)
model provides the mathematical baseline on how a virus is spread
among a population and in particular how the number of infections
develops. The related reproduction rate is seen as the key trigger for
lockdowns and thus disruptions on the semiconductor supply chain.

Overall, the Use Case Ontology is an actual knowledge graph,
i.e. an ontology instantiated with real data. It supports the user in
understanding the causal relationships between the collected data, such
as the master data of the actual supply chain echelons, the observed
transit times of shipments and the numeric measures related to the
COVID-19 pandemic. Based on these, a simulation study is supposed
to come up with actual scenarios for the spread of the pandemic, the
potentially resulting lockdowns and finally the best possible routing
decisions along the global supply chain in order to proactively adjust
manufacturing or inventory capacities and thereby increase the overall
resilience.

The first step in applying the proposed framework on this Use Case
Ontology is to transfer the contained knowledge to the simulation
8

domain. By using the introduced Mapping Rules (cf. Table 2) in combi-
nation with the Simulation Ontology, a formal model for the pandemic
spread and the supply chain can be derived. The modeling question
of the most appropriate model type leads to a hybrid approach, since
the underlying problem infers the rather global interrelationships as-
sociated with COVID-19 as well as the operational order-fulfillment
process of a semiconductor manufacturer. According to rules 2.1–
2.4, a combination of a continuous SD model with a discrete-event
process flow is most suitable to address both levels of abstraction.
Regarding the required building blocks, Table 3 provides an exemplary
overview of the instantiated elements associated with the third mod-
eling question, namely the type-independent ones. For instance, the
governmental restrictions are best to be modeled by an Event called
Lockdown. The Use Case Ontology reasons this by lockdowns being
linked to a certain trigger condition, the pandemic reproduction rate,
and particular implications, namely a decreased contact rate within
the population and an increased transit time of shipments throughout
the affected region. These transit times as well as all properties of the
pandemic and the population are fixed input data with a certain value
and thus imply respective instances of the Parameter class. The same
procedure is applied for the set of DES building blocks as well as the
set of SD building blocks in order to transform all further instances of
the ontology into the required elements and corresponding parameters.
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Table 3
Applied mapping rules for general elements.

Which global elements are referred to the model?

3.1 An action triggered under a certain condition. Event

GovernmentalRestriction has Implication &
TriggerCondition;

Lockdown

ReproductionRate causesRestriction
GovernmentalRestriction;
ContactRate & Shipment isImpactedByRestriction
GovernmentalRestriction

3.2 A numeric factor with a fixed value, e.g. input data. Parameter

Shipment has TransitTime TransitTime1, TransitTime2

PandemicProperty has Value; AvgSicknessDuration &
Infectivity isSubclassOf PandemicProperty

AvgSicknessDuration, Infectivity

PopulationProperty has Value; ContactRate &
HealthcareCapacity & PopulationSize isSubclassOf
PopulationProperty

ContactRate, HealthcareCapacity, PopulationSize
Fig. 5. Automatically generated simulation model in AnyLogic.
Protégé is used for mapping the knowledge between both ontologies.
The free and open-source software application of Stanford University
is chosen due its large community in academia and industrial cor-
porations. The parsing workflow (cf. Fig. 3) starts with querying the
instantiated Simulation Ontology on the Apache Jena Fuseki server by
using the two SPARQL queries. Their output is stored in respective CSV
files, which are then read in by the Parser - a script encoded in Python.
It transforms the formal model into the XML-structure of an ALP file.
The thereby resulting AnyLogic simulation model is depicted in Fig. 5.

Its dynamic behavior follows the causal relationships as defined in
the Use Case Ontology: The upper submodel is related to the spread
of the pandemic over time in an SIR-based approach. As soon as the
reproduction rate between susceptible and infected people exceeds a
certain threshold, a lockdown is imposed. This governmental restriction
not only reduces the contact rate within the observed population but
also increases the transit time of shipments throughout the respective
country or region. The order-fulfillment process in the semiconductor
industry is represented by the lower submodel. Its exact configuration
highly depends on the nature of the specific company as well as the
products it is specialized in. Since this application aims at a high degree
of generalizability and not on a thorough company-specific case study,
only two downstream distribution channels, i.e. ex-backend fabrication,
are distinguished. Which actual supply chain a product takes to a
certain customer depends on a complex decision logic. Nevertheless,
the transit times of an internal shipment from the backend to a certain
9

distribution center as well as the subsequent external shipment to the
customer have a major impact on this routing decision and thus on the
manufacturing, inventory and transport capacities required along the
respective path.

The parameters associated with all depicted building blocks, such
as the infectivity of SARS-CoV-2 or the actual transit times throughout
the two supply chains, originate from the Use Case Ontology as well.
They were linked to the data properties of the Simulation Ontology
in the course of model conceptualization and further transferred to
the model source code by the Parser. When executing the model, one
can observe a change in routing as soon as a lockdown is caused that
affects one of the potential supply chains. This enables the simulation
engineer to conduct detailed experiments with different data sets for
all regions of interest and thereby develop profound scenarios. Based
on these, decision support can be provided on which governments are
most likely to impose new lockdowns and which manufacturing and
distribution sites of the particular company are affected by delayed
shipments. This enables supply chain managers to proactively adjust
the global capacities and thus increase the robustness of their entire
network.

5.2. Discussion

The following discussion of the proposed framework is twofold.
First, the approach itself is validated based on the findings from the
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use case application. Second, additional considerations and enablers for
industrial practice are identified.

The application scenario proofed that our framework is able to
exploit the semantic capabilities of an ontology describing a certain
system for the efficient development of a respective simulation model.
The scope of the use case has been chosen to provide a clear end-
to-end exemplification rather than a thorough company-specific case
study. The setting enabled the simulation engineer to efficiently gain
the required knowledge about the pandemic and its impacts on the
supply chain without having to rely on tedious discussions with do-
main experts. Model conceptualization by using the novel Simulation
Ontology appeared to be viable. However, the Simulation Ontology so
far only incorporates the basic elements of DES, ABM and SD models
and only a few basic parameters per element. The addition of further
simulation-related concepts would require an extension of the class
taxonomy and respective object and data properties as well as new
mapping rules. Another critical aspect to consider is the representation
of complex control and decision logics, as for instance often found
in advanced manufacturing equipment. The current best practice in
simulation modeling revealed, that such mechanisms are typically best
to be addressed by direct program code as a parameter function of
a respective building block. In our approach, it is possible to copy
Java functions to the value of a property instance in the Simulation
Ontology, and the Parser as well as AnyLogic are able to compile them.
Despite being feasible from a technical point of view, the practicability
of such a procedure is a subject to test in actual applications. At
the current stage, mapping support for parameters is provided by the
semantic properties within the Simulation Ontology. In case of such
complexity, a further development of the static Mapping Rules to a
dynamic support system for model conceptualization is expected to be
promising. With regard to model generation, the proposed automation
procedure contributed to an efficient use case application. It did not
reduce the complexity of system knowledge but led to a low resource
expenditure for model encoding. A large-scale case study with a multi-
tude of required building blocks and parameters is expected to further
underline this.

Besides this efficiency, the overall effectiveness in correctly building
the most appropriate model is a subject best to be evaluated by an
application to other use cases. As shown in Fig. 1, the model has to
be verified (syntax errors) and validated (semantic errors) to enable
meaningful experiments and thereby decision support. The impact of
potentially required modeling iterations is highly case-dependent. In
case of minor modeling mistakes, such as single missing or wrongly
placed parameters, the user might either directly correct them within
the simulation software or adjust the already instantiated Simulation
Ontology correspondingly and execute the Parser again. In case of
rather structural issues, such as wrong model behavior, the simulation
engineer might either study the Use Case Ontology again or discuss the
instantiated Simulation Ontology with a local domain expert by use of
the ontology language and the associated Mapping Rules. Hence, the
presented framework is overall assumed to be quite resilient against
potential dynamics.

In the particular view from industrial practice, we assume that
simulation engineers might be sceptical whether they should use the
Simulation Ontology and the Mapping Rules instead of simply one of
their simulation applications. However, it can be observed that they are
usually only familiar with a single modeling technique according to
their personal preference and experience. This implies that an expert
in the field of DES can benefit from our work by gaining additional
knowledge on additional model types, that might be more suitable for
specific problem settings. Furthermore, the ontology-based approach
is expected to improve the general communication along the entire
process, since it enables all kinds of stakeholders to better understand
the world of simulations and their mostly complex models. Regarding
the Parser for automated model generation, one has to ensure that
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the script is capable of all potentially required building blocks and
parameters. But this initial coding effort is negligible since the savings
in time accumulate with every application and the algorithm itself
showed to be highly efficient at a runtime in the range of seconds —
and not days or even weeks as for manual model generation procedures.

To assess our framework as fully suitable for the complexity of
industrial applications, three key enablers are required beforehand. (1)
Since the framework builds up on the existence of a certain domain
ontology, a sufficient web of linked data is required. The more an
organization uses semantic web technologies for their general knowl-
edge management, the more useful our approach is expected to be.
(2) People also need to be trained on and willing to work with these
technologies. Our process requires more tools and interfaces than the
current best practice in simulation modeling. However, the enhanced
comprehensibility of the system, of the general constructs behind a
simulation and of the generated model as well as the overall poten-
tial reduction in resource expenditure can justify our framework and
thus the necessity for an adequate change management. (3) A related
but already prior existing weak point is the general acceptance of
model-based decision support. Practitioners still report that upper level
decision makers are often not willing to rely on results provided by
a simulation study. However, we expect the continuously increasing
complexity of systems as well as external disruptions such as COVID-
19 to rise the need for tools that are able to provide insights into
such complex, dynamic and uncertain environments. The enhanced
comprehensibility of simulation models defined in the language of
an ontology is further expected to make the models themselves and
thereby also their results more tangible due to an increased level of
felt truth.

6. Conclusion and outlook

Our framework creates an opportunity to use the system knowledge
stored in an ontology for the efficient development of a digital replica
for simulations. This enables fast and profound model-based decisions,
which is particularly beneficial in a dynamic and uncertain environ-
ment. Our framework consists of three components: (1) the Simulation
Ontology, a semantic model for the basic building blocks and interrela-
tionships of a simulation, (2) Mapping Rules that support the transfer
of knowledge from an existing domain ontology into instances of the
Simulation Ontology and thereby present a novel approach for model
conceptualization, as well as (3) a Parser, which automatically gener-
ates an executable simulation model from the instantiated Simulation
Ontology. Our approach can be classified as semi-automatic, whereby
the steps of model development are supported and model generation is
automated. Our approach is not limited to a particular simulation type,
but supports DES, ABM, SD as well as hybrid modeling.

We applied the framework in the exemplary supply chain of a
semiconductor manufacturer. By exploiting an industrial knowledge
base about the COVID-19 pandemic and its impacts on the company’s
order-fulfillment process, we were able to efficiently create a simulation
model in which SD and DES components interact for the prediction of
new lockdowns and thus appropriate countermeasures.

Based on the insights gained throughout the development and ap-
plication of our approach, several potentials remain for future in-
vestigations. Our particular use case application resulted in a hybrid
simulation with SD and DES submodels. Further use cases, which might
also include ABM components, represent a promising approach to fur-
ther test the overall practicability. Overall, a thorough case study where
a traditional modeling approach is compared with an ontology-based
procedure might be able to quantify the expected savings in time. In
addition to our general path, i.e. the development and implementation
of a simulation model based on knowledge stored in an existing domain
ontology, the investigation and integration of the reverse direction,
i.e. the transfer of gained knowledge from a simulation study back
to the ontology, represents another interesting subject for research.

Especially under volatile, uncertain, complex and ambiguous business
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conditions, the efficient gathering of knowledge in ontologies, fast
findings from simulation studies and their feedback into the semantic
knowledge base could lead to a better understanding of the situation
and more agility as well as sustainability in decision making. We
acknowledge similar research efforts in adjacent domains that deal with
similar problem settings (see Wang et al. [35], e.g.) that may benefit
from our findings and can be an inspirational perspective for our future
research endeavors.
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