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Hazardous chemicals are widely used in the production activities of the chemical industry. The risk man-
agement of hazardous chemicals is critical to the safety of life and property. Hence, the effective risk man-
agement of hazardous chemicals has always been important to the chemical industry. Since a large
quantity of knowledge and information of hazardous chemicals is stored in isolated databases, it is chal-
lenging to manage hazardous chemicals in an information-rich manner. Herein, we prompt a knowledge
graph to overcome the information gap between decentralized databases, which would improve the haz-
ardous chemical management. In the implementation of the knowledge graph, we design an ontology
schema of hazardous chemicals management. To facilitate enterprises to master the knowledge in the full
lifecycle of hazardous chemicals, including production, transportation, storage, etc., we jointly use data
from companies and open data from the public domain of hazardous chemicals to construct the knowl-
edge graph. The named entity recognition task is one of the key tasks in the implementation of the knowl-
edge graph, which is of great significance for extracting entity information from unstructured data,
namely the hazardous chemical accidents records. To extract useful information from multi-source data,
we adopt the pre-trained BERT-CRF model to conduct named entity recognition for incidents records. The
model achieves good results, exhibiting the effectiveness in the task of named entity recognition in the
chemical industry.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Hazardous chemicals are widely used in almost every corner of
the chemical industries and many other manufacturing fields. They
not only build up the basis of the economy but also are closely
related to our daily life. Due to the flammability, explosion, high
toxicity, and high corrosivity [1], hazardous chemicals have an
impact on all phases of their lifecycles, such as production, trans-
portation, and storage. Risk management of hazardous chemicals
is an important topic worldwide. Hazardous chemical manage-
ment includes many aspects, including hazard identification, con-
sequence analysis, probability analysis, and risk assessment, etc.

One important reason for the frequent occurrence of hazardous
chemical related incidents is the lack of relevant knowledge and
poor training. Due to enormous differences in physical and chem-
ical properties, the management of hazardous chemicals involves a
vast amount of interconnected information, especially when con-
ducted in the full life cycle. Though nontrivial data sets have been
established to facilitate the hazardous chemical management,
these isolated islands of information hinder the comprehensive
understanding and utilization rate of the knowledge of hazardous
chemicals [2]. Some information technologies have been used in
the management of hazardous chemicals, like the expert system
[3] in the process of safety analysis. Although the expert system
is suitable for hazard identification and inference in a specific field,
it cannot cover the whole life cycle of hazardous chemicals. In the
field of process knowledge engineering, the integrated ontology,
OntoCAPE [4] was developed. OntoCAPE defined the overall
schema of the process industry including the meta layer, the upper
layer, the conceptual layer, and the application layer, etc. Onto-
CAPE is an important comprehensive ontology that is not applied
to process data.

Knowledge graph, as a new type of graph database content
retrieval method proposed by Google in 2012, has developed vigor-
ously and effectively so far [5]. As a semantic network, knowledge
graph has powerful expressive ability and modeling flexibility, and
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it can model entities, concepts, attributes, and their relationships
[6,7]. The knowledge graph is promising in knowledge retrieval
[8], question-answering [9], knowledge recommendation [10],
knowledge visualization [11], and other applications. The knowl-
edge graph has been applied in many fields and have achieved
good results [12–14]. For instance, some scholars [15] have tried
to apply knowledge graphs in the field of traditional Chinese med-
icine (TCM) health care and have expanded the scale of the knowl-
edge graph. The platform supported by knowledge graph can
provide non-professionals with knowledge services such as knowl-
edge retrieval of traditional Chinese medicine [15]. Besides, the
knowledge graph has been applied in the field of geological haz-
ards. By constructing the knowledge graph of geological hazard
documents, scholars have improved the utilization rate of litera-
ture information and provided knowledge services and knowledge
bases for preventing and responding to geological hazards [16].
However, the use of a knowledge graph in the field of hazardous
chemical management is challenged by the complex inter-
connections between various risk influencing factors as well as
the overwhelming amount of interconnected information.

There are unstructured documents in the field of hazardous
chemicals management, and the knowledge graph should be estab-
lished on the embedded entities and relations within these docu-
ments. The named entity recognition is one of the key tasks in
the implementation of the knowledge graph. Different entities
need to be identified following an overall schema. The mainstream
methods of identifying entities are divided into three categories:
rule-based methods, learning-based methods, and hybrid methods
[17]. The most basic of rule-based methods are dictionary-based
entity recognition. For the good performance of deep learning in
natural language processing, most of the learning-based methods
are implemented using deep learning.

Knowledge and data of hazardous chemicals are usually stored
in separate tables. We try to establish a new knowledge graph to
build connections among a substantial volume of chemical compa-
nies, chemicals, hazards, accidents, and other types of related
knowledge. One major challenge in constructing a knowledge
graph for hazardous chemicals management is how to build a
appropriate ontology structure. A critical part is defining cate-
gories, relations, and attributes. Another major challenge is how
to make better use of textual information in related documents,
namely efficient entity identification. In this article, we propose
an ontology framework for hazardous chemicals management,
which provides the foundation and solution for improving process
safety. We also carry out named entity recognition based on deep
learning methods to identify entities in textual information so that
the information can be better utilized in the chemical industry.

The main contributions of this paper are as follows:

� The contribution of introducing the knowledge graph to the
chemical industry is linking the corresponding knowledge in
the unstructured data source together and establishing a
knowledge network full of connections. Besides, the application
of the knowledge graph is beneficial to the identification of risk
sourcing and propagation.

� Another contribution of this article is improving the utilization
of text information in chemical documents. We apply the natu-
ral language processing technology to chemical data to solve
the problem of identifying entities in chemical documents.

The paper is organized as follows. In Section 2, a framework of
the proposed ontology for hazardous chemical management is
given. Section 3 describes the establishment of the ontology-
based knowledge graph. Section 4 presents the method that we
adopt to recognize named entities in the chemical industry. Some
concluding remarks are finally given in Section 5.
105
2. Ontology development in a top-down manner

The first step is the design of ontologies for the knowledge
graph of hazardous chemical management from accumulated data
resources and human knowledge. Data resources can be divided
into structured data and unstructured data [18]. As shown in
Fig. 1, the overall architecture is a combination of top-down and
bottom-up methods: at first, the ontology is proposed based on
human knowledge and experiences, then rules are applied to form
the early entity maps by integrating exiting structural data.

The most important task of constructing a knowledge graph is
to design ontology [19,20]. Before designing the ontology, we first
determined the scope. The hazardous chemical management
involves chemical production, storage, transportation, usage, treat-
ment, etc. The class hierarchy should consider the concepts of com-
pany, equipment, hazardous chemical, human, incident, risk, etc.
The subject concept was divided into the company, equipment,
hazardous chemical, person, and incident. The typical relations
between the listed classes included chemical reaction, production,
and consumption, etc.

Based on the provided concepts, we first designed seven top-
level classes. And subclasses were then added to the top-level
classes. The structure of classes in ontology is shown in Fig. 2. Sec-
ondly, we defined the relation between classes, namely, the object
attribute. For example, we defined the object attribute ‘‘re-
latedIncChe” (related incident chemical) between the class Inci-
dent and Chemical, the domain of the object attribute was
Incident, and Chemical was the range of the object attribute. More
relationships between classes are shown in Fig. 3. At last, we
defined the properties of each class, also known as data properties.
Fig. 4 shows examples of data properties. On the left, we defined
the following data attributes for the chemical class: ‘‘hasCASNum-
ber”, ‘‘hasFormula”, ‘‘Hasupperhlrelimit”, etc. The right subgraph in
Fig. 4 shows the data attributes of the company class:
‘‘hasTaxFileNumber”, ‘‘hasEmail”, ‘‘has Address”, etc.

After defining the object properties and data properties, we used the
properties to add constraints to the classes in ontology. As shown in
Fig. 5, the description of a class includes an existential quantifier
description (some) and a full quantifier description (only). For example,
‘‘relatedIncOrg some company” indicating that the class has a relation-
ship associated with the company, and ‘‘incident and (relatedIncChe
only (hazardous chemical))” indicating hazardous chemicals incidents
are incidents only associated with hazardous chemicals.

Fig. 1(a) shows six types of structured data resources in the pro-
ject. Among them, chemical attribute data are open data obtained
from the chemical registration catalog. Related companies, major
hazards evaluations, and incidents data are data provided by enter-
prises. All datasets are arranged in CSV files or tables. Tables 2 and
4 show the size and type of the datasets. The content of the chem-
ical registration dataset is shown in Table 1, and the content of data
such as companies and hazardous source incidents is shown in
Table 3. Some of the datasets describe the attributes of the entity,
such as ‘‘Hazardous chemicals catalog 2015”. Some datasets also
include related information between entities, such as ‘‘Dataset of
chemicals and enterprise related to hazard sources”.
3. Completion of ontology in a bottom-up way

We adopted a rule-based method to map the structured data
resources with a knowledge graph and establish a mapping rela-
tionship between concepts in the database and ontology in the
knowledge graph. We used different extraction rules to achieve
semi-automatic extraction of database entities, attributes, and
relations from different data structures. The data sets in the field
of hazardous chemicals have the following characteristics: many



Fig. 2. The hierarchy of classes in the hazardous chemical ontology.

Fig. 1. Technical framework for building a knowledge graph of hazardous chemicals management.
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aliases and common names of chemicals, inconsistent names of
chemicals in different data sets, and error and missing record in
CAS number file. The above characteristics lead to the information
island problem in the chemical industry. Compared to the non-
exclusive names, the CAS number is an important basis for deter-
mining chemicals. Thus, to solve the above problems, we created
and updated the CAS number file of chemicals, and we used the
chemical name in the CAS number file as the standard chemical
name. Also, we created and updated the chemical alias set.

With the aid of the integration of the structured data, we
obtained a knowledge graph of hazardous chemicals management,
which contained 124,593 attributes, 66,184 entities, and 223,640
106
relationships. However, the current graph construction had the fol-
lowing deficiencies:

� The amount of data was small, and the external chemical
resources were not fully utilized. Various information such as
chemical names, devices, processes, and accident types involved
in the chemical process were included in the text, requiring
more effort to identify safety-related entities.

� The graph did not completely describe the contents of the table,
and the utilization rate of the table information could be further
improved.

� The manual construction of the graph was inefficient.



Fig. 3. The example of relations between classes in the hazardous chemical ontology.

Fig. 4. Two examples of data properties of the class.

Fig. 5. Two examples of axioms in defining the class.
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To overcome these deficiencies, the automation and effi-
ciency of the construction of knowledge graphs need to be
improved. Information extraction can automatically [21,22] or
semi-automatically extract useful triples from the text, improv-
ing the speed and efficiency of constructing knowledge graphs.
The information extraction task is divided into three steps:
firstly, the named entities are correctly identified; secondly,
the relationships between concepts are described; finally, the
relationships are nicely classified. Therefore, the accuracy of
the information extraction task depends on the correct named
107
entity [23,24]. Named entity recognition is an important step
in the information extraction task. Our goal in the next section
is to train named entity recognizers to prepare for subsequent
tasks such as relationship extraction and knowledge question
answering. Specific identification methods will be developed
in the next section.

4. Deep learning-powered named entity recognition

The representation of chemical knowledge includes structured,
unstructured, semi-structured data. The relational database is the



Table 1
Hazardous chemicals registration datasets and content.

Hazardous chemicals registration dataset Chemical attributes in related Database

Hazardous chemicals catalog 2015 CAS number, Chemical Chinese name
Dangerous goods list UN dangerous goods number, Chemical English name, Chemical Chinese name, Category,

Special dangers
Occupational disease classification and catalog Chemical Chinese name, Occupational disease
List of hazardous chemicals under key supervision CAS number, Chemical Chinese name
List of highly toxic substances 2003 CAS number, Chemical name, Chemical Chinese name, Chinese alias
Catalog of categories and varieties of precursor chemicals Chinese name of chemical, Category
Catalogue of hazardous chemicals under key environmental

management 2014
CAS number, Chinese alias,Chinese name of chemical

Explosive hazardous chemicals list 2011 name, CAS number, explosive danger category, un_num, chemId, classification

Table 2
The size and type of hazardous chemicals registration datasets and content.

Hazardous chemicals registration dataset Size Type

Hazardous chemicals catalog 2015 2997 items csv
Dangerous goods list 2505 items csv
Occupational disease classification and catalog 136 items csv
List of hazardous chemicals under key supervision 76 items csv
List of highly toxic substances 2003 54 items csv
Catalog of categories and varieties of precursor chemicals 41 items csv
Catalogue of hazardous chemicals under key environmental management 2014 84 items csv
Explosive hazardous chemicals list 2011 99 items csv

Table 3
Datasets and content provided by enterprises.

Datasets provided by the enterprise Chemical attributes in related Database

Enterprise information User enterprise ID, Unit name, Address, Province ID, City ID, County ID, Nature units, Post
code, Business license number, Manager name, Phone number, Fax number, Mail, Unit
code, Set-up time, Production range, Representative, etc.

Datasets of relationship between chemicals
and enterprises

Unit name, Chemical code, Chemical property, Name, Alias name, English name, English
alias name, CAS number, UN number, Formula

Dataset of chemicals and enterprise related to
hazard sources

Hazard sources company, Danger source ID, Hazard source chemicals

Hazard sources information Company ID, Hazard source name, Hazard source address, Hazard source level, Hazard
source R value, Hazard source scale, Safety distance, People number, etc.

Event information Accident name, Domestic or international, Accident location,
Involved chemicals, Hazardous chemicals,

Accident type, Accident level, etc.

Table 4
The size and type of datasets provided by enterprises.

Datasets provided by the enterprise Size Type

Enterprise information 47067 items csv and unstructured data
Datasets of relationships between chemicals and enterprises 246562 items csv
Dataset of chemicals and enterprise related to hazard sources 25541 items csv
Hazard sources information 11295 items csv
Event information 25522 items csv and unstructured data
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most common structured data format, and web documents are
common semi-structured data types such as XML, JSON, etc.
However, human-readable documents are one of the main data
sources in the hazardous chemical industry. In Section 2 and
Section 3, the ontology and knowledge graph have been con-
structed based on the structured data by combining the top-
down and bottom-up approaches. For unstructured data in the
chemical industry, such as position statement, operating proce-
dures, and accident information, the identification of the entity
108
is essential, and a named entity reorganization model is trained
based on ontology definitions.

In this work, the original corpus contains five types of entities:
chemicals, event type, enterprise organization, chemical equip-
ment, and chemical operation system, all of which are derived
from available documents such as job data, operating procedures,
and accident information. For the available documents, we first
performed sentence segmentation processing. We collected a total
of 12,689 original corpus sentences. The training set contained a



Table 5
The number of entities in datasets.

Datasets Chemicals Accident type Enterprise organization Chemical equipment Chemical operation system Total number

Training dataset 7314 8263 4276 4171 1742 25,766
Validation dataset 1325 1326 731 672 302 4347
Testing dataset 1138 1369 722 604 309 4142

Fig. 6. Picture of the process of data preprocessing.
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total of 9649 sentences, the verification set contained a total of
1577 sentences, and the test set contained a total of 1463 sen-
tences. The dataset statistics are shown in Table 5.

4.1. Data preprocessing

The labeling strategies for named entity recognition include BIO
mode, BIOE mode, and BIOS mode. We used the BIO labeling strat-
egy, where B represents the beginning of the entity, I represents
the non-starting part of the entity, and O represents the part that
is not the entity in the sentence. When predicting the entity
boundary, it is necessary to predict the entity type at the same
time. So there are eleven types of labels to be predicted, namely
‘‘O”, ‘‘B-CHE”, ‘‘I-CHE”, ‘‘B-ETP”, ‘‘I-ETP”, ‘‘B-ORG”, ‘‘I-ORG ”,
‘‘B-EQU”, ‘‘I-EQU”, B-SYS, I-SYS. CHE, ETP, ORG, EQU and SYS indi-
cate the corresponding chemicals, event type, enterprise organiza-
tion, chemical equipment and chemical operation system,
respectively. The entire data processing diagram is shown in
Fig. 6. The named entity identification in the hazardous chemicals
industry was regarded as a sequence labeling problem. We orga-
nized the available documents related to hazardous chemicals,
Fig. 7. This figure describes the structure of the BERT + CRF model, and the part in
red box comes from the google [25].
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such as operating procedures and accident records. Then we pre-
processed the documents into a training standard format through
sentence segmentation and character splitting. The classic BIO
labeling scheme was used to manually label industrial corpus sen-
tences in the available documents. An example of labeling the orig-
inal corpus data is shown in the right half of Fig. 6. The first part of
each line is a word, and the second part is a word label. The word
and the word label are separated by spaces. Sentences are sepa-
rated by blank lines.

4.2. Method

In the research of chemical named entity recognition, we took
up a hybrid method to identify entities, and this model is based
on bidirectional encoder representation from transformers (BERT)
model and conditional random field (CRF) model. First, a deep neu-
ral network was used to obtain a deep representation of sentence
semantics, and then through the constraint function of the CRF
layer, the maximum probability sequence was output.

The overall structure is shown in Fig. 7. The entire model is
divided into two parts. Among them, the BERT model [25] is a
pre-trained language model that is trained from a large number
of text corpora by using unsupervised training methods. The con-
ditional random field [26] has been widely used in sequence label-
ing for a long time, and it is an undirected probability graph
discriminant model. In this work, Chinese sentences were first split
into single characters, each character was mapped to a character id
by the dictionary that came with the BERT model, and then the
character id was transformed into an embedding vector with com-
plex semantics through the embedding layer. Then the word vector
sequence was input to the CRF layer. The CRF layer [26] can learn
the constraint conditions of the sentence and improve the accuracy
of the prediction sequence.

4.3. Experimental parameters and results

Google provides two pre-trained language models: BERT-Base
and BERT-Large. The network structures of these two models are
the same, with only some parameters being different. It takes more
graphics card memory to train BERT-Large. In contrast, BERT-Base
model requires less memory and the accuracy of training has met
our needs. Thus, we adopted the BERT-Base model. BERT-Base
model had a total of 12 layers, and the hidden layer was 768
dimensions. We adopted a 12-head mode with a total of 110M



Table 6
The comparison of results on test datasets between different models. ‘‘Avg.” means the average score.

Model Evaluation CHE ETP ORG EQU SYS Avg.

Rule-based method P 0.5382 0.3478 0.4212 0.6372 0.7480 0.4850
R 0.4785 0.2655 0.8486 0.6527 0.9194 0.5309
F 0.5066 0.3011 0.5630 0.6449 0.8249 0.4924

CRF [28] P 0.9643 0.9039 0.9590 0.9397 0.9605 0.9395
R 0.9500 0.9338 0.9500 0.9579 0.9419 0.9452
F 0.9571 0.9186 0.9545 0.9488 0.9511 0.9423

BiLSTM + CRF [29] P 0.9326 0.9171 0.8829 0.9052 0.8984 0.9123
R 0.9500 0.9396 0.8865 0.9257 0.9129 0.9292
F 0.9412 0.9282 0.8847 0.9153 0.9056 0.9206

BERT + CRF P 0.9500 0.9455 0.9623 0.9190 0.8830 0.9411
R 0.9508 0.9248 0.9557 0.9586 0.9618 0.9450
F 0.9504 0.9350 0.9590 0.9384 0.9207 0.9428
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parameters. The maximum sequence length was 230, the train
batch size parameter was 32, the learning rate was 1e�5, the droop
out rate parameter was 0.5.

We adopted precision (P), recall (R), and F indicators as our
evaluation criteria, the three indicators can be calculated by true
positives (TP), false positives (FP), and false negatives (FN). The
specific calculation formula is as follows:
Precision ¼ TP
TP þ FP

ð1Þ
Recall ¼ TP
TP þ FN

ð2Þ
F ¼ 2 � Precision � Recall
Precisionþ Recall

ð3Þ

Simply, the precision is computed by our prediction results. It
indicates the percentage of positive samples that are true positive
samples. The recall rate indicates the percentage of positive exam-
ples in the sample that are predicted correctly. The F value combi-
nes the results of accuracy and recall [27].

The performance of these four methods on the test set is shown
in Table 6. Among them, the rule-based method was based on the
dictionary, which consisted of entities that appear in the training
set. Besides, the external chemical dictionary was also used to
identify chemical entities. The experiment result proved that the
dictionary-based method was not effective in the test set of the
chemical industry. The main reason is that the dictionary in the
chemical industry is not complete. The other three models
achieved good results. The test results of the best BERT model were
as follows: the precision rate was 0.9411, the recall rate was
0.9450, and the F1 value was 0.9428. From the perspective of the
model effect, the BERT model performed better than the BiLSTM
model in the chemical dataset. In some entity types, the CRF model
achieved superior results. For example, in terms of chemical enti-
ties, the CRF model was more accurate than the BERT model. How-
ever, in the training process, the CRF model needed to carefully
select the feature template. In general, the BERT model did not
require manual feature selection and performed well in named
entity recognition tasks in the chemical industry.

In this section, we applied the methods in natural language pro-
cessing to the chemical industry. Aiming at the large number and
constant update of chemical names in the chemical industry, we
used a combination of a pre-trained model and a probability graph
model to identify entities in the text of the chemical industry. The
experimental verification showed that the method had a signifi-
cant effect on the test set.
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5. Conclusion

Our work aims to extract chemical-related named entities from
the considerable body of the unstructured document and build a
hazardous chemical management knowledge graph. In this paper,
an ontology for risk management of hazardous chemicals is
designed. Besides, a deep learning method is adopted to identify
named entities in the chemical industry, which greatly improves
the effectiveness of named entity recognition. The method
achieves the highest precision of 0.9411, recall rate of 0.9450,
and an F1 score of 0.9428.

Compared with traditional data storage methods, the knowl-
edge graph connects chemical industry-related datasets, laying a
foundation for knowledge services in the chemical industry. The
proposed hazardous chemicals ontology framework can provide
basic support for information integration and inference. Named
entity recognition lays the foundation for chemical corpus process-
ing and chemical knowledge graph question and answer applica-
tion, etc., leading to a significant improvement in the utilization
of chemical-related document information.
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