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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Prognostics and Health Management (PHM) is an emerging concept based on industrial data management. The implementation of PHM in 
small and medium-sized enterprises (SMEs) is currently limited due to data accessibility difficulties. In order to overcome this pitfall, one could 
formalize the operators’ knowledge and integrate it in the SME’s information system. Thus, the implementation of the PHM will be based 
on this information system associating data with knowledge. To this end, we propose a collaborative PHM approach (X-PHM) to ensure the 
extraction of operators’ knowledge and its integration into the PHM process. The decision resulting from this approach is restituted with a concern 
of explainability. This paper details the proposed approach while focusing on the data management process and its integration in explainable 
decisions. This new framework is applied in a French SME to understand its production process and facilitate its digital transformation. 
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1 Introduction 
 

Small and Medium-sized Enterprises (SMEs) are defined as 
all companies with less than 250 workers and with less than 40 
million euros in terms of turnover [2]. SMEs represent about 
90% of all companies, and they have an important contribu- 
tion to job creation and global economic development [4]. De- 
spite their important role in the global economy, SMEs fail to 
integrate new technologies that threaten their sustainability. In 
the era of Industry 4.0, small businesses suffer from many con- 
straints that limit their integration in the world of Industry 4.0. 
In [3], the authors group the SME’s limitations into two classes 
(resource and organizational constraints). It is true that digitized 
data, the raw material for technologies based on artificial intelli- 
gence (AI), are not readily available in SMEs. However, SMEs 
have a large amount of data in the form of remarkable know- 
how that can be exploited for successful digital transfer. The 
advantage in SMEs is that operators are close to the tool, which 
allows them to identify their needs and prioritize them in terms 
of urgency. The versatility of the staff allows them to analyze 
each problem with its impact on the entire production process. 

2212-8271 © 2021 The Authors. Published by Elsevier B.V. 

Thus, the phase of modeling the problem and identifying the 
variables necessary for the resolution seems easier and more 
efficient in the case of SMEs, which reduces the costs of imple- 
mentation. The real challenge is of human nature to convince 
the staff to share their know-how with a set of mysterious black 
box-type technologies. 

In this work, we propose to use Prognostics and Health Man- 
agement (PHM) as a framework to ensure the extraction and 
formulation of operators’ knowledge and its integration into the 
information system of SMEs. This knowledge is used in data 
analysis tasks, and the resulting decisions are restituted with 
a concern of explicability. PHM is a science that studies the 
health of a system and predicts its future evolution. This con- 
cept makes it possible to control the systems better and to set 
up adapted maintenance strategies [5]. In [3], the authors define 
PHM as ”a set of tools that can be used in cascade or separately 
to monitor the health of a system, predict its future evolution 
and/or optimize decisions ”. 

The objective of this work is to improve system performance 
and to enrich the company’s information system through ex- 
plainable analysis results. However, two problems emerge: (i) 
the treatment of industrial data and (ii) the formalization and 
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integration of human knowledge in the analysis process. We 
are faced here with two complex problems in the field of data 
analysis. These problems are machine learning tools that are 
explainable [1] and informed [8], as known in the literature. 
The term explanation refers to the ability of the machine learn- 
ing algorithm to explain the results and models obtained. This 
makes the algorithm more transparent to the user and creates 
more trusting relationship with the users. While ”informed ma- 
chine learning” refers to integrating human knowledge into the 
learning process to improve it. 

In summary, this work aims to develop a collaborative PHM 
approach (X-PHM) to ensure the extraction of operator knowl- 
edge and its integration into the PHM process. The decisions 
resulting from this approach are returned with a concern for ex- 
plainability. The rest of this document is organized as follows. 
Section 2 presents a state of the art on the formalization of hu- 
man knowledge and the explanation of black-box models. Sec- 
tion 3 details the proposed X-PHM framework. This framework 
is applied to a real case study, the results of which are presented 
in section 4. The conclusion and perspectives of this work are 
detailed in section 5. 

 
2 Related work 

 
In recent years, many works have been conducted to inte- 

grate human knowledge into the data analysis process. How- 
ever, in reality, the proposed techniques fail due to human resis- 
tance in sharing their know-how with black-box models. Thus, 
we propose to use explainable learning to make the selected 
models more transparent and to build a form of trust between 
humans and data analysis technologies. The next paragraphs 
present a brief review of human knowledge formalization and 
its integration into the explainable learning process. 

 
2.1 Human knowledge formalization and integration 

 
Human knowledge is an important source of information that 

should be used to strengthen the information system of SMEs. 
In this context, several approaches to formalize human knowl- 
edge are proposed [8]. This section offers a review of the lit- 
erature of these approaches while detailing the different types 
of human knowledge and the means to formalize them for in- 
formed data analysis. 

Human beings are the most intelligent creatures and possess 
a vast knowledge. Many studies have been carried out in the lit- 
erature to characterize this knowledge from different perspec- 
tives (e.g., sociology, psychology, etc.). These studies offer sev- 
eral ways of categorizing human knowledge. Following these 
categorizations, we propose here to classify human knowledge 
into three main types: (i) General knowledge, (ii) Scientific 
laws, and (iii) Expertise. These different human knowledge are 
integrated into machine learning techniques to give birth to the 
informed learning discipline. Informed learning is defined as a 
combination of data and human knowledge for a more effective 
learning process. Overall, a learning process can be divided into 
three main stages: (i) Data preprocessing, (ii) Data mining, and 

(iii) Results. Thus, human knowledge can be integrated into the 
learning process throughout these stages. 

 
• Informed Data Preprocessing: The prior knowledge of 

the studied problem can lead to the phase of selection of 
the characteristics. In addition, it can assess the accuracy 
of the data collected and improve it accordingly. More- 
over, it can be used as a second data source by feeding a 
learning algorithm through a collection of rare observa- 
tions and events. 

• Informed Data Mining: At the level of data mining, hu- 
man knowledge can identify the set of parameters of the 
used algorithm. These parameters can be the architecture 
of an artificial neural network (ANN) or the depth of de- 
cision tree (DT), etc. In addition, prior knowledge of the 
studied problem can be useful to modify the loss function 
according to the final objective. 

• Informed Outcomes: At this level, man can intervene to 
assess the consistency of the rules extracted by compar- 
ing them to existing scientific laws or simply by using his 
expertise. In addition, known rules that are not learned 
from the data can be injected into the final results to doc- 
ument them. 

 
Each type of informed learning type requires a different for- 

malization of knowledge. However, it is still challenging to 
communicate human knowledge to a machine. To this end, 
many approaches to formalize human knowledge in machine- 
understandable forms have been developed in the literature. We 
propose here to classify these approaches into three main cat- 
egories: (i) Mathematical models, (ii) Logical rules, and (iii) 
Statistical relationships. 

Ideally, knowledge formalization models are the most suit- 
able for communicating between humans and machines 
because they are understandable from both sides, but not all 
hu- man knowledge can be modeled according to these forms. 
To this problem is added the human resistance in sharing their 
know-how with black-box models. Thus, explanation tech- 
niques are used to build trust between human and machine learn- 
ing algorithms. 

2.2 Explanation models 
 

Increasingly, the explanation of black-box decision systems 
has attracted more attention. This need for explanation is gen- 
erally due to incomplete problem formalization, creating a fun- 
damental obstacle to optimization and evaluation. Thus, many 
techniques have recently been proposed to explain black-box 
decision systems [1]. In this context, the authors of [10] applied 
decision trees to explain ANN decisions. Indeed, classification 
rules have been widely adopted to explain the decisions of ANN 
and support vector machine. These techniques are used to gen- 
erate a global explanation of the used black-box model and, 
when the training dataset is available, they can be used as com- 
pletely transparent classifiers. 

Other approaches tackle the problem of explaining the local 
behavior of a black box [1]. In other words, they explain the 
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Fig. 1. Illustration of the proposed approach which consists of four steps: (i) improve data quality using human knowledge, (ii) extract knowledge from these data, 
(iii) explain the extracted knowledge to enrich the human knowledge base, and (iv) use this knowledge to improve data quality in future data analysis tasks. 

 
decision assigned to a specific instance. There are two types 
of approaches: model-dependent approaches and agnostic 
approaches. In the first category, most of the previous works 
aim to explain ANN algorithms. Their explanation is based on 
salience masks, that is, a subset of the instance that explains 
what is primarily responsible for the prediction [14]. Examples 
of protruding masks are parts of an image or words or phrases 
in the text. On the other hand, agnostic approaches provide 
explanations for any black-box type. In [6], the authors present 
the local interpretable model-agnostic explanations (LIME), 
which starts from instances generated randomly in the vicinity 
of the instance to be explained. The method deduces linear 
models from them as well as understandable local predictor 
models. The importance of a feature in the linear model 
represents the explanation ultimately given to the user. As a 
limit of the approach, a random generation of the district does 
not consider the density of the results of the black box in the 
district authorities. Therefore, the linear classifiers derived 
from them may not correctly characterize the values of the 
results based on the predictive characteristics. We can instead 
use a genetic algorithm that exploits the generation of the 
black box, for example. LIME extensions using decision rules 
(called anchors) and program expression trees are presented 
in [7] and [9] respectively. The [7] extension uses a bandit 
algorithm that randomly constructs the anchors with the 
highest coverage and respecting a precision threshold. [9] 
takes a simulated annealing approach that randomly increases, 
decreases, or replaces nodes in an expression tree. The adopted 
neighborhood generation process is the same as that of LIME. 
Another crucial weak point of these approaches is the need 
for user-specified parameters for the desired explanations: the 
number of features, the level of precision, the maximum depth 
of the expression tree [7]. 

 
On the contrary, our approach is a non-parametric tool that 

can explain the results of any black-box model. Moreover, it 
provides a logical rules rather than an impact order of each 
variable. Thus, the user receives not only an explanation for 
a specific observation but also a decision rule applicable locally 
in the neighborhood instances. This informed and explainable 
learning concept is introduced in the proposed X-PHM frame- 
work to ensure the extraction of operators’ knowledge and its 

integration into the PHM process. The decisions resulting from 
this approach are restituted with a concern of explainability. 
The following section details the proposed X-PHM framework. 

 
3 Proposed approach 

 
As shown in Figure 1, the proposed approach consists of 

an interactive framework that allows communication between 
the user and the black-box machine learning algorithm. This 
interaction is represented in terms of (i) integrating user ex- 
pertise into the learning phase and (ii) explaining the proposed 
decision. Thus, human knowledge can be validated through this 
process to confirm (or decline) it. The capitalized knowledge is 
then stored in a library of rules that will be used in the future to 
support decision-making and explain strange phenomena. 

 
3.1 Knowledge integration 

 
This section presents the phases of knowledge integration 

and data generation. The first step is to inject human knowl- 
edge into the analysis process. Then, this knowledge is used to 
generate data samples close to the instances whose decisions we 
want to explain belong to them. Human knowledge can be in- 
tegrated into the learning process throughout its various stages. 
However, some tasks are automated by sophisticated algorithms 
to facilitate the user’s mission. Scalable algorithms are used to 
adapt the architecture of the ANN to the complexity of the prob- 
lem [13]. Moreover, many variable selection techniques allow- 
ing to accomplish this mission automatically are developed and 
applied in many [11, 12] fields. In addition, other methods are 
being developed to effectively learn from imbalanced data or 
to assess the consistency of results automatically. For this, we 
propose integrating human knowledge in the generation of new 
data and improving their quality. To do this, we propose in this 
part to enhance the knowledge of the PHM user in four ways: 

 
• Definition of new variables by merging a set of variables 

to generate a new features more relevant to the descrip- 
tion of the studied problem. 

• Definition of the set of variables which can affect the 
problem (or which has no influence). 

• Statistical description of variables (mean, max, etc.). 
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Fig. 2. Details of the explanation process. 

 
 

 
 

Fig. 3. The process of generating data. 
 
 
 

• Definition of statistical relationships between variables 
(correlation, statistical distribution, etc.). 

 
The information provided by the user will be used to gener- 

ate new data, which is an important step in explaining the re- 
sults. Thus, we consider a data instance s that we would like to 
explain the decision that belongs to it. To do this, the n nearest 
neighbors (pi, i = 1..n) of the data point s are selected for use in 
the generation process. These data points are used to generate 
the first set of n new data samples g1 as follows: 

3.2 Semi-global explanation of results 
 

The last step of the proposed approach is the explanation 
phase. To do this, a semi-global explanation algorithm is used 
to obtain an explanation for each decision. For an explanatory 
task, the most important thing is to determine a clear and 
understandable rule allowing to separate the different classes. 
Thus, the work surface is the one that separates these classes. 
As shown in Figure 2, the proposed approach is based on the 
generation of new instances at the boundary between classes. 
These new instances are then used to separate the classes 
linearly. 

 
Let ζ(., .) be a function which takes as inputs a black box 

model b and an observation of the system Vk = vk1, vk2, .., vkm , 
where vk j, k = 1, . . . , l, j = 1, . . . , m is an instance of the vari- 
able v j. The function ζ(., .) is called an explanatory model 
when it relates the decision of b(.) to a physical reality of the 
system. The proposed approach can be summed up in three 
points: 

 
• Identification of the decision plan: For a data point s 

whose decision we want to explain, the first step in iden- 
tifying its decision plan consists of determining the n in- 
stances closest to it and which belong to the inverse class 

g1 = 
pi + s 

, ∀i = 1, .., n. (1) of that of the system (see Figure 2 (a)). •  Using the n 
i 2 Determination of the separation plan: 

neighboring instances identified, the decision plan is de- 
The generated data is then used to generate a second set of n 

new data samples g2 as follows: 
 

1 1 
g2 =    i o , ∀o, i = 1, .., n. (2) 

 

 

termined. To do this, for each instance identified, we de- 
termine the instance closest to it and belonging to the 
same class as that of s (see Figure 2 (b)). 

• Explanation of the decision: The space between these two groups of identified instances is called the “decision 

i plane”. In the rest of this work, the explanation will be 
given in this plan. Thus, artificial data is generated on 

where i and o are consecutive and i ≠ o. 
Using the initial data point s and the points generated at the 

second level g2, a third set of n new data samples g3 are gener- 

this surface using the generation algorithm defined above 
(see Figure 2 (c)). 

i 
ated:  

g2 + s 

i  The first step in the explanation process is to use the black 
box model b(.) to label the newly generated data. This task will 

g3 =   i ∀i = 1, .., n. (3) identify the behavior of b(.) in the decision surface. In this con- 
i 2 text, a decision d is a function that serves to differentiate the 

instances in the decision plane. In 2D, the function used to clas- 
The same process is repeated until the required N data sam- 
ples are generated. The data generated in this step will be used 
later in the explanation of the results. The following paragraph 
details the explanation process. 

sify between instances is a row, while the function used to clas- 
sify instances in 3D is called a plane, just as the function which 
classifies the point in a higher dimension is called hyperplane 
(see Figure 2 (d)). In general, the equation of the hyperplane in 
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system. The proposed approach can be summed up in three 
points: 

 
• Identification of the decision plan: For a data point s 

whose decision we want to explain, the first step in iden- 
tifying its decision plan consists of determining the n in- 
stances closest to it and which belong to the inverse class 

g1 = 
pi + s 
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instances in the decision plane. In 2D, the function used to clas- 
The same process is repeated until the required N data sam- 
ples are generated. The data generated in this step will be used 
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details the explanation process. 
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Fig. 4. Features importance at each step of the data generation. Based on the strength of materials theory, new features are defined. These variables are: Var6 = 
f (Var2, Var3), Var7 = f (Var1, Var2) and Var8 = f (Var1, Var2). From the SCODER’s staff point of view, these new features are very important but they create a 
redundancy in the data. For that, Var1 and Var3 are eliminated since they are represented by Var2, Var6 and Var7. 

 
n dimensions can be given by: 

 
αT × V + c. (4) 

 
where c is a constant, V = (V1, . . . , Vl) is the vector of variables 
and αT is the leading vector of the decision plane. 

The numerical formula for αT is then determined using the 
”Soft margin” technique. To do this, we consider the case where 
there are two classes Class1 and Class2 that refer to the healthy 
and faulty classes which corresponds to a detection problem. A 
decision dk for an observation Vk can take two values: d1 = 1 
when Vk   Class1   and d2 = 1 if   Vk   Class2 . Thus, a 
decision that belong to an observation Vk is well explained if 
the following condition is satisfied: 

dk × (αT × Vk + c) ≥ 1, dk ∈ {−1, 1}. (5) 

This condition requires that the decision plan properly ex- 
plains all decisions. This requirement is therefore difficult to 
meet in reality. For this reason, we suggest allowing some bad 
explanations in the dataset. To do this, we will grant a constant 
sk ≥ 0 which for each observation Vk, we have: 

dk × (αT × Vk + c) ≥ 1 − sk, sk ≥ 0. (6) 

This new constraint makes it possible to accept imperfect 
explanations. However, the objective is to minimize these im- 
perfect explanations. Thus, the leading vector of the decision 
plane αT is determined as follows: 

treated in the same way as binary classification problems. Thus, 
a multi-class problem can be transformed into a two-class prob- 
lem by considering only the class of the instance s to be ex- 
plained and the rest of the classes as a single class. In the fol- 
lowing section, a validation of the approach is conducted in a 
real case study. 

 
4 Case study 

 
The proposed approach is applied to the Scoder company. 

Scoder is a French SME specialized in ultra-precise stamp- 
ing for automotive applications. The application consists of a 
stamping line where sheet metal properties are controlled to 
identify their impact on production performance. The class is 
a binary variable that indicates if the metal coil is suitable for 
production or not. The X PHM framework is used to under- 
stand the impact of each metal propriety in the production per- 
formance and to identify the optimal sheet-metal characteristics 
for stable production. In this context, the Scoder’s staff have 
excellent know-how that can be used to guide the knowledge 
extraction phase. The previously detailed approach is used in 
order to make the extracted rules transparent. Below, the steps 
of this application are detailed: 

1. Data Preparation. The metal coils proprieties are collected 
and crossed with the machine breakdowns to train a black-box 
machine learning model. 

2. Knowledge integration. In this step, operators know-how is 
used in different levels: 

• Features selection: from the collected data, only five vari- 
ables are chosen as important. For a confidentiality rea- 
son, these variables will be noted Varj, ( j = 1, . . . , m). 





 
min l sk 
Constraints : 

dk × (αT × Vk + c) > 1 − sk. 
sk ≥ 0. 

 

(7) 

• New variable definition: based on the theory of strength 
of materials, new variables are defined. These variables 
are: Var6 = f (Var2, Var3), Var7 = f (Var1, Var2) and 
Var8 = f (Var1, Var2). From the Scoder’s staff point of 
view, these new variables are significant, but they create 
a redundancy in the data. For that, Var1 and Var3 are 

The proposed explanation approach allows explaining de- 
cisions in a semi-global way for binary classification prob- 
lems (only two classes). However, multi-class problems can be 

eliminated since they are represented by Var2, Var6 and 
Var7. Figure 4 shows the importance of the features using 
the Gini criteria at each step. 
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• Variables bounds: at this level, human knowledge is used 
to set the variables’ bounds to avoid outliers in the data 
generation step for the explanation phase. 

 
3. Train b(.). The collected data is used to train a black-box 
algorithm to solve the problem. In this application, the ANN 
algorithm is used to predict each entry class. 

 
4. Explanation of results. Using the process described in Sec- 
tion 3.2 the learned model by the ANN algorithm is explained 
for each data instance. Figure 5 shows an explanation example 
of the decision belonging to the instance s. This explanation 
consists of the separation plan, which separates the different 
classes (see Equation (8)). This explanation is valid to each data 
point in the neighborhood of the instance s. 

 

 
Fig. 5. Explanation results. For an initial instance s (in green), the proposed 
approach is applied to generate new data and identify the decision plane. 

 


 

Class1 i f  0.66 × Var2 − 0.26 × Var4 + 0.26 × Var5 − 0.50 

the data quality and to enrich the human knowledge. To im- 
prove the proposed approach, we offer a non-exhaustive list of 
points that should be considered as future works: 

 
• Further formalization of the data quality as a function of 

the knowledge even using an empirical approach. 
• Knowledge uncertainties quantification and assessment 

of their impact on data quality improvement results. 
• Uncertainties formalization and proposition of correction 

approaches. 
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