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ARTICLE INFO ABSTRACT

The modeling of the Micro-CHP unit operating in dual-fuel mode is performed based on experimental results
carried out at the laboratory scale. The engine tests were performed on an AVL engine, with a maximum power
of 3.5 kW, using conventional diesel as pilot fuel and synthetic biogas as primary fuel. The biogas flow rate is
evaluated using the experimental results from the literature, based on the anaerobic digestion in batch reactor of
a mixture of 26% of Oat Straw and 74% of Cow Manure, diluted to contain only 4% of volatile solid.

The engine operation was modeled using the Artificial Neuron Network (ANN) method. Experimental engine
tests were used as a database for training and validation phases of ANN models. Three different ANN models are
developed to model respectively the pilot fuel flow rate, the airflow rate and the exhaust gas temperature. Engine
power output, biogas flow rate and biogas methane content were used as the same input layer.

Given that the evolution of the biogas flow evolves along the entire digestion duration (50 days), the si-
mulation work is performed by varying the number of digesters to be used in parallel mode. It is obtained that
the optimal operation condition, minimizing the number of digesters and using less than 10% of the energy from
diesel fuel, is to use 5 digesters and run the engine under load of 70%. It is concluded that a micro-CHP unit of 1
kWe, requires a dual fuel generator with a nominal power of 1 kWe, five digesters and a daily availability of
effluents of 171 kg/day, consisting of 45 kg/day of oat straw and 126 kg/day of cow manure. It can also produce
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up to 2.45 kW of thermal power from the exhaust.

1. Introduction

Combined Heat and Power (CHP) is an important alternative for
minimizing primary energy consumption by optimizing the efficiency
of energy conversion units. CHP is also known as cogeneration, which
means the simultaneous generation of electricity and heat from a single
fuel source. The term Micro-CHP is often associated with systems whose
electrical power does not exceed 50 kW [1]. Micro-CHP in farm, where
biogas is produced from anaerobic digestion of effluents, has been of
increasing interest to livestock farmers in recent years. Biogas is a
cleaner and potentially renewable fuel. It consists mainly of methane
(CH,), carbon dioxide (CO,), small traces of carbon monoxide (CO),
hydrogen (H,), oxygen (O,) and hydrogen sulphide (H,S) [2]. In
Europe, biogas represented in 2015 around 8% of renewable energy
production and the equivalent of 4% of European natural gas con-
sumption. In 2016, the treatment of organic waste by anaerobic di-
gestion is largely done on farms. Among the 269 anaerobic digestion
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units installed in France up to 2016, there are nearly 88.5% units are on
farms and only 11.5% in centralized units [3].

The most used heat engines in micro-CHP devices are internal
combustion engines. Although the use of gaseous fuel is widespread in
spark ignition engines, the high CO, content of the produced biogas by
anaerobic digestion, especially at the beginning of the digestion reac-
tion, disadvantages the use of biogas as a fuel in the internal combus-
tion engines. Indeed, the high CO, content in the intake charge has the
disadvantage of increasing the specific heat of the gases and reducing
the flame propagation speed [4]. It also decreases the energy quality of
the fuel and thus increases fuel consumption [5].

Putting existing diesel engines into dual-fuel operating mode, using
diesel as pilot fuel and biogas as primary fuel, has both environmental
and economic advantages [6]. In fact, Tippayawong et al. [7] that re-
ported long-term utility in this second operating mode shows negligible
effects on engine power and efficiency during the first 2000 h run.
Beyond this, a little quantity of carbon deposition inside the combustion
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Nomenclature

AC annual consumption

AMFR average mass flow rates

ANN artificial neuron network

BDC bottom dead center

BSFC brake specific energy consumption
BTE brake thermal efficiency

CA crank angle

CCHP combined cooling, heating, and power
CHP combined heat and power

CM CcOw manure

CI compression ignition

Cp specific heat (J/kg.K)

ER energy ratio

EVC exhaust valve close (degree)

EVO exhaust valve open (degree)
H thermal power (W)

1A injection angle (degree)
IvC inlet valve close (degree)
VO inlet valve open (degree)
LHV lower heating value (J/kg)
m mass flow rates (kg/s)

MR mass ratio

MSE mean square error

oS oat straw

R? regression coefficients
RMSE root mean square error
RNG rundum number generation
TDC top dead center

TS total solid

VS volatile solid

chamber was observed [7]. Different techniques were examined to
improve the operation of compression ignition (CI) engines in diesel-
biogas dual fuel mode such as the use of low levels of substitution [8],
preheating of induced air-fuel mixtures [9,10], modifying the pressure
and temperature of the initial charge using exhaust gas recirculation
process [11,12] and modification of the pilot fuel injection system
[13,14].

Biogas is often used as the primary fuel in dual-fuel engines because
of its high anti-knock properties compared to other gaseous fuels. With
a methane content of up to 65%, its high octane number allows it to
have greater knock resistance and better adaptation to engines that
generally have higher compression ratios [15]. It was reported that in
combined cooling, heating, and power (CCHP) systems, where pro-
duction of heat, cold and power occur simultaneously from the same
primary energy, biogas-diesel dual-fuel mode reduces CO, emissions by
24.9% compared to the single production mode [16].

In dual-fuel operating mode and under higher engine loads (above
80%), the brake specific energy consumption (BSFC) is slightly lower
than that of conventional diesel mode, whereas the brake thermal ef-
ficiency (BTE) in dual-fuel mode is considerably lower than that of
diesel mode. On the other hand, under lower engine loads, the lower
BTE and the higher BSFC are generally caused by incomplete combus-
tion of the biogas-air mixture due to a poor mixture and a lower tem-
perature in the cylinder [17]. Although the BTE is slightly affected
under higher engine loads, it remains largely dependent on CH,/CO,
ratio of the biogas composition [18]. Increasing the CH, content of the
biogas, which raises the heat release rate, leads to a significant increase
in the BTE [15,19]. However, the substantial replacement of the pilot
fuel with the gaseous fuel causes a remarkable BTE degradation [20].
The gaseous fuel, whose ignition temperature is much higher than the
pilot fuel, will act as heat sink during the combustion process. It causes
an undesirable increase in the specific heat capacity of the working
fluid and consequently, it decreases the combustion temperature [21].
Nathan et al. [22] have shown that above 40% of CO, in biogas, the
dissociation of CO, into O, and CO significantly affects the ignition
delay.

On the other hand, the lower carbon content of CH; compared to
petroleum-based diesel reduces the exhaust gases emissions [23]. Sev-
eral researchers have confirmed that the relative homogeneous charge
and the lower cylinder temperature in dual-fuel operating mode have
the advantage of significant reduction of NOx and smoke emissions
[21,24,25]. As regards the HC and CO emissions, they are higher when
the biogas substitution is high, especially if its percentage of CO, is high
[26]. With regard to the exhaust gas temperature in the dual-fuel op-
erating mode, it has been shown to be higher than that of the diesel
operating mode [27,28].

In micro-CHP on farm, the biogas is produced from anaerobic

digestion of livestock effluents whose the characteristics and composi-
tion are very random. Anaerobic co-digestion of livestock effluents and
agricultural waste is widely applied in Europe [29,30]. Anaerobic di-
gestion on the farm, which involves the production of biogas from
agricultural biomass, is becoming increasingly important as it offers
significant environmental benefits and provides an additional source of
income for farmers [31]. Livestock effluents in the form of manures
(generally semi solid with a high straw content) or slurry (only cattle
excrement that is generally liquid) are of interest for anaerobic diges-
tion because of their high potential of biogas production.

Several studies have been conducted to investigate the increased
biogas production through anaerobic digestion of livestock effluents
[32-35]. The potential of biogas production not only depends on the
chemical composition of the effluents, but also on the anaerobic di-
gestion state (solid state, liquid state, pasty state), type of digesters
(continuous reactor, semi continuous reactor, batch reactor) and on the
operating conditions (digestion temperature, recirculation of percolate
... etc.).

In continuous or semi-continuous anaerobic digestion, the compo-
sition and flow rate of biogas leaving the digester are practically con-
stants. Depending on the composition of the effluents and on the op-
erating conditions, the methane content is often between 55 and 65%
[36]. The major disadvantage of this pathway is the high investment
costs, especially for small power plants. In France, for example, anae-
robic digestion plants with electrical power of 35, 170 and 500 kWe
respectively, have the investment costs of 12.5, 5.6 and 5.6 k€/kWe
[37]. A large part of the investment costs is reserved for the biogas
storage, its homogenization, sealing systems and security. This is be-
cause the biogas must be produced continuously and with a methane
content between 55 and 65% to be acceptable in the gas engines. In-
deed, a biogas whose low methane content causes flammability and
efficiency problems and a biogas whose methane content is too high
causes the knocking problems in gas engines.

In the discontinuous digestion process (batch reactor), where the
digesters are sized according to the size of the farm and the availability
of the effluents, the investment and maintenance costs for the small
plants can greatly reduce compared to those of the continuous digestion
process. The most problem is that the flow of biogas leaving the digester
and its methane content change throughout the anaerobic digestion
time, which is often between 40 and 60 days. The purpose of this study
is to overcome these constraints and use this pathway to develop on-
farm micro-CHP technology. It involves two objectives: The first is to
use a dual-fuel engine to use the biogas leaving the digester regardless
of its flow and its methane content. It eliminates the need for biogas
storage, which significantly reduces investment costs. The second ob-
jective is to determine the number of digesters needed to optimize the
operation of a micro-CHP unit on the farm. For this purpose, a
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simulation work of a micro-CHP unit based on experimental data from
laboratory tests was performed. Simulation of the engine operation in
dual fuel mode is carried out using artificial neural network (ANN)
models. The novelty of the present work is to model and develop a
diesel engine map, operating in diesel-biogas dual-fuel mode taking into
account the availability of biogas in term of quantity and quality
(composition). This expresses that the operation of the engine is very
flexible to the number of digesters used for the anaerobic digestion of
livestock effluents, which in turn directly influences the primary fuel
(biogas) supplied to the engine. In addition, the model makes it possible
to minimize the number of digesters so that the biogas produced is
directed to the engine without storage. As a result, the pilot fuel re-
mains minimal in accordance with the regulatory limits, making it
possible to benefit from the feed-in tariffs of electricity.

ANN is a popular machine learning technique that has been shown
its effectiveness in various fields [38]. This form of black-box modelling
approach allows the omission of physical knowledge or equations that
relate the relationship between the input and corresponding output
without the loss of accuracy unlike white and grey box modelling, albeit
care must be taken in the selection of appropriate input and outputs to
avoid meaningless predictions.

The engine modeling technique using the ANN models is more
preferable nowadays because it can identify a complicated and un-
known input/output relationship based on experimental data. It has
several advantages compared to mathematical engine models (analy-
tical multi-zone models, computational fluid dynamic models and
chemical kinetic models) which are very difficult to put into practice
because excessive assumptions have been made in constructing the
models [39-42]. In addition, these mathematical models depend on
several engine-specific parameters, which are generally difficult to es-
timate or to predefine (inlet valve flow coefficient, kinetic of combus-
tion, local air fuel ratio, local heat loss coefficient...etc.). Furthermore,
ANN has a better capability in approximating input—output relationship
that polynomial regression models owing to its ability in capturing non-
linear behavior of a given system in particular for a large number of
measured data [38].

Several studies have been conducted on diesel engine performance
and/or emissions modeling using neural network models [39,43-45].
Others have also used this method for performance modeling and
emission characteristics, and even the elaboration of the operational
maps for engines operating with biodiesel blends [46-48]. Similarly for
the modeling of engines operating in dual-fuel mode, researchers are
increasingly interested in the use of the ANN method to model the
operation, performance, emissions and even develop operational maps
for the dual fuel engines [49-51].

Since the modelling of the diesel engine is a regression task, two
situations need to be considered. The first situation is that the model
output is single dimension, which means that individual model is re-
quired for each engine performance output. The other one is with multi-
dimension outputs, where one model is already sufficient to predict
several engine performance outputs. In order to increase the model
accuracy and prevent any parameter from dominating the output va-
lues, the data sets are often normalized before training the models
[39,52].

This present paper covers three major parts, namely the kinetic
production of biogas from anaerobic digestion of livestock effluents, the
modeling of dual-fuel engine using the ANN models, and simulation of
the micro-CHP unit operating with dual fuel engine and using biogas as
primary fuel. The dual fuel engine setup, the pilot fuel characteristics,
the ANN models as well as the kinetics production of biogas are briefly
introduced in Section 2. The ANN based models were trained and va-
lidated using a series of experimental tests, performed with a 3.5 kW
dual fuel engine. The engine models outputs are single dimension. The
first is to model the pilot fuel flow rate, the second is to model the
airflow rate and the third is to model the temperature of the exhaust
gas. The instantaneous production of biogas is determined from the
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Table 1
Dual-fuel engine specification.

Parameter Specification

Model AVL 5402

Type Four-stroke, CI engine

Bore X Stroke 85 x 90 mm

Compression ratio 17.3

Injection pressure 600 bar

Combustion system Dual-fuel

Injection system type Common rail, direct injection
Nozzle hole x diameter 5 X 0.17 mm

Rated power output 3.5 kW at 1500 rpm

1A 7° CA before TDC

o 36° CA before TDC
vC 69° CA before BDC
EVO 76° CA before BDC
EVC 32° CA before TDC

literature where anaerobic digestion of a mixture of oat straw and cow
manure was studied and optimized [53]. In Section 3, where the main
results are discussed, the engine tests, the validation of the ANN
models, as well as the simulation results of the micro-CHP unit, were
presented.

2. Materials and methods
2.1. Dual-fuel engine setup

The engine tests were carried out on a single cylinder research en-
gine (AVL 5402), instrumented to control and measure the operating
parameters. The main design specifications as well as the technical
operating data are given in Table 1.

Under the same operating conditions, including air-fuel ratio, en-
gine speed and engine loads, the performance parameters of this en-
gine, despite being an water-cooled single-cylinder diesel engine, can
be projected on a multi-cylinder engine that can be used in a CHP unit.
During the tests, the engine speed was kept constant at 1500 rpm, si-
milar on to that of electric power generator, producing electricity at a
frequency of 50 Hz. All tests were carried out to develop an engine
power ranging between 1.75 and 3.5 kW. The pilot fuel is a conven-
tional diesel, while the primary fuel is a synthetic biogas, consisting of
CH4 and CO,.

The experimental procedures consists in fixing the biogas methane
content and the pilot fuel flow rate and maintaining the desired engine
load acting on the biogas flow rate. It consists in varying the CH,4
content of biogas between 20 and 60% and the engine load between 50
and 100% (i.e. engine power outlet between 1.75 and 3.5 kW). The
recorded data from each test are the engine power, biogas methane
content, biogas flow rate, pilot fuel flow rate, airflow rate, and exhaust
gas temperature.

2.2. Fuels characteristics

The flow rate of the synthetic biogas as well as its CH4 content have
been varied to obtain a wide range and to get closer values to the biogas
composition resulting directly from the digesters, without using a sto-
rage gasometer. The latter is often necessary to balance the flow rate
and composition of biogas (50 to 65% CH,) for subsequent use.

In practice, the biogas characteristics from anaerobic digestion of
cattle effluents, such as flow rate and CH, content, vary throughout the
entire digestion period, which is of the order of two months. In this
study, the biogas is synthetized from pressurized bottles. The methane
content of the synthesis gas varies from 20 to 60% while its flow rate is
adjusted to develop the desired engine load (between 50 and 100 % of
full load).

The pilot fuel, which serves as an ignition source for the mixture, is
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a conventional fuel consisting of 93% v/v diesel (CooH40) and 7% v/v
biofuel (C;gH360,). Its density and lower heating value (LHV) are
840 kg/m> and 42.8 MJ/kg, respectively.

2.3. Engine parameters modeling

The engine parameters have been modeled using methodology
based on Artificial Neural Networks. An ANN is an architecture con-
taining a huge quantity of neurons systematized in different layers and
the neurons of one layer are linked to those of another layer of by dint
of weights, and it can be prepared or trained to accomplish a specific
duty via creating accurate alteration of its linking weights, bias and
architecture [43,44].

In this study, ANN based models have been developed in the
MATLAB environment using the Neural Network toolbox. The proposed
ANN model consist in three discrete ANNs, developed to estimate en-
gine parameters namely pilot fuel flow rate, intake airflow rate and the
exhaust gas temperature. Where, ANN1 is used to delineate pilot fuel
flow rate, ANN2 is used to delineate intake airflow rate, and ANN3 is
used to delineate exhaust gas temperature. Each ANN has one input
layer with three variables (engine power, biogas flow rate and its CH,
content), up to five hidden layer and one output. Fig. 1 illustrates the
architecture of the ANN1 model for the pilot fuel flow rate.

The implementation of ANN comprises of three main stages viz.
parameter selection, training, and testing. As regard the parameter se-
lection, the input-output data is often processed by normalizing it
within a certain range [38,43]. The recorded data from the experi-
mental tests (83 tests) is then normalized and randomly partitioned
with respect to training, testing and/or validation. They are divided
into two sets of which the first (68 tests) is selected as the training
(80%) and validation (20%) dataset, while the second (15 tests) is se-
lected to testing the generalization capability of ANN models. The
training dataset is used to train the model and tuning model hy-
perparameters (weights and biases). The model sees and learns from
this data. The validation dataset is used to evaluate a given model, but
this is for frequent evaluation. It is used to fine-tune the model hy-
perparameters. The test dataset provides the gold standard used to
evaluate the model. It is only used once a model is completely trained
(using the train and validation sets). Since the choice of the test dataset
significantly influences the model training, the control random number
generation (RNG) function of Matlab software is used to control the
random selections of the results and an optimal selection has been made
for each model. It consists in choosing the selection that minimizes the
RMSE among the 100 different random selections. Normalized para-
meters such as engine power, biogas flow rate, methane content, pilot
fuel flow rate, airflow rate and exhaust gas temperature respectively
were obtained by dividing their values by 4 kW, 60 g/min, 100% v/v,
20 g/min, 300 g/min and 600 °C.

-
Engine Load N
(%) 1

—

/

" r
Biogas 2
(g/min) 'I
1
CH4 !
(%vol) I
X
ul/

Input layer i

I°" hidden layer
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After selecting the input and output parameters, the key parameters
specified prior to any ANN investigation are the number of hidden
layers, the number of neurons in the hidden layers, the activation
function, as well as the training (learning) algorithms. Since there is no
precise rule to determine the number of hidden layers and the number
of neurons in the hidden layer, the trial and error method has been
applied to find the number of hidden layers and the number of neurons
in the hidden layer. In order to decide the most appropriate or best
solution a software was developed to design and train the network by
varying the number of hidden layers from 1 to 5 and the number of
neurons in each hidden layer from 1 to 20 neurons. Fig. 2 illustrates the
calculation flowchart for selection data optimization, ANN model de-
sign optimization, and ANN model training.

For each design, 250 iterations were performed where the new
obtained optimal design is updated. The optimum solution has been
selected by minimizing the root mean square error (RMSE), given by
Eq. (1). Indeed, various studies have been shown that the application of
ANN method in engine performance consists of optimal configurations
consisting of using one to two hidden layers whose number of neurons
in each layer does not exceed ten [38,43-45].

Y, (Output_Cal; — Output_Mes;)?
n @

[
RMSE = \/

Where : Output_Cal; and Output_Mes; are respectively the it cal-
culated and measured output values. (n) is the total number of the
measured output data.

As shown in Fig. 1, the fully connected layer method is considered,
i.e. each neuron is connected to every neuron in the previous layer, and
each connection has it's own weight. Each neuron of hidden layer is
molded by input(s), addition block and activation function followed by
the output. The weight is a value that defines the strength of the input
connected to the node. A bias controls the magnitude of the input for
the activation function, in which the magnitude is increased with a
positive bias and vice-versa. The computational model is given by the
perceptron model in Fig. 3 [38].

The general expression of the output of the model is

N
u=>b+ 2 WiX;
i=1 2

The output of the perceptron model is governed by the activation
(transfer) function. The hidden layers are governed by the log-sigmoid
activation function (logsig) while the output layer is governed by the
linear activation function (purelin). The log-sigmoid activation function
(Eq. (3)) takes the input (which can be any value between plus and
minus infinity) and overwrites the output in the range O to 1. The linear
activation function (Eq. (4)) leaves the input as it is.

Pilot fuel
(g/min)

Qutput layer

|
n" hidden layer

Fig. 1. Configuration of multi hidden layers neural network estimating pilot fuel flow rate.
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Fig. 2. Flowchart of the design and optimization of the ANN models.
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The gradient descent with momentum backpropagation training
function (traingdm) is used as learning algorithms. It consists in ad-
justing the network parameters, namely the weights and the biases, by
using as a cost function the mean squared error (MSE). The network
parameters are backpropagated until the signal is minimized upon a
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input (x;)

activation
function

weights

Fig. 3. The perceptron model.

number of training iterations, which is also known as epochs.

2.4. Simulation of biogas production

The evolution of biogas production (flow rate and CH4 content)
from cattle manure effluents were simulated based on previous research
works [53]. In fact, the cattle manure effluents, especially in small
farms, are often mixed with straw. Zhao et al. [53] investigated the
anaerobic co-digestion of oat straw (OS) and cow manure (CM). Their
study examined the effects of different percentages of total solid (TS)
and the addition of CM on methane production during OS anaerobic
digestion. The experiments were conducted at a laboratory scale on
300 ml loads in 500 ml laboratory flasks. The batch tests were carried
out in an enclosure maintained at a constant temperature, at
37 = 2°C, for a maximum of 50 days. This time, usually chosen as
hydraulic retention time T95, is considered optimal for the anaerobic
digestion reaction. It makes it possible to produce 95% of methane
which can be produced when the reaction time is maintained until the
completion of the reaction. Table 2 summarizes the OS and CM char-
acteristics.

The produced biogas characteristics, in particular the cumulative
production of the main chemical species (CH4 and CO,, constituting
biogas, divided by the input charge in volatile solids (VS), are re-
presented in Fig. 4. The highest cumulative production of biogas was
obtained with a mixture of OS:CM ratio of 2:1 and a TS content of 4%. It
was 840 Lpjogas/kgvs consisting of 49.6% of CH4 and 50.4% of CO,.

The cumulative production curves summarize the evolution of the
total production of biogas per kg of VS of feedstock. This feedstock
represents a mixture of 0.889 kg of OS and 2.495 kg of CM, diluted with
29.41 kg of water to contain only 4% of TS. After 50 days of anaerobic
digestion, the cumulative production is 840 L of biogas, consisting of
416 L of CH4 and 424 L of CO,.

The shape of the cumulative biogas production curve will be used in
simulation work as a flow of biogas from each digester. It allows to
model the dual-fuel operating mode without biogas storing gasometer,
where the biogas from the anaerobic digesters is directed directly to the
intake of the dual-fuel engine (Fig. 5).

Table 2

Characteristics of OS and CM.
Parameter (6] CM
Total solid (%) 94.73 = 0.42 16.8 = 0.19
Volatile solid (%) 86.61 * 0.66 9.22 * 0.08
Cellulose (%) 29.87 = 1.14 2291 *= 0.28
Hemicellulose (%) 30.12 + 1.35 22.85 = 0.11
Lignin (%) 5.23 * 0.22 8.09 + 0.08
Ash (%) 14.36 + 0.26 6.32 = 0.17
Total carbon (%) 36.35 = 0.31 26.27 = 0.14
Total nitrogen (%) 0.67 = 0.01 1.20 = 0.04
Carbon/Nitrogen ratio 54.25 21.89
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Fig. 5. Schematic of the CHP plant operating with biogas from n digesters.
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3. Results and discussion
3.1. Engine tests

The experimental results used to train, validate and test the ANN
models are presented in Fig. 6. It summarize the selected input data
(engine power, biogas methane content, biogas flow rate) and the se-
lected output data of the ANN models (pilot fuel flow rate, airflow rate,
and exhaust gas temperature).

The training and validation dataset is presented in blue color while
the test dataset is presented in red color. It is clear that the optimal
selection of the test dataset differs for each model. The optimum choices
of the test dataset for models ANN1, ANN2 and ANN3 respectively are
obtained using the control random number generation (RNG) of 34, 76
and 68. It is obvious that the choices of the test dataset are different.
This is because the physical models that connect the model outputs to
their inputs (engine power, biogas methane content and biogas flow
rate) are also different.

The results allow us to draw two conclusions: The first is that the
chosen experimental procedure makes it possible to scan all the possible
cases and to have a very representative experimental set. The second is
that the control random selection of the test dataset plays a key role in
the ANN modeling. Indeed, uncontrolled random selection risks se-
lecting unrepresentative or undiversified dataset.

3.2. Performances and validation of ANN based models

The models are validated using two criteria namely RMSE and R-
squared (R?). The RMSE is an absolute measure of fit, whereas R-
squared is a relative measure of fit. RMSE is a good measure of how
accurately the model predicts the response, and it is the most important
criterion for fit if the main purpose of the model is prediction. It in-
dicate how close the observed data points are to the model’s predicted
values. Lower values of RMSE indicate better fit. With regard the R-
squared, it has the useful property that its scale is intuitive: it ranges
from zero to one, with zero indicating that the proposed model does not

% Training data

% Validation data |

s Random Number Generator = 34 s B Random Number Generator = 76 s 4 Random Number Generator = 68
Z4 - - - - - - - - = : . . T T T : T <
5 *: 5 ok ¥ * 0 * * 1 *hk ok 5 kx * * * *:
3 ¥ Kk ***ﬂ;&** **** * Xk ¥ **Q:;** 3 *i&* %g***?* ***0 R 3 ek kXl ok ok *»s;se*** ****mu *:3 Og&**
= * % * T ¥k = * B ¥ K Ky iok £ * ¥ x ¥ Fx Hk
S 3% * « L T T T3 x T = o F T SOk x ", e R
° ok o ok K 2 P P ° PR T T L P
P o * 2t % * * * ** ,
8217 x ¥ wEX * *y & 8 % x % * F 217 o ¥ x* % * &
(4] [} [
£ £ £
21 . L . . L . . . 2 1 . . . . . . . 51
§ o 10 20 30 40 5 60 70 8 9 W O 10 20 30 40 50 60 70 8 9 ([ O 10 20 30 40 50 60 70 80 90
Test Cases Test Cases Test Cases
Z 80 . . . . . . . . ) ; ; : : . ‘ ‘ g0 : : : - ; ‘ ;
> > %
& S S
= 60 ot s Z 60 RRRIORE s = 60r PR el
a0l Tmotmoncs - 1 ESaf Smesiomnge,, ** §4of Smorcmmnk e
° FORH P S FRRRR * ° KO, *
€ 20F Mok c 20 Qi S 20
© © ©
£ £ £
g 0 i | | | 1 | | ! 20 I I \ | | 2o . . .
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 3 40 50 60 70 80 90
Test Cases Test Cases Test Cases
80 . . T T . . T : € 80 . . , . . . . . T80 : .
£ E £
2 60 o = oot *x * Sl e *
2 L ok 2 *, e L *, h
S ok E, W xx 1 B ol H W ax ¥ 8 ok ¥, . a0 N |
R ** o R * ** " 3 [ax *ox o
Sl e . X * 2 [ W, * & eex ok, KEx *
1 201 w¥ * 4
2 Yk kx The. kK kxw Kk 2 Wk ke Rl wak Rk Gk kK B2 KX e Pk kA kxrkx%
2 XORK el kox RkdOk R 2 % Ak Tk Kk TR S o e Dok Kk kDK
o e ! ! ! [ 1 | g 5 e f 7 ! | | g,
o e
0 10 20 30 40 50 60 70 80 90 @ 7o 10 20 30 40 50 60 70 80 0 @ o 10 20 30 40 50 60 70 80 90
Test Cases Test Cases ) Test Cases
= <
£’ - e R T =280 o . . : : : g600 " - r - : Y !
E) oo * R E * 5 ¥ * © *
5 o Foo PR KRk 5 o
TR - o " i 9260_;&*;* *f*;& Frg Frdoar g 8 500, * Bk k KRR XX KKK = " *
z ok e - * e 2 b ¥ f** t?* *» * %*&* % 5 * XX *****0 e **3‘;&
H 2 P L ** *
2 5 b E— % 8% 1 z20r 5o * ga00f o amkRIH T, m TR x 1
[
2 * ok ow = 2 * e * *
= = 1 Y = * ¥
o} bl d < 3 *
20 220 - - : 3 300
a o 10 20 3 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 % 0 10 20 30 40 50 60 70 80 90
Test Cases Test Cases w Test Cases

Fig. 6. Experimental tests and the optimal random selection of the training and validation data.


hotpaper.net

N. Akkouche, et al.

improve prediction over the mean model, and one indicating perfect
prediction.

It is found that the optimal configurations of the models ANNI,
ANN2 and ANN3 respectively have the RMSE values of 0.58%, 0.34%
and 0.62% and the regression coefficients (R?) values of 0.9993, 0.9858
and 0.9959. The propinquity of the R? values to (1) and RMSE values to
(0) signifies the accurateness of the ANN based models [43,54]. It re-
flect that these ANN models give quite satisfactory and acceptable
performance. This suggests that the ANN model of the engine is accu-
rate, valid and reliable. The performance graphs for the networks with
good agreement between experimental and calculated results are shown
in Fig. 7.

The good precision and steadfastness of the ANN based models also
reflect the good choice of the inputs parameter selection of the models,
such as engine power, biogas methane content and biogas flow rate.
Indeed the fact that the engine power depends on the fuels flow rates
(pilot and primary fuels) adequately justifies the physical dependence
of the ANN1 model output (pilot flow rate) with the engine power,
biogas flow rate and biogas methane content. Regarding the physical
dependence of the airflow rate (ANN2 model output), it is related to the
model inputs through the admitted flow of biogas. Indeed, the intake
flow of the engine, naturally aspirated under a constant engine speed
(1500 rpm), consists of the sum of two flows, namely the airflow and
the biogas flow (biogas flow rate and its methane content). As for the
physical dependence of the airflow rate to the engine speed, it is already
explained in the physical dependence of the parameters of the ANN1
based model, where the biogas flow rate and the engine speed are
physically dependent. For the physical dependence of the ANN3 model
parameters, it is evident that the exhaust gas temperature depends on
the engine power, biogas flow rate, and biogas methane content (i.e.
CH,4 and CO, flow rates). In the diesel engine, where under a constant
engine speed the volumetric efficiency is practically constant, the var-
iation of the power implies the variation of the air fuel ratio which is in
turn affects the exhaust temperature. In addition, the variation of the
biogas flow and the methane content implies the variation of the CO,
flow rate, which is an inert gas and therefore its presence decreases the
exhaust temperature.

As regards the ANN1 based model, its optimal configuration consists
of two hidden layers for which the first comprises five neurons and the
second comprises four neurons. Their optimal adjusted network para-
meters, namely the weights and the biases, are shown in Table 3.

Where, i = input variables, j = Hidden layer neurons ,
IW;; = weight to j™ neuron of hidden layer from i™ input variable,
LW;; = Weight to output layer from j™ neuron, b, ; = bias to i neuron
of 1st hidden layer, b,; = bias to j™ neuron of 2nd hidden layer,
bs = bias to j neuron of output layer.

For the ANN2 based model, its optimal configuration also consists of
two hidden layers for which the first comprises three neurons and the
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Table 3

Weight and biases of the ANN 1 based model.
1st Hidden layer: IWj; by
1.5733 —3.2675 —2.6178 —12.4954 4.6390
0.6322 —1.7464 —2.7040 0.1185 —2.5938
—0.0659 —0.2166 —0.3591 0.1678 1.3898
17.0472 63.1983 3.9064 23.0693 33.2631
0.3928 —0.1054 4.9590 —1.5147 —5.7573
2nd hidden layer : IWj; baj
—0.1093 —33.2032 —18.4208 —0.0635 —2.2667 12.5516
30.9308 —30.9775 5.0478 —24.3578 —2.6255 —9.9047
110.3573 16.8241 11.4910 —10.4912 —23.9237 11.3550
0.0259 —0.6688 13.4434 0.0250 0.9057 —8.2412
Output hidden layer: LW, bs
—19.1421 0.0824 11.6260 —27.5964 14.6475

Table 4

Weight and biases of the ANN 2 based model.
1st Hidden layer : IWj; by
—0,0045 —2,4101 6,3145 0,0066 —5,4061
0,0022 0,6448 -0,3752 0,0110 —0,3895
—17,4060 62,4664 —20,2027 95,2348 —24,6803
2nd Hidden layer : IWj; by
—53,2753 —3,8107 —1,1256 52,4951
88,1274 175,1971 46,5783 —119,3185
—11,8383 2,2070 —0,1461 6,1280
12,0424 36,1368 —0,5266 —17,2298
—82,8240 —170,4725 —36,7020 113,9552
Output hidden layer: LW ; bs
45,7544 41,9136 —9,3538 —78,7266 46,7049 —14,6489

second comprises five neurons. Their optimal adjusted network para-
meters, namely the weights and the biases, are shown in Table 4.

Likewise, for the ANN3 based model, its optimal configuration
consists of two hidden layers for which the first comprises five neurons
and the second comprises three neurons. Their optimal adjusted net-
work parameters are shown in Table 5.

3.3. CHP simulation results

It is recalled that the engine used, with a maximum power of
3.5 kW, has been able to consume up to 60 g/min of biogas (Fig. 6).
Given that the digesters dump the biogas into a manifold (as shown in
Fig. 5), the anaerobic digestion unit will be sized so that the maximum
flow rate of biogas in the manifold outlet is 60 g/min.

The instantaneous flow rate of biogas leaving a single digester is
determined by deriving the cumulative instantaneous production of the
digester, given in Fig. 4. Depending on the number of digesters to be

(a) ANN1 model

Experimental pilot fuel flow rate (g/min)

(b) ANN2 model

Experimental airflow rate (g/min)

(c) ANN3 model

Experimental exhaust temperature (°C)

Fig. 7. Experimental versus calculated values for the different recorded parameters.
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Table 5

Weight and biases of the ANN 3 based model.
1st Hidden layer: IW;; by
0,1504 0,0775 —1,2412 -1,3139 0,5200
0,5634 —1,0624 4,5390 —2,5093 —1,4359
—0,0130 —0,0178 0,2789 0,2887 —1,6385
1,4895 —30,0325 2,9975 —-7,4717 —1,0186
0,4957 —18,3654 15,7180 —17,7499 3,0818
2nd Hidden layer: IW;; b
-0,7228 —0,1800 12,8054 —0,5347 -0,6179 —1,4763
6,9956 2,4618 9,0203 0,6300 1,3695 —9,2359
5,4879 4,2692 —11,4440 0,5861 1,9571 -7,3014
Output hidden layer: LW ; bs
16,6370 37,2658 —25,8575 —12,9805

used, the resulted average biogas flow rate and the corresponding di-
gester charge are determined. Fig. 8 shows the evolution of the digester
charge as well as the average biogas characteristics (biogas, CH, and
CO,, flow rates) as a function of the number of used digesters.

It is observed that when only one digester is used, the amount of
effluent (digester charge) is 1187 kg_ys (mixture of 1055.2 kg of OS,
2961.6 kg of CM and 34909 kg of water). This charge gradually de-
creases to reach 355.1 kg _ys (mixture of 315.7 kg of OS, 885.97 kg of
CM and 10444 kg of water), for each digester, when 10 digesters are
used.

It can be noted that the average biogas flow rate increases as the
number of digesters increases. This is because the fluctuation of the
biogas flow rate decreases while increasing the number of digesters.
Indeed, when using two digesters, for example, the loading of the di-
gesters takes place every 25 days. i.e. while the second digester has
reached its 25th day of digestion, the first digester has reached its end
of digestion (50th day) so it will charge again. On the other hand, when
using ten digesters, for example, the digesters are loaded every 5 days.
i.e. while the tenth digester has reached its 5th day of digestion, the first
digester has reached its end of digestion (50th day). This reduction in
the loading time actually has two advantages: the first is to reduce the
fluctuation of the flow and the composition of the biogas, the second
reduces the storage time of the effluents, which prevents the loss of the
methane production yield of the effluents.

Fig. 9.a shows the instantaneous production of biogas flow over a
period of 100 days. In the case of a single digester, the fluctuation of the
biogas flow rate is between 2 and 60 g/min. Fluctuations are reduced
and range between 38 and 60 g/min when the number of digesters
exceeds 5. The biogas flow rate becomes less fluctuating. In addition,
the biogas methane content (Fig. 9.b), which varies between 18 and
50% when a single digester is considered, quickly becomes stable, be-
tween 46 and 49%, as soon as two digesters have been considered.

This biogas, whose flow rate and CH, content vary over time, serves
as the primary fuel for the operation of the 3.5 kW power engine in dual
fuel mode. This involves the variation of the associated pilot fuel flow
rate that will be injected into the engine cylinder to develop the desired
engine load. Fig. 9-c to 9-f show the effect of the number of digesters as
well as the evolution of the pilot fuel flow rate associated with biogas
flow rate as a function of the engine load (50, 70, 80 and 100%).

Using these simulation results (Fig. 8 and Fig. 9), the performance of
the dual fuel CHP plant will be evaluated on an annual basis (8760 h).
Fig. 10 illustrates the average annual pilot fuel flow rate as well as the
pilot fuel mass ratio as a function of the engine load and the number of
digesters. The pilot fuel mass ratio is given by the following equation:

AMF! Rpilo[fuel
AMF] Rpilatfuel + AMF. Rbiogas (5)

MRpilotfuel =

Where AMFRjoyuei and AMFRyogqs are the average mass flow rates
for pilot fuel and biogas respectively. They are determined as the ratio
of annual consumption of the considered fuel to the elapsed time of
digestion. They are given by the following equations:
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ACpitotfuel
AMFRpilo[fuel = #
annualdigestiontime 6)
AChiogas
AMFI Rbiogas = #
annualdigestiontime (2]

Where ACioyuer and ACpegs are the annual consumptions of pilot
fuel and biogas respectively, calculated by integrating their flow rate
curves throughout the digestion time.

The result shows that for a lower number of digesters, the average
pilot fuel flow rate increases quickly with respect to the engine load. In
the case of a single digester, for example, the pilot fuel flow rate in-
creases from about 7 to 13 g/min when the engine load increases from
about 50 to 100%. This is because the biogas flow rate and its methane
content show a significant fluctuation. The effect of the number of di-
gesters becomes unimportant from 6 digesters, where the pilot fuel flow
rate goes from about 1 to 3.7 g/min when the engine load goes from 50
to 100%. With regard to the mass fraction of the pilot fuel (Fig. 10.b),
and under a given engine load, it decreases by increasing the number of
digesters so that it becomes negligible when the number of digesters
becomes greater than four digesters. This is the consequence of the flow
rate and methane content of biogas becoming stable.

One of the limiting factors for the development of micro-CHP
technology with dual fuel is the use of diesel fuel as a pilot fuel. The
regulated tariffs for electricity from renewable sources generally re-
quires limited consumption of fossil fuels for the operation of the CHP
plants. For instance, in France, the current regulation imposes that the
annual fossil energy consumption rate should not exceed 10% of the
primary energy used in the diesel-biogas CHP plants [55]. Fig. 11 shows
the average energy ratio of the pilot fuel (ERpjoyue) as well as the engine
efficiency as a function of the engine load and the number of digesters.
These two parameters are given by the following equations:

ERyitouet = 100 AMFRpitotfuet LHV pitotfuel
‘pliotjue -

AMF! RpilotfuelLH Vpilotfuel + AMF! RbiogasLHVbiogas (8)
Enginepoweroutput
Engineefficiency = 100 ginep P
AMFRpilot fuelLHVpilot Juel + AMFRbiagasLHVbiogas
©)

where LHV)joe1 = 42.42MJ/kg is the lower heating value of pilot fuel
and LHVjjoes is the lower heating value of biogas. The latter is calcu-
lated according to the methane content of biogas.

Regarding the engine efficiency, it increases proportionally with the
engine loads. In addition, for a constant engine load, the increase in the
number of digesters implies a slight decrease in engine efficiency. For a
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Fig. 8. Digester charge and characteristics of the produced biogas versus
number of digester to produce a biogas flow rate whose maximum is 60 g/min.
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Fig. 9. Biogas flow rate and the corresponding pilot fuel flow rate for different engine power outputs.

load of 70%, for example, the engine efficiency goes from about 25%
when a single digester is considered to about 20% when the number of
digesters is 10. This is because increasing the number of digesters in-
duces an increase in the biogas flow rate (Fig. 8), which causes a de-
crease in the pilot fuel flow rate (Fig. 10-a) at a constant engine load. In
fact, several researchers reported that increasing the amount of biogas
in a dual fuel engine at the expense of pilot fuel involves the reduction
of engine efficiency [4,8,56,57]. On the other hand, the pilot fuel en-
ergy ratio, shown in Fig. 11-b, decreases while increasing the number of
digesters. It is only from 4 digesters that the average pilot energy ratio
is less than 10% which complies with French regulation. For operation
under an engine load equal to 70%, the number of five digesters can be
optimal. In addition to these regulation limits, such as thermal effi-
ciency, pollutant emissions, engine aging and maintenance costs, the

a : Average pilot fuel flow rate
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technical limits has also proven that operation under partial loads is
recommended. Aklouche et al. [42] have already proved that the in-
dicated thermal efficiency obtained in dual fuel operation is almost
similar for partial loads greater than 70%. Finally, this partial load,
which represents 70% of the maximum engine power, actually re-
presents a nominal power of 2.45 kW.

For instance, in the case of five digesters, the digester charging
period, given as the digestion time (50 days) divided by the number of
digesters (5 digesters), is 10 days. Each digester charge is then equal to
635.6 kg_ys (Fig. 8) leading to a total inlet charge of 20844 kg (565 kg
of 0S, 1586 kg of CM and 18693 kg of water). It provides an average
biogas flow rate of 50 g/min, consisting of 48% v/v of average methane
content (Fig. 8).

In summary, a micro-CHP unit of 1 kw (shaft power) require a dual
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Fig. 10. Average annual fuel consumption versus engine load and number of digesters. a) Average pilot fuel mass flow rate. b) Average pilot fuel mass ratio.
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Fig. 11. Engine efficiency and energy ratio versus engine load and number of digesters.

fuel engine generator whose nominal shaft power is 1 kW, five digesters
and a daily availability of effluents of 171 kg/day, consisting of 45 kg/
day of OS and 126 kg/day on CM.

Since the thermal power of the CHP plant depends on the heat ex-
changer efficiencies as well as the temperature of the cold source, the
study is limited to the estimation of the power heat output available in
the exhaust gases. In order to estimate the thermal power, it is neces-
sary to determine the mass flow rate of the exhaust gases, their tem-
perature and their specific heat. As regard to the mass flow rate of the
exhaust gases, it is given as the sum of input mass flow rates, such as
biogas flow rate, pilot fuel flow rate and airflow rate admitted into the
cylinder. The latter is determined using the ANN2 based model. It al-
lows determining the required airflow rate according to the engine load
and the number of digesters.

Using ANN3 based model, simulation results show that the annual
average airflow rate rage from 232 to 260 g/min. This is due to the
dependence of the airflow rate with respect to the biogas flow rate,
admitted into the engine through its intake manifold. In addition, the
fact that the engine speed is constant does not imply that the airflow
rate must be constant. Indeed, the airflow admitted into the cylinder
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depends on the flow of the biogas injected into the intake duct, and
which takes part in the total intake flow sucked by the engine. Various
studies have already found this dependence of intake flows, which
sometimes results in the variation of the total air fuel ratio [58,59].

Regarding the exhaust temperature, it is determined using the
ANNS3 based model. Fig. 12a illustrates the average annual exhaust gas
temperature as a function of engine load and number of digesters. It is
in the range of 340 and 540 °C. Unlike water-cooled engines, where
some of the exhaust energy is absorbed in the engine cylinder head, the
temperature of the exhaust is often higher. It varies according to the
engine load and the air fuel ration [59]. Its increase with the number of
digesters is due to the fact that the latter favors the use of biogas at the
expense of the pilot fuel. The relatively high presence of biogas flow
rate leads to a decrease in the airflow rate, which in turn favors the
raising of the exhaust temperature. In fact, the high presence of air (or
the lower air-fuel ratios) implies the reduction of the quantity of air in
excess, which absorbs a quantity of heat released by the combustion of
the fuels.

A reciprocating internal combustion engine CHP system can provide
total efficiency (electrical power and thermal energy) of up to 80%
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Fig. 12. Exhaust gas temperature and the thermal power output versus engine load and number of digester.
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[62]. The heat generated from the engine can be used for numerous
purposes such as space heating, cooling, domestic hotwater and other
processes of energy recovery from waste such as pyrolysis, gasification,
trans-esterification, anaerobic digestion, ...etc.

To properly estimate the thermal power of exhaust gases, it is ne-
cessary to determine their specific heat according to their chemical
composition. Under the assumption of actual complete combustion, the
exhaust gas consists mainly of H,O, CO,, N5 and O,. The presence of O,
on the one hand and the non-presence of the unburned species (CO,
HTC, and NOx) on the other hand imply that the real combustion is
considered. The estimation of the CO, and H,O flow rates are de-
termined using the complete combustion of the pilot and primary fuels
while the estimation of N, and O, flow rates are determined taking into
account the airflow rate sucked by the engine. Finally, this assumption
makes it possible to neglect the presence of the unburned species, which
are evaluated in ppm range in the exhaust gases [22,60], and conse-
quently, their presence does not affect the specific heat of the exhaust
gases. Therefore, the mass fraction of each species in the exhaust gases
is calculated as a function of the biogas flow rate, its methane content,
the pilot fuel flow rate and the airflow rate.

The specific heat of each chemical species is given by a correlation
as a function of temperature [61]. The specific heat of the exhaust gases
(CPexhaust_cas) is then determined using Eq. (10).

CpExhaust_Gas ( T)

= XH20 CPHZ()(T) + Xco2 CPCOZ(T) + XN2 CpNz (T) + X02 Cpoz (T) (10)
where Cpy,, (T), Cpeg, (T), Cpy, (T), Cpy, (T) are the specific heats in
[J/kg.K] of Hy0, CO,, N, and O, respectively. Xi20, Xco2, Xn2, X0z are
the corresponding mass fractions of these species in the exhaust gases.

In this study, where the engine is used without the exhaust ex-

changer, the thermal power of the CHP is expressed by the thermal
power available in the exhaust gas at the engine output. It is determined
using Eq. (11).
HExhauxtiGas = mExhaud[fGas * CpExhauSLGax * TExhausliGas (11)
where Miggqust Gas i the mass flow rates of exhaust gas. Tgynaust_cos 1S the
temperature of exhaust gases in [°C] just at the outlet of the engine
combustion chamber (exhaust manifold). Simulation results using
ANN3 based model led to evaluate the average thermal power con-
tained in the exhaust gases. Fig. 12b illustrates the evolution of thermal
power of exhaust gases as a function of the engine load and the number
of digesters. It shows that the thermal power available in the exhaust
gas is between 5 and 13 kW. Since the thermal power of the CHP unit is
given by the thermal power which is actually recovered, it will be es-
timated by multiplying the results of the Fig. 12b by the efficiency of
the heat exchanger used in the CHP unit. A similar assumption is al-
ready used by Teymoori et al. [63] developed a case study applied to an
animal farm, covering the technical and economic aspects of biogas
production using manure from livestock to replace fossil fuel used for
heat and electricity generation. They estimated the thermal power of
the CHP plant based on the assumption of constant thermal efficiency,
which is estimated at 65% of the primary power.

For the above cited example where a CHP unit consisting of 5 di-
gesters and an engine operating under load of 70% is considered, the
thermal power available in the exhaust gas is about 10 kW. In the field
of combined heat and power, the used heat exchangers can recover up
to 60% of the thermal power contained in the exhaust gases. Indeed,
similar percentages have been obtained experimentally by running an 8
kWe cogeneration unit (ecoGEN-08AH) [64] in dual fuel operation
mode.

In summary, based on these assumptions, thel kWe micro-CHP unit
(shaft power), requiring a generator with a nominal electric power of
1 kW, can produce up to 2.45 kW of thermal power.

11
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4. Conclusion

Mico-CHP on farm, where electricity and heat are produced from
the anaerobic digestion of farm effluents, is increasingly the focus of
many researchers. Dual-fuel engines are known for their flexibility in
biogas composition, which varies throughout the duration of the
anaerobic digestion reaction. The modeling of the micro-CHP unit op-
erating in dual-fuel mode is carried out on the basis of experimental
results carried out at the laboratory scale. The engine tests were carried
out on an AVL engine with a maximum power of 3.5 kW, operating in
dual fuel mode. The biogas flow rate is evaluated using experimental
results from the literature based on anaerobic co-digestion of mixture of
oat straw and cow manure.

The engine parameters have been modeled using methodology
based on Artificial Neural Networks. Three ANN based models are de-
veloped to estimate engine parameters namely pilot fuel flow rate, in-
take airflow rate and the exhaust gas temperature. The inputs of the
ANN based models are engine power, biogas flow rate, and biogas
methane content. The ANN based models have been shown to provide
quite satisfactory and acceptable performance. Their RMSE is between
0.34% and 0.62% and their R-squared is between 0.99 and 1. Each of
them consists of two fully connected hidden layers. The ANN1 which
models the pilot fuel flow rate includes five neurons in its first hidden
layer and four neurons in its second hidden layer. The ANN2 which
models the airflow rate includes three neurons in its first hidden layer
and five neurons in its second hidden layer. The ANN2 which models
the exhaust temperature includes five neurons in its first hidden layer
and three neurons in its second hidden layer.

The effect of the number of digesters on the biogas characteristics is
studied and the optimal CHP conception, allowing the use of only 10%
of the primary energy from the pilot fuel, is CHP unit consisting of 5
digesters and dual fuel engine whose a nominal load equal to 70% of its
maximum load. A micro-CHP unit of 1 kWe, requires a dual fuel gen-
erator with a nominal power of 1 kW, five digesters and a daily avail-
ability of effluents of 171 kg/day, consisting of 45 kg/day of oat straw
and 126 kg/day of cow manure. Il can also recover up to 2.45 kW of
thermal power from the exhaust gases.

Works using a truly micro-CHP model, operating in diesel-biogas
dual-fuel mode and equipped with an exhaust exchanger must be car-
ried out. It is necessary to optimize its operation by acting on two
parameters: The first is to improve the efficiency of the engine during
operation in dual fuel mode. Indeed, the lower air-fuel equivalence
ratio of diesel engines often involves unburned methane in the exhaust,
which reduces the efficiency of dual-fuel engines. The second is to
optimize the thermal power of the CHP unit by maximizing heat re-
covery from the exhaust and the heat recovery from the engine jacket.
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