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In this paper, feature weighting is used to develop an effective computer-aided diagnosis

system for breast cancer. Feature weighting is employed because it boosts the classification

performance more as compared to feature subset selection. Specifically, a wrapper method

utilizing the Ant Lion Optimization algorithm is presented that searches for best feature

weights and parametric values of Multilayer Neural Network simultaneously. The selection

of hidden neurons and backpropagation training algorithms are used as parameters of

neural networks. The performance of the proposed approach is evaluated on three breast

cancer datasets. The data is initially normalized using tanh method to remove the effects of

dominant features and outliers. The results show that the proposed wrapper method has a

better ability to attain higher accuracy as compared to the existing techniques. The obtained

high classification performance validates the work which has the potential for becoming an

alternative to the other well-known techniques.
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1. Introduction

Breast cancer is considered as a major health problem
worldwide. It is the second most common type of cancer
among women after lung cancer which causes more deaths [1].
The factors responsible for possibly developing breast cancer
include family history, aging, genetic risk factors, menstrual
* Corresponding author at: Department of Electrical and Instrumen
Technology, Longowal, Punjab, India.

E-mail addresses: dalwindercheema@outlook.com (D. Singh), birmo
https://doi.org/10.1016/j.bbe.2019.12.004
0208-5216/© 2019 Nalecz Institute of Biocybernetics and Biomedical En
B.V. All rights reserved.
periods, and obesity, but how and when these factors change
the breast cells into cancerous is not known [2]. Although there
is no procedure defined to prevent breast cancer, early
detection is the only key for better prognosis and treatment
[3]. Detection of early invasive cancer, before it reaches to the
other vital organs, is essential to reduce breast cancer
mortality. The survival chances for women from cancer
depends upon the size of the tumor. The survival rate of
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women is 95 % for 1 cm, 85 % for 1�2 cm, and 60 % for 2�5 cm
tumor size in the next ten years [4].

1.1. Problem statement

Worldwide, breast cancer is about 15 % of all types of cancers in
women. In the United States, the estimated new cases of
cancer will be 1,735,350, and the expected number of deaths
will be 609,640 for 2018. The estimated cases of cancer in
women are 878,980, of whom 266,120 are likely be breast
cancer cases which will result in 40,920 deaths [5]. In India,
total numbers of new cancer cases are expected to reach 1.73
million in 2020 from around 1.45 million in 2016, out of which
more than 10 % cases will be related to breast cancer [6].
Although the cases of breast cancer are increasing, the trend
also shows a reduction in mortality rate due to the widespread
adoption of better diagnostic facilities and improvements
made in breast cancer treatment [7]. However, it resulted in
vast volumes of diagnostic data from the medical records,
mammograms, ultrasounds and biopsies of screened women.
Availability of the small number of the experts is also causing
delay in the identification of cancer. Here, Computer Aided
Diagnosis (CAD) systems can play an important role and
increase the sensitivity of diagnosis. CAD systems for
mammography are either used for a second opinion or as a
visual tool to assist radiologists [8].

Several techniques have been developed for the classifica-
tion of breast cancer. But still, there is a scope to design an
appropriate method for developing and implementing a more
effective diagnosis system for breast cancer. The motivation of
this work is to make efficient use of information from the large
volume of data generated so that that correct classification
may enhance the treatment options. In this paper, feature
weighting is used for obtaining better predictive models of
Back-Propagation Neural Networks (BPNN) on breast cancer
data. A wrapper-based approach is employed that uses Ant
Lion optimization algorithm to search for the best weights of
features along with the optimal values of neural network
parameters. Initially, data is normalized to suppress the
outliers and to deal with the numerically dominant features.
Afterward, the proposed approach is applied to find the best
predictive model by weighting features while selecting the
optimal training algorithm and the number of hidden neurons
required. To validate the effectiveness of proposed work,
experiments are performed on Wisconsin original Breast
Cancer (WBC), Wisconsin Diagnostic Breast Cancer (WDBC),
and Breast Cancer Coimbra Dataset (BCCD) datasets that have
been taken from the UCI Machine Learning Repository [9].

Related work is discussed in Section 2, and the dataset
information is provided in Section 3. Section 4 covers feature
weighting, neural networks, and explains the proposed
wrapper method. Results, discussions, and comparisons with
existing works are presented in Section 5, and Section 6
concludes the work.

2. Literature review

From literature, it has been observed that numerous methods
have been proposed to classify the breast cancer dataset.
Previous work on WBC, WDBC, and BCCD is reviewed in this
section.

The work on the WBC includes: Quinlan [10] used C4.5
decision tree method, and Nauck and Kruse [11] used a neuro-
fuzzy approach for the classification of data. Pena-Reyes and
Sipper [12] proposed a fuzzy-genetic approach for distinguish-
ing malignant and benign cancer samples. Chen and Hsu [13]
developed genetic algorithm (GA) based approach for extracting
the decision rules to build a decision-making model for NN.
Übeyli [14] compared the performances of Support Vector
Machines (SVM) and four different NNs. Akay [15] combined
SVM with feature selection to achieve better accuracy.
Karabatak and Ince [16] reduced data dimensions using the
association rules and applied NN for classification with
resultant features. Azar and El-Said [17] analysed the perfor-
mance of six different SVMs and reported Linear programming
SVM as the best classifier. Senapati et al. [18] initialized the
centers and variances of radial basis function NN using K-PSO.
Further, network weights were updated using the recursive
least square method as a substitute for backpropagation. El-Baz
[19] used rough set theory for selecting features and combined
rules of the k-nearest neighbor classifier (KNN) for the diagnosis
of breast cancer. Yang et al. [20] proposed the improved
decision tree classifier, ID3, to enhance the disease prediction
performance. Phan et al. [21] used the combination of feature
weighting and SVM for improving the classification perfor-
mance. The data was normalized with the min-max method,
and GA was used to search the feature weights and parameters
of SVM. Sudha [22] used the combination of rough set approach
and GA to obtain higher performance using BPNN.

On the WDBC dataset, Guo and Nandi [23] used genetic
programming for feature generation, modified Fisher linear
discriminant analysis for feature extraction, and minimum
distance for classification. Maglogiannis [24] applied five
classifiers; SVM, Bayesian classifiers, and ANN to determine
the classification performance where ANN outperformed the
other four classifiers. Li et al. [25] proposed a Kernel Self-
optimized Locality Preserving Discriminant Analysis for
feature extraction and recognition. The data-dependent kernel
was solved with the self-optimization method and obtained
optimal projection matrix was used to reduce irrelevant
features. Daoudi et al. [26] presented an Artificial Immune
System for classification of benign and malignant breast
cancer cases. Zheng et al. [27] proposed the combination of k-
means clustering and SVM. The k-means clustering algorithm
was used to determine the membership of each tumor
separately by recognizing the hidden patterns of each tumor
class individually. This membership are acted as new feature
for learning the SVM model. Nilashi et al. [28] proposed a
knowledge-based system using expectation maximization for
clustering, Classification and Regression Trees (CART) for
classification and principal component analysis to overcome
the multicollinearity issue. Sayed et al. [29] proposed a chaotic
crow search algorithm and Zhang et al. [30] employed the brain
storm optimization algorithm for the feature subset selection
while assessing performance with KNN classifier. Ghosh et al.
[31] employed different machine learning algorithms for the
selection of appropriate classifier. This comparative analysis
includes SVM, KNN, Naïve Bayes (NB), Random Forests,
Logistic Regression, and NN (Multilayer Perceptron (MLP)
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and Deep Convolutional NN). Agarap [32] replaced the
traditional classification function, softmax, with the rectified
linear units in deep neural networks. The experiments were
performed by pre-processing data with z-score normalization
method.

The work which considered both datasets are: Krishnan
et al. [33] proposed SVM based classifier for discriminating
malignant and benign classes. Salama et al. [34] proposed an
ensemble approach by fusing the decision tree (J48), MLP, NB,
Sequential Minimal Optimization (SMO), and Instance-Based
nearest neighbor classifiers. The ensemble method performed
better on the original dataset whereas SMO outperformed
ensemble approach on the diagnostic dataset. Lavanya [35]
used CART classifier with feature selection and bagging
technique to evaluate the performance. Ghosh et al. [36] used
a neuro-fuzzy method that calculated a membership matrix
considering the pattern-wise degree of memberships of breast
cancer datasets. These matrix elements were input to a NN to
learn the classification model. Wang et al. [37] proposed the
SVM based ensemble learning algorithm to improve the
classification performance. Their ensemble algorithm used
six kernel functions with two SVM machines, thereby resulting
in a total of twelve SVM classifiers. Liu et al. [38] proposed a
hybrid feature subset selection approach in which information
gain and a combination of simulated annealing (SA)-GA were
utilized to identify the relevant features. The performance of
selected features was measured with BPNN, KNN and SVM
algorithms, and the highest accuracy was reported with the
BPNN algorithm. Li et al. [39] proposed the smooth group
regularization method to prune the nodes of Feedforward NN
at the input layer. Additionally, pruning of input nodes also
helps to reduce the dimensions of the input data.

On the BCCD dataset, Silva Araújo et al. [40] used fuzzy
neural networks for the prediction of breast cancer. Three
types of membership functions, unineuron with Gaussian,
andneuron with triangular, and orneuron with Gaussian, are
used to assess the performance using four features only.
Andneuron with triangular membership function performed
better than rest of the functions and five other classifiers.
Singh [41] investigated the impact of various feature subset
selection methods and machine learning algorithms on the
prediction of breast cancer. Both filter and wrapper methods
were used to rank the features whose performance was
measured on six types of SVM. After selecting the best
performing features, the performance was further measured
on five other machine learning algorithms. Abdel-Basset
et al. [42] proposed a wrapper based feature selection
approach by improving the Grey Wolf optimization algo-
rithm with two-phase mutation. The experiments were
performed on both WDBC and BCCD datasets, and the
performance of selected features was measured on the
KNN classifier.

Ontiveros-Robles and Melin [43] worked on the develop-
ment of a general type-2 fuzzy inference system for computer-
aided diagnosis systems. In another work [44], they used a
shadowed type-2 fuzzy inference system due to its good
approximation and less computational cost as compared to
previously used general type-2 fuzzy inference system. In both
works, the experiments were performed on all three breast
cancer datasets used in this study.
3. Datasets

In this paper, three UCI machine repository datasets have been
used. The Wisconsin original Breast Cancer Database, from the
University of Wisconsin Hospitals, Madison, has 699 instances
which were taken from Fine Needle Aspirates of human breast
tissue. There are nine attributes for each record to identify it as
benign or malignant. The instances with the missing values
(16) are discarded from the dataset. Therefore, only 683 cases
have considered in this work containing 444 instances of the
benign type and rest 239 of the malignant type. More
information is available at [37,38].

The second dataset used in this study is the Wisconsin
Diagnostic Breast Cancer Database. The dataset contains 569
samples belonging to two classes, namely, malignant and
benign. There are 357 benign cases and 212 malignant cases.
The digital images of a fine-needle aspirate of the patient's
breast tissues were used to calculate features. Ten real-valued
features were extracted from the cell nuclei of the breast
tissues. Then, the mean, the standard error, and the mean of
the three largest values were calculated from all features.
Therefore, the total features obtained from all images were 30.
Refer to [37,38] for more information.

The third dataset used in this study is the Breast Cancer
Coimbra Dataset which was prepared at University of Coimbra.
This dataset has 116 samples out of which 52 are healthy
volunteers while rest of the women had cancer as confirmed
from the positive mammography followed by histological
examination. From each participant, nine clinical, demo-
graphic, and anthropometric features are extracted to predict
the presence of breast cancer. More information about the
dataset is available at [45].

4. Simultaneous feature weighting and
parameter optimization

In this section, the concept of feature weighting and Multilayer
feedforward NNs are described. Further, the proposed wrapper
method based on Ant Lion Optimization is presented.

4.1. Feature weighting

Feature weighting works on the idea that some features are
more important than others to solve a classification problem,
and therefore, the contribution of each feature in pattern
classification should be different. A feature weighting algo-
rithm assigns higher weights to relevant features and lower
weights to less relevant and redundant features. It is different
from feature subset selection since the latter approach works
for data that has entirely relevant or irrelevant features only.
In fact, feature subset selection is the subset of feature
weighting approach where the weights are restricted to 0 and 1
only. Therefore, feature weighting achieves equivalent or
higher classification accuracy than feature subset selection.
The weights are assigned according to the discrimination
ability of features and these can be linear, polynomial or used
as an arbitrary function [46]. The real-valued weights are
assigned to features within the given search range.
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In this work, a linear weight assignment approach is used to
improve the accuracy in which the original features are
multiplied with weights values. Suppose a data (D) having N
instances and d features is represented as
fxi;n; ynj n 2 N and i 2 dg where x is the training data and y
represents the corresponding labels. The linearly feature
weighted data (x

0
) will be given as follows:

x
0
i ¼ Wi � xi (1)

where xi is the ith feature and Wi is the corresponding weight of
ith feature. It changes the feature space of the classification
problem by expanding the space of highly weighted features
while shrinking the space of nominally weighted features.

It is a challenging continuous search problem as the
complexity of the weighting problem increases with an
increase in features. Therefore, the wrapper based methods,
which employ optimization algorithms, are more popular than
the filter methods [21,47,48] for finding the feature weights.
Another advantage is that these methods help to tune the
weights according to the classifier that may vary from
classifier to classifier. This approach has been used by various
authors [21,47–50] to obtain better predictive models for many
classification problems and combined it with various machine
learning algorithms such as k -NN [47,48], Naïve Bayes [51] and
Support Vector Machines [21].

4.2. Neural networks

Artificial neural networks are the most popular machine
learning algorithms that have been used extensively in many
application areas because of their higher classification
performance [52]. Artificial neural networks are universal
function approximation algorithms that can model linear as
well as non-linear data with desired accuracy [53]. The
multilayer perceptron is the type of artificial neural network,
a three-layered feedforward network that is simple and has
well-established generalization properties. The network con-
sists of the input layer, hidden layers and output layer where
learning occurs with the notion of weights between each layer.
The data is fed into the classifier through the input layer to
produce output at the hidden layer as follows:

Hj ¼ ;H
Xd
i¼1

wj;ix
0
i

  !
(2)

where d is the number of inputs neurons, wj;i represents the
weights between input and hidden layer, ;H represents the
activation function at the hidden layer. The classification
decision came at the output layer which is calculated as
follows:

yk ¼ ;O
XM
j¼1

wk; jH j

0
@

1
A (3)

where M represents neurons at the hidden layer, wk; j repre-
sents weights between the hidden and output layer and ;O
represents the activation function at the output layer. In this
work, tan-sigmoid and softmax activation functions are used at
the hidden layer and output layer respectively. The tan-sigmoid
function is given as follows:

;HðÞ ¼ 2
1 þ e�2 � 1 (4)

and the softmax function is given as follows:

foðÞ ¼ ePc
i¼1 e

((5))

In this work, we have trained the neural network using the
backpropagation learning algorithm. This algorithm updates
the weights backward, from the output layer, through the
hidden layer to the input layer by propagating the difference
between the desired output and the predicted output. It is
given as follows:

E ¼ 1
2

XN
n¼1

ðyn � znÞ2 (6)

where yn represents the predicted value, zn represents the
actual value, and E is the mean squared error (MSE). The
weights vector is adjusted at each iteration until the error is
minimized or total iterations are completed. Various training
algorithms are suggested in the literature for finding weights
at hidden layers. In this paper, we are considering a number of
the hidden neurons and different training algorithms that are
optimized simultaneously with feature weights to maximize
the classification accuracy on breast cancer data. Table 1
shows the detail of the backpropagation training algorithms
considered in the study.

4.3. Proposed work

The proposed work is a data preparation approach that makes
the data more relevant to achieve high classification perfor-
mance. The block diagram of the proposed work is shown in
Fig. 1. Initially, data is pre-processed with tanh method which
helps to tackle the problem of outliers as well as feature
dominance in terms of numerical range. Then, feature
weighting is applied which alters the feature space to achieve
the higher classification. Moreover, the parametric values of
BPNN are also considered in the work because different
training algorithms may converge to different solutions, and
the number of neurons to be used with training algorithm has
no standard rule. These parametric issues affect the perfor-
mance of classifier [54] and need to be optimized for the
considered data. Therefore, these two parameters are also
optimized simultaneously along with the feature weights.
Otherwise, the computational cost will be enormous, if
exhaustive search of parametric values is performed while
searching for weights. The combination of feature weights and
parameters increases the search space tremendously to search
for the optimal solution which may cause the entrapment of
optimization algorithms in local optima is possible. Due to
this, Ant Lion optimization is used due to its better conver-
gence as compared to other algorithms. This algorithm has
been used widely for searching feature subsets as well as
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Table 1 – Training Algorithms for Neural Network used in the work.

S. No. Algorithm Details

1 Conjugate gradient (CG)
algorithms

A line search is performed along the direction of the conjugate
gradient to determine the step size at each iteration. Many
variants of CG algorithms have been proposed based on a
search for the next direction from the previous directions.

1.1 Conjugate Gradient with Powell/
Beale Restarts (CGPBR)

The algorithm resets the search direction to the negative of
the gradient periodically.

1.2 Fletcher-Reeves Conjugate
Gradient (FRCG)

The search direction is given as the ratio of the square of the
current gradient to the square of the previous gradient.

1.3 Polak-Ribiére Conjugate Gradient
(PRCG)

The search direction is given as the inner product of the
change in the previous gradient with a current gradient which
is divided by the square of the previous gradient.

1.4 Scaled Conjugate Gradient (SCG) Performing a line search at each iteration of conjugate
gradient algorithms is computationally expensive. This
algorithm avoids the line searching by combining the model-
trust region with the conjugate gradient approach.

2 Resilient Backpropagation (RB) Uses the sign of the derivative only to update the weights. The
magnitude of the derivative is ignored to improve the
convergence speed.

3 Variable Learning Rate
Backpropagation (VLRB)

The algorithm combines the gradient descent momentum and
adaptive learning for updating the weights.

4 Levenberg-Marquardt (LM) This algorithm uses a combination of the Gauss-Newton
method and gradient descent methods. The approximation of
Hessian matrix is achieved using Jacobian matrix.

5 Quasi-Newton Methods These methods rely on the approximation of Newton's
direction without using second-order derivatives. These
methods optimize faster but require higher computations due
to the calculation of Hessian Matrix.

5.1 Broyden–Fletcher–Goldfarb–
Shanno Quasi-Newton (BFGS)

The algorithm uses line search and updates the
approximation of the Hessian matrix at each iteration for
convergence.

5.2 One Step Secant (OSS) This algorithm combines the conjugate gradient and BFGS.
The computation cost is reduced by considering the previous
Hessian matrix as the identity matrix.
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parameters of classifiers and training the neural networks due
to its good exploration and exploitation capabilities [55–57].

4.3.1. Data normalization
In this work, the data is preprocessed with data normalization
method to mitigate the effects of dominant features and
outliers before its evaluation on BPNN. tanh normalization is a
Fig. 1 – Flowchart of the proposed work for optimizing feat
widely used data pre-processing method that is selected
because when feature weighting is utilized, it improves the
classification performance higher as compared to other
popular normalization methods such as z-score and min-
max [58]. Initially, this method transforms the data by using
Hampel estimators [59] which are based on influence function
(C). This function is given as follows:
ure weights and parameters of BPNN simultaneously.
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Cð pÞ ¼

p 0 � pj j � u1

u1 � signð pÞ u1 < pj j � u2

u1 � signð pÞ � u3 � pj j
u3 � u2

� �
u2 < pj j � u3

0 pj j> u3

8>>>><
>>>>:

(7)

where pi ¼ xi;n � medðxiÞ, med is a function for calculating the
median value, signð pÞ ¼ 1 for p � 0 and sign pð Þ ¼ �1 for p < 0.
This function suppresses the influence of values at the tails of
data distribution with the help of parameters u1; u2 and u3

whose values are set to quantile0:7ð pj jÞ, quantile0:85ð pj jÞ and
quantile0:95ð pj jÞ respectively [60]. Then, data is normalized by
measuring the statistical properties of each feature. It includes
computing the mean and standard deviation of each trans-
formed feature to obtain the normalized feature (x̂i). It is given
as follows:

xî ¼
1
2

tanh 0:01
xi � mG

i

sG
i

  !  !
þ 1

( )
(8)

where mG and sG represent the mean and standard deviation of
Hampel estimated ith feature respectively.

4.3.2. Ant Lion optimization
The Ant Lion Optimization (ALO) [61] algorithm is used to search
for optimal feature weights and parametric values of neural
networks simultaneously. The algorithm is inspired by the
hunting behavior of antlions that catch their prey, ants, by
digging a cone-shaped pit in the sand. The size of the trap mainly
depends upon the hunger level of the antlion. Higher the hunger,
larger will be the pit and vice-versa. This hunting process of the
antlion in nature was modeled mathematically to solve the
optimization problems. This algorithm has been used for
searching the feature subsets [56,62], training neural networks
[56], and parameter of classifiers [55] which is related to this work.

The algorithm works by assuming P antlions and ants in d
dimensional problem space which is defined as:
ALO ¼ ALi; Aif j i 2 P, where P represents the population of
antlions and ants. The initial positions of the antlions (AL)
are determined randomly within the given search space.
Further, considering the nature of the movement of ants for
finding food in the given search space as stochastic, their
movement was modeled as a random walk. A random variable
is defined as follows:

s ¼ 1 i f ðr > 0:5Þ
0 else

�
(9)

where r is generated in the interval of [0,1] randomly. The
random walk of the ants is calculated as a normalization of
the cumulative sum of total iterations using the following
equation:

Xt ¼ ½0; cumsum 2s t1ð Þ � 1ð Þ cumsum 2s t2ð Þð
�1Þ; . . . ; cumsum 2s tTð Þ � 1ð Þ� (10)

where T is maximum iteration and t represents the current
iteration. Min-max normalization approach is used to keep the
position of the ants in the predefined search space. The newer
calculated positions will easily surpass the boundary conditions
because of no relation between the resultant sum of eq. 10 and
boundary conditions. Therefore, the newer position of the ants
are modified as follows:

X̂t ¼ ðXt � aiÞ � ðdti � cti Þ
bi � ai

þ cti (11)

where ai represents the lower bound and bi represents the
upper bound of the random walk's in ith dimension, cti repre-
sents the lower bound and dti represents the upper bound of
the ith dimension at tth iteration. To reflect the trapping of ants
in the antlion's pit, the lower and upper bounds of the dimen-
sions are updated. For ant, At

h at the current iteration, it is given
as follows:

cti ¼ ALtm þ ctiand dti ¼ ALtm þ dti (12)

where ALtm represents the position of the selected mth antlion
around which ants are trapping. The process of catching the
prey by sliding it downwards inside the pit has reflected
through an adaptive decrease in radius of ants' random walk
and given as follows:

cti ¼
ci
I
and dti ¼

di
I

(13)

where ci is the lower bound and di is the upper bound of ith

dimension for the given problem and I represents the ratio
which is further defined as follows:

I ¼ L
t
T

where L is the constant parameter that controls the level of
exploitation. This parameter is modified to meet the require-
ments of the feature weights which are required up to a few
decimal places only. The consumption of ants by antlions has
represented in terms of fitness value. If position of the con-
suming ant is better than the existing position of the antlion,
the newer position of the antlion will update to the current
position of an ant which is given as follows:

ALtþ1
m ¼ At

h i f fit ALtm
� �

< fitðAt
hÞ (14)

The fitness function is classification accuracy, and it is
given as follows:

fit ¼ Correctly Classified Instances
Total Instances

(15)

In each iteration, the best antlion is determined from all
antlions that have the highest fitness. Therefore, the elite
antlion affects the movement of all ants in each iteration. The
ants tend to move towards the elite antlion to achieve higher
fitness. However, it may lead to trapping of antlions in local
optima. Therefore, elitism is used to maintain the best solution
at any iteration during optimization. The elitism is realized
using elite (ET) antlion obtained so far and an antlion selected
through the roulette wheel (RW) strategy. The newer position
of ant is the average of both antlions and is given as follows:

At
h ¼ ALtET þ ALtRW

2
(16)
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Table 2 – Parameters of neural networks considered in
the study.

Parameter Value

Hidden neurons [1,30] WBC and BCCD
[1,50] WDBC

Training algorithms 1 LM
2 BFGS
3 RB
4 SCG
5 CGPBR
6 FRCG
7 PRCG
8 OSS
9 VLRB

Fig. 2 – Solution representation for simultaneous feature weighting and parameters of NN classifier.
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where ALtET represents the best antlion ALtRW represents the
roulette wheel selected antlion at tth iteration. Fig. 2 illustrates
the solution representation of the ALO for the simultaneous
feature weighting and parameter determination. The solution
vector is continuous in nature, where values are real, and
integers type only. The weights for features are real (xd) values
whereas the number of neurons ( p1) and selection of training
functions ( p2) are integer type values.

The pseudocode of Ant Lion Optimization for the simul-
taneous search of feature weights and BPNN parameters is
given in Algorithm 1.

Algorithm 1: Feature weighting and parameter optimization using
ALO

Input: Training data (D), Parameters of Neural Networks, Popula-
tion of Antlions and Ants (P), Total Iterations (T)
Output: Optimal Feature weights and parametric values (ALET)
1. Begin
2. Randomly initialize antlion population
3. Calculate fitness of antlions using BPNN
4. Find Elite Antlion (ALET)
5. Set current iteration (t) = 1
6. while t ≤ T
7. for i = 1 to P
8. Select two antlions (ET and RW)
9. Create a normalized random walk around

two selected antlions (eq. 11)
10. Determine the position of ith ant (eq. 16)
11. endfor
12. Calculate fitness of ants using BPNN
13. If an ant is fitter than any antlion, then replace

the position of antlion (eq.14)
14. If an antlion is fitter than elite antlion, then

update elite antlion:
ALtþ1

ET ¼ ALtj i f fit ALtET
� �

< fitðALtjÞ
15. endwhile
16. end

5. Results and discussions

The proposed wrapper-based method is applied to Wisconsin
medical datasets to improve their classification performance.
The proposed methodology is implemented in the MATLAB®

environment using a system having i7 1.80 GHz processor and
16 GB RAM. The datasets are evaluated using a 10-fold cross-
validation procedure to obtain the classification accuracy.
Furthermore, we have performed 10 independent executions
to avoid the random success of a classifier.

5.1. Parameter settings

The features weights are searched within the interval of 0–1,
and details of BPNN parameters for experiments are provided
in Table 2. Two parameters; Hidden neurons and selection of
training algorithms are considered for optimizing the network
in this work. The maximum number of neurons for learning
the data is different for each dataset because of the number of
features. More hidden neurons are used for a higher number of
features and vice-versa.

The details of parameter settings for the ALO algorithm
during experimentation is provided in Table 3. These
parameters are kept fixed for each independent execution to
obtain the results. The maximum iterations and population
size are considered from [56]. The values of parameter L is
adapted according to the need of feature weighting.

5.2. Classification accuracy with Full feature set

In this section, the obtained results are provided as well as
discussed. Initially, experiments are performed on a full set of
features considering hidden neurons and training algorithms.
Then, we present the results of the proposed approach which
are compared with the full feature set and state-of-the art
work for validation.

Fig. 3 shows the accuracy plots of WBC data for the full set
of features considering hidden neurons and training algo-
rithms. Overall, fluctuations of accuracy are observed for
training the neural networks with all algorithms as number of
neurons increase. The maximum accuracy of 97.16 % is
achieved with SCG algorithm using 8 neurons while VLRB
algorithm with 29 neurons obtains a minimum accuracy of
92.83 %. It is also noticeable for all training algorithms that
with the increase in the number of hidden neurons, accuracy
does not improve. In fact, LM, RB, SCG, OSS, and VLRB
algorithm shows the decline of accuracy with the increase in
hidden neurons. VLRB algorithm fails to converge while
utilizing certain number of neurons (such as at 2 and 29) as
it is typical of this algorithm for overshooting the good
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Table 3 – Experimental settings for the Ant Lion Optimi-
zation.

Parameter Setting

Maximum Iterations 200
Number of Antlions and Ants 20
L (Controlling exploration and exploitation) 5 t > 0:50T

10 t > 0:75T
20 t > 0:90T
50 t > 0:95T
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solutions when learning rate is increased to speed up the
convergence. Moreover, this algorithm has several parameters
whose fine-tuning is required to attain convergence [63].
Therefore, with certain neurons, the algorithm fails to
converge resulting in significant decline of accuracy.

The accuracy plots of WDBC data using two parameters of
neural networks are shown in Fig. 4. High fluctuations of
accuracy are observed with all algorithms as number of
neurons increase, and using a single neuron results in lower
performance for most of the algorithms. The maximum
accuracy of 97.30 % is attained by using CGPBR algorithm
with 37 neurons while VLRB algorithm achieves a minimum
accuracy of 70.96 % using 29 neurons. LM and BFGS algorithms
show gain in accuracy while SCG algorithm shows a decline of
accuracy with the increase of hidden neurons. The accuracy
remains at same level for the SCG, CGPBR, FRCG, PRCG, and
OSS while RB and VLRB show significant variations in
outcomes at certain number of neurons. RB algorithm fails
to converge when 41 and 46 neurons are used which may be
due to the occurrence of larger step size that misses the
minimum point [64,65]. In the case of VLRB, previously
mentioned reasons cause a decline in accuracy when certain
number of neurons are used. Interestingly, lowest accuracy on
both WBC and WDBC datasets is attained with 29 neurons
using this algorithm.
Fig. 3 – Average accuracy on WBC data for differe
The accuracy plots of Coimbra data using two parameters
of neural networks are shown in Fig. 5. For all algorithms, high
fluctuations of accuracy are observed with different neurons.
The maximum accuracy of 72.37 % is attained by utilizing LM
algorithm with 19 neurons while VLRB algorithm achieves a
minimum accuracy of 56.29 % with single neuron. Except LM
all other algorithms show gains of accuracy with the increase
in hidden neurons. However, at specific number of neurons,
sudden decline in accuracy is observed for the CGPBR (9), OSS
(13), and VLRB (17 and 21) algorithms. While the reasons for
non-convergence of VLRB are already mentioned earlier, OSS
algorithm lacks in performance because descent direction is
calculated based on rough approximation [66] whereas CGPBR
may not converge even in the presence of accurate line search
[67].

5.3. Classification performance with proposed work

Table 4 outlines the results obtained with the proposed
wrapper-based method and also compares these with the full
feature set. Three performance metrics, accuracy, sensitivity,
and specificity, are used to show the efficiency of proposed
method. In the table, minimum, maximum, mean and
standard deviation of metrics are provided along with the
hidden neurons and the best training algorithm. In case of all
features, only minimum and maximum values of best training
algorithms are presented over the 10 independent runs.

The significant gain in accuracy on all three datasets
indicates the success of the proposed method. Also, the
proposed method has improved the sensitivity higher in
contrast to specificity for all datasets which shows its
superiority for detecting women with breast cancer. For
WBC data, the mean values of sensitivity and specificity are
almost balanced (approx. 97.80 %), and the sensitivity is
improved by more than 1 %. Similarly, for WDBC data, the
optimized weighted models increase the chances of detecting
cancer patients by improving the detection of malignant cases
nt hidden neurons and training algorithms.
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Fig. 4 – Average accuracy for WDBC data for different hidden neurons and training algorithms.
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by more than 2 %. For BCCD data, sensitivity is increased by
more than 11 %, while the accuracy is improved by 10 %.

BFGS, CGPBR, and LM emerged as the best training
algorithms for WBC, WDBC, and BCCD datasets respectively.
The average number of hidden neurons required is 12, about
29, and about 13 for original, diagnostic, and Coimbra datasets
respectively. It implies that the optimized model requires less
hidden neurons and will be more efficient in contrast to full
feature set. Moreover, the low standard deviation of all
datasets indicates the good convergence capabilities of ALO
algorithm.
Fig. 5 – Average accuracy for BCCD data for differ
5.4. Feature weights

Fig. 6 presents the feature weights of the best model which are
obtained with the proposed approach for all three datasets.
Higher weight values signify the higher importance of the
features in the learning process and vice-versa. The weights of
the WBC data (Fig. 6(a)) indicate that six features contain
reliable information when neural networks are used as
classifiers. The rest of the features, clump thickness, unifor-
mity of cell shape, and mitoses, have very little contribution in
learning process. The weights of BCCD data (Fig. 6(b)) indicate
ent hidden neurons and training algorithms.
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Table 4 – The results of the proposed wrapper-based method and comparison with the full feature set.

Datasets Methods Performance
Metrics

Min. Max. Mean Std. Dev. Hidden
Neurons

Training
algorithm

WBC Full Feature Set Accuracy 96.43 % 97.16 % – – 8 (Max.) SCG
Sensitivity 95.27 % 96.52 % – –

Specificity 97.05 % 97.50 % – –

Feature Weighting Accuracy 97.66 % 98.25 % 97.85 % 0.17 % 12 (Mean) BFGS (3 times)
Sensitivity 97.48 % 97.90 % 97.82 % 0.38 %
Specificity 97.75 % 98.42 % 97.86 % 0.26 %

WDBC Full Feature Set Accuracy 95.05 % 97.30 % – – 37 (Max.) CGPBR
Sensitivity 89.53 % 94.22 % – –

Specificity 98.34 % 99.13 % – –

Feature Weighting Accuracy 98.24 % 98.61 % 98.37 % 0.12 % 29.10 (Mean) CGPBR (3 times)
Sensitivity 96.69 % 96.75 % 96.43 % 0.56 %
Specificity 99.17 % 99.72 % 99.52 % 0.40 %

BCCD Full Feature Set Accuracy 64.80 % 72.37 % – – 19 (Max.) LM
Sensitivity 70.76 % 73.02 % – –

Specificity 57.23 % 71.87 % – –

Feature Weighting Accuracy 80.82 % 85.28 % 82.79 % 1.38 % 12.80 (Mean) LM (7 times)
Sensitivity 84.29 % 86.90 % 86.05 % 3.70 %
Specificity 76.33 % 83.00 % 78.73 % 2.65 %
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that two features, glucose, and insulin have significant
contribution in learning the best model. Age, body mass
index, homeostasis model assessment index, and resistin
features have minor influence in classification, whereas Leptin
and monocyte chemoattractant protein-1 features do not
contribute to the learning process at all due to their near-zero
weight values. The feature weights for WDBC data (Fig. 6(c)) are
higher than 0.4 which signifies the importance of all features in
the classification. Moreover, weights of 9 features are near to
unity which shows that their normalized values played an
important role in classification.

5.5. Comparison with previous works

The results attained with the proposed work are compared
with the work of the other researchers to validate the
Fig. 6 – Feature weights of the be
superiority of our work. Table 5 shows the classification
accuracy based comparison of the proposed approach
for original and diagnostic datasets in a decade long research.
For the sake of fair comparison, the previous works
that have used 10-fold cross-validation to determine their
classification performance are reported. In the table, the
information about the normalization method and dimension-
ality reduction, if used, is also provided along with the
classifier.

It can be seen that the proposed approach has out-
performed the existing approaches where our method attains
97.85 % mean accuracy in the WBC dataset as compared to
previous work that has the highest accuracy of 97.80 %.
Similarly, in the case of WDBC dataset, the proposed method
attains 98.37 % mean accuracy, showing improvement as
compared to the previous work that has 98.18 % highest
st model for three datasets.
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Table 5 – Comparison of the proposed work with previous research based on 10-fold cross-validation.

Author Year Data Normalization Approach (Features + Classifier) Mean Accuracy

WBC WDBC

Maglogiannis [24] 2009 No FULLSET + ANN – 97.90 %
Li [25] 2011 No FULLSET + KSLPDA – 97.33 %
Salama [34] 2012 No FULLSET+(ENSEMBLE and SMO) 97.28 % 97.71 %
Zheng [27] 2014 No FS + SVM – 97.38 %
Ghosh [36] 2016 Yes FULLSET + NFS 97.80 % 95.90 %
Haque [68] 2016 No FULLSET + ENSEMBLE – 97.14 %
Ahmadi [69] 2016 Yes FR + SVM – 93.53 %
Nilashi [28] 2017 No FR + CART-FC – 93.20 %
Sayed [29] 2017 No FS + KNN – 90.28 %
Sudha [22] 2017 No FS + BPNN 95.31 % –

Yang [20] 2017 No FULLSET + ID3 95.28 % –

Phan [21] 2017 Yes (Min-Max) FW + SVM 97.28 % –

Shahnaz [31] 2017 No FULLSET + MLP – 97.89 %
Shahnaz [31] 2017 No FULLSET + DNN – 98.06 %
Agarap [32] 2018 Yes (z-score) FULLSET + DNN – 87.96 %
Zhang [30] 2018 No FS + KNN – 98.18 %
Wang [37] 2018 No FULLSET + ENSEMBLE 97.10 % 97.68 %
Dorado [70] 2018 No FS + MLP – 97.00 %
Naik [71] 2019 No FS + OGCNN – 93.54 %
Liu [38] 2019 No FS + BPNN 96.30 % 97.50 %
Rao [72] 2019 No FS + GBDT – 92.80 %
Li [39] 2019 No FULLSET + FFNN 93.75 % 90.94 %
Ontiveros-Robles [43] 2019 No FULLSET + GT2-FIS 97.01 % 95.74 %
Ontiveros-Robles [44] 2019 No FULLSET + ST2-FIS 97.25 % 96.26 %
Abdel-Basset [42] 2019 No FS + KNN – 94.82 %
Proposed Approach 2019 Yes (tanh) FW + BPNN 97.85 % 98.37 %

NFS = Neuro-Fuzzy System, AIS = Artificial Immune System, FS = Feature Selection, FC = Fuzzy Classifier, MDC = Minimum Distance
Classifier, FR = Feature Reduction, KSLPDA = Kernel Self-optimized Locality Preserving Discriminant Analysis, FW = Feature Weighting,
KNN=k-Nearest Neighbor, DNN = Deep Neural Networks, OGCNN = One-pass Generalized Classifier Neural Network, GBDT = Gradient Boosting
Decision Tree, GT2-FC = General Type-2 Fuzzy Inference System and ST2-FIS = Shadowed Type-2 Fuzzy Inference System.
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accuracy. Table 6 shows the comparison of proposed work as
compared to existing works on the BCCD dataset. The
proposed approach attained the mean accuracy of 82.79 %
which is higher than the previous work having 82.39 % mean
accuracy. Three of the works have reported very less accuracy
(less than 76 %) as compared to this work.

From Tables 5 and 6, it has been observed that although
data normalization has been useful for constructing accurate
predictive models, this step was missing from most of the
previous works on all three datasets. Many researchers have
also worked without dimensionality reduction methods
which also result in lower performance. Some have used
Table 6 – Comparison of proposed work with previous works o

Author Year Data normalization

Silva Araújo [40] 2019 No 

Singh [41] 2019 No 

Ontiveros-Robles [43] 2019 No 

Ontiveros-Robles [44] 2019 No 

Abdel-Basset [42] 2019 No 

Proposed Approach 2019 Yes (tanh) 

FS = Feature Selection, FNN = Fuzzy Neural Networks, MG-SVM = Mediu
ST2-FIS = Shadowed Type-2 Fuzzy Inference System and, KNN=k-Neares
feature selection to select the relevant features, but this
approach is unable to compete with the feature weighting.
Therefore, the proposed work outperformed the existing
works, some of which includes the combination of feature
weighting and SVM, ensemble-based approaches, and two
deep learning approaches. These are the latest trends in the
field of machine learning research to attain better classifica-
tion models. Furthermore, the feature weighting also sur-
passes the feature selection based approaches which is the
expected outcome. Hence, the proposed approach provides
an effective learning model that can be used in breast cancer
diagnosis system.
n BCCD data based on 10-fold cross-validation.

 Approach (Features + Classifier) BCCD

FULLSET + FNN 81.04 %
FS + MG-SVM 82.39 %
FULLSET + GT2-FIS 75.95 %
FULLSET + ST2-FIS 75.45 %
FS + KNN 73.63 %
FW + BPNN 82.79 %

m Gaussian SVM, GT2-FC = General Type-2 Fuzzy Inference System,
t Neighbor.
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5.6. Analysis of training algorithms for breast cancer data

In this work, nine backpropagation training algorithms have
been utilized to measure the performance on breast cancer
datasets. The experiments involving all features show that
these algorithms are susceptible to lack of convergence
depending upon the number of neurons which represents
unstable learning, which may be due to lack of parameter
tuning or internal working of the algorithms. Therefore,
number of neurons and training algorithms are optimized
simultaneously along with the weights to attain the best
solution without making efforts to improve the backpropaga-
tion training algorithms or fine-tuning of their internal
parameters.

Furthermore, it is difficult to generalize the choice of
backpropagation training algorithm for breast cancer
prediction as the nature of features (in statistical terms)
varies with the source (images, signals and clinical) and
type (texture, color, wavelet, spatial and shape) of extraction
as it does in case of datasets used in this study. The
experimental results support this fact since the optimal
choice of training algorithms is different for each dataset.
The scaled conjugate gradient is good for WBC data, while
Conjugate gradient with Powell/Beale restarts emerged as
the best choice for WDBC dataset. Levenberg-Marquardt is
best for BCCD dataset while Powell/Beale restarts algorithm
fails to converge.

5.7. Implication of the proposed work

The practical breast cancer diagnosis is a complex, long,
dynamic, specialized process where doctors require different
information at each stage for better decision making. The
stages for diagnosis includes early detection, early diagnosis,
clinical diagnosis, imaging diagnosis and pathological diagno-
sis [73,74]. With the help of machine learning algorithms,
many prediction models for this problem have been presented
by using data from these stages, such as clinical, demographic
and anthropometric data [41,45], mammographic images
[75,76], ultrasound images [77–79] pathological images [80–
82] molecular and genomic data [83–85] or their combination
[86]; however, there is no improvement in interpretive
accuracy. The problem of overdiagnosis, false positives and
false negatives is common while relying on screening of breast
cancer. It has been found that both overdiagnosis and false
positives account for 10 % of screened women whereas false
negatives occur in approximately 15–20 % of screened women
[87]. Although 90 % of false positives are resolved, it has an
adverse impact on participants due to unnecessary anxiety,
additional imaging work-up, and breast biopsy. Overdiagnosis
and false negatives remain the important limitation of existing
research works due to their lower performance. In fact, lower
sensitivity has been a major bottleneck in breast cancer
screening [80,88].

The proposed method will have a significant contribution
in practical breast cancer diagnosis as it increases the
sensitivity of malignant cases while improving the classifica-
tion accuracy. The sensitivity on WBC, WDBC, and BCCD
datasets has been improved by more than 1 %, 2 %, and 11 %
respectively. This work aims to recommend feature weighting
acts as a better substitute for improving classification
performance in contrast to conventional approach that
involves feature extraction followed by classification process
directly as well as feature subset selection.

6. Conclusion

Several studies have been conducted on modeling procedures
for breast cancer classification, but the selection of the
appropriate technique has been a challenge for the research-
ers for developing an effective diagnosis system. In this paper,
a wrapper method is proposed for the classification of breast
cancer data that uses Ant Lion optimization for searching
feature weights and optimal parametric values of the neural
networks simultaneously. The data is normalized with tanh
method before its evaluation. The obtained results show
gains in accuracy and help to identify the number of neurons
required at the hidden layer and the best training algorithm
for each dataset. While comparing our outcomes with
previously reported results, the improvements are observed
which validates the efficacy of proposed methodology. In
conclusion, the combination of data normalization with
feature weighting and parameter determination yields
fruitful results in achieving the high-performance neural
networks classification models. In future work, the proposed
work will be extended to other medical problems as well as to
deep neural networks.
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