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a b s t r a c t 

In this paper fractional Hindmarsh Rose (HR) neuron, which mimics several behaviors of 

a real biological neuron is implemented on field programmable gate array (FPGA). The re- 

sults show several differences in the dynamic characteristics of integer and fractional order 

Hindmarsh Rose neuron models. The integer order model shows only one type of firing 

characteristics when the parameters of model remains same. The fractional order model 

depicts several dynamical behaviors even for the same parameters as the order of the 

fractional operator is varied. The firing frequency increases when the order of the frac- 

tional operator decreases. The fractional order is therefore key in determining the firing 

characteristics of biological neurons. To implement this neuron model first the digital re- 

alization of different fractional operator approximations are obtained, then the fractional 

integrator is used to obtain the low power and low cost hardware realization of fractional 

HR neuron. The fractional neuron model has been implemented on a low voltage and low 

power circuit and then compared with its integer counter part. The hardware is used to 

demonstrate the different dynamical behaviors of fractional HR neuron for different type of 

approximations obtained for fractional operator in this paper. A coupled network of frac- 

tional order HR neurons is also implemented. The results also show that synchronization 

between neurons increases as long as coupling factor keeps on increasing. 

© 2019 Elsevier Inc. All rights reserved. 
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1. Introduction 

MIMICKING the neuronal activity in the brain is the key focus in the field of computational neuroscience. To understand

the different aspects of brain, computational neuroscience focuses on fundamental signaling unit-neurons and their inter-

action with one another in the nervous system [1,2] . This can be achieved by efficient mathematical models and numerical

simulations of these neuronal units (both in software and hardware). This helps us to understand the functioning of our

brain and thereby facilitate us in curing brain diseases, better design of robots, prosthetics and to study the fundamentals

of artificial neural networks [2–5] . 

A neuron model is essentially a dynamic system that shows dynamical behavior, which can be described by a set of first

order ordinary differential equations [6–9] . Several neuron models have been proposed in the last century which mimic

the activities of some biological neurons with varying degree of biological accuracy. The most popular dynamical model of

biological neuron is the Hodgkin-Huxley(HH) model [10] , which describes the behaviour of membrane action potential of

giant squid axon, by considering the ionic mechanism and current on the surface of the cell membrane. The other neuron
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models include FitzHugh-Nagumo (FHN) model [11] , Morris-Lecar model [12] , Izhikevich model [5] , Integrate-and-fire model

(IF) [13] , Leaky-Integrate-and-fire model [14] . 

The above-mentioned neuron dynamical models can be divided into two categories: firstly, conductance based models

with high degree of biological accuracy but with high computational complexity and cost, such as HH model and secondly

the simple spiking based models, which describe the spike and spike timings behavior of neurons such as IF model. On the

other hand Hindmarsh-Rose (HR) model [15] is very simple mathematical model, which describes the thalmic neuron of

brain and displays several real biological neuron behaviors and accurately models the frequency-stimulus current relation-

ship. Recent studies [16–24] have shown that some already existing physical phenomena described by integer order calculus

are more accurately described by their fractional counterparts. In [24] the dynamics of neocortical neuron are studied with

a range of firing stimulus. The results showed that the neuron adapts to a time scale that depends on the time scale of

changes in firing stimulus.The multiple time scale adaptation is consistent with fractional differentiation and therefore the

firing rate of neocortical neuron is a fractional derivative of slowly varying stimulus parameter. Fractional derivative provides

an excellent tool for depiction of memory properties. This is an important feature in modeling biological neurons [25] , thus

fractional derivative model has proved its supremacy over the other models viz a viz dynamics and wide range of function-

alities. Recently there has been tremendous boost in the study and development of fractional order neuron models [26–30] .

Recognizing the advantages of fractional order models, several researchers have attempted the circuit implementation of

these fractional order models as circuit level implementation has several advantages compared to the software implemen-

tation [7,9,26] . One of the most prevalent advantages of hardware implementation is that these designs can perform the

tasks much faster and can be physically connected with biological tissue to obtain the data in real time which boosts the

design of robots. Although analog circuit implementation of fractional models and digital realization of integer order mod-

els already exits in the literature [28–32] , no digital realization of these fractional neuron models exist in the literature to

the best of our knowledge. Digital implementations although consume more silicon area and demand more power for each

function as compared to analog realizations, however it’s more robust to thermal noise and power supply fluctuations. Field

programmable gate arrays (FPGAs) are digital reconfigurable devices that have less development time compared to analog

and other digital devices [28,33,34] . In this paper we present FPGA implementation of fractional HR neuron as this neuron

shows several dynamical behaviors of a real biological neuron and has mathematically less complexity compared with other

biological neuron models. The main aim of this paper is to obtain the lost cost and low power realization of fractional HR

neuron, that is achieved by first obtaining the realization of fractional operator in frequency domain and then this operator

is used to obtain the discrete model of fractional HR neuron. The rest of the paper is organized as: section II presents a

brief introduction to fractional order system, section III describes the different dynamical behaviors depicted by fractional

HR neuron. Section IV describes the digital realization of fractional operator. Sections V and VI presents the hardware design

and implementation results. Finally section VII concludes the paper. 

2. Fractional order system 

Fractional calculus is simply the generalization of integer order calculus to any real order. A physical phenomenon de-

scribed by a fractional differential equation is given in equation (1) 

νD 

α
t x = f (x ) (1)

where ν and t are respectively the lower and upper limits of fractional operator D, α ∈ R is the order of operator D,

f ∈ R 

n , x ∈ R 

n (n ∈ N ) . Several definitions of the fractional operator exists in the literature but in continuous time domain

Riemann-Liouville (RL) and Caputo definitions are mostly used [31,32] . These are given below 

(1) RL fractional integral operator of order α is defined as: 

0 I 
α
t [ f (t)] ≡ 0 D 

−α
t [ f (t)] = 

1 

�(α) 

∫ t 

0 

f (ζ ) dζ

(t − ζ ) 1 −α
(2)

(2) Caputo derivative of order α is defined as: 

0 D 

α
t [ f (t)] = 

1 

�(n − α) 

∫ t 

0 

f n ( ζ ) dζ

( t − ζ ) α−n +1 
(3)

where n − 1 < α < n, n is an integer, �(.) is Eulers Gamma function, and f n is nth derivative of f ( ζ ).The properties of

these definitions are listed in [31,32] . 

Laplace transform is an important mathematical tool used to solve differential equations in science and engineering.

Laplace transform of RL fractional integral in equation (2) as given in [32] is 

L { 0 I αt [ f (t)] } = s −αF (s ) (4)

Similarly the Laplace transform formula for Caputo fractional derivative in equation (3) is given in equation (4): 

L { 0 D 

α
t [ f (t)] } = s αF (s ) −

n −1 ∑ 

k =0 

s α−k −1 f (k ) (0) (5)
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where f k (0) denote the initial conditions of f(t). Neglecting these initial conditions we get 

L { 0 D 

α
t [ f (t)] } = s αF (s ) (6) 

From (4) and (6) we get the definition of general differintegral fractional operator as: 

L { 0 D 

±α
t [ f (t)] } = s ±αF (s ) (7) 

In the section III we first show the digital realization of this fractional differintegral operator. The fractional HR neuron is a

dynamical system [15] and has three coupled fractional differential equations as given below 

D 

αx 1 = x 2 − f 1 (x 1 ) − x 3 + I 
D 

αx 2 = f 2 (x 1 ) − x 2 
D 

αx 3 = r( f 3 (x 1 ) − x 3 ) 
(8) 

where { 

f 1 (x 1 ) = ax 3 1 − bx 2 1 

f 2 (x 1 ) = c − dx 2 1 

f 3 (x 1 ) = s (x 1 + x e ) 
(9) 

where x 1 is the membrane potential variable, x 2 is the recovery current variable (also called spiking variable), x 3 is the

adaptation variable (also known as bursting variable), I is the external applied current, x e is the resting value of membrane

potential x 1 and a,b,c,d,r and s are constants. 

3. Fractional operator 

The key step in hardware realization of fractional order systems requires proper discrete time forms of differ-integral

operator s ±α . This discrete time realization should be efficient, accurate and stable. In this section, we obtain the digital

realization of differintegral operator obtained in section II and show its hardware implementation. 

In general two discretization approaches are used: direct and indirect discretization. In the indirect approach the frac-

tional operator is first approximated by continuous time finite order rational transfer function; i.e, s ±α ≈ N(s,α) 
D (s,α) 

and then

the resulting continuous transfer function is discretized by replacing s by an appropriate discretized method such as Eu-

ler’s method, bilinear (Tustin) transformation etc. Direct discretization approach involves the application of the direct power

series expansion (PSE), continued fraction expansion (CFE), Maclaruin series expansion etc. of some proper conversion for-

mulae [33–36] . In general, the discretization of fractional operator s ±α (where α is real) can be expressed by the generating

function s = H(z −1 ) which maps the continuous time operator to discrete time (s ↔ z). The commonly used generating func-

tions include Bilinear, Simpson, Al-Alaoui, mixed Bilinear-Simpson, mixed Euler-Bilinear-Simpson, impulse response based 

and other higher order generating functions [37–39] . Some of these generating functions are listed below: 

(i) Euler’s Backward formula 

H E (z −1 ) = 

[ 
1 − z −1 

T 

] 
±α (10) 

where T is the sampling time. 

(ii) Bilinear transformation 

H T (z −1 ) = 

[ 
2 

T 
. 
1 − z −1 

1 + z −1 

] 
±α (11) 

(iii) Simpson’s numerical integration formula 

H S (z −1 ) = 

[ 
3 

T 
. 

1 − z −2 

1 − 4 z −1 + z −2 

] 
±α (12) 

(iv) Al-Alaoui approximation which combines the trapezoidal(Tustin) formula and Euler’s formula defines the transforma- 

tions 

s = μH E (z −1 ) + (1 − μ) H T (z −1 ) , μ ∈ [0 , 1] (13)

where μ is the tuning between Euler and trapezoidal rule. Using (5) and (6) in (7) we get the Al-Alaoui operator as

H A (z −1 ) = 

[
T (1 + μ) 

2 

. 

(
1 + 

(1+ μ) z −1 

1 −μ

1 − z −1 

)]
±α (14) 

In this paper we obtain the approximation of differintegral obtained by combining the frequency response of Euler and

Tustin rule. The choice of this selection is guided by the fact that the magnitude starts rolling-off at higher frequencies if

we only consider Tustin discretization. Therefore we combine the frequency response of Euler and Tustin to get a better

realization of fractional integrator [38,39] . 
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Fig. 1. Step response of fractional integrators for different approximations. The step response approaches to the continuous case as the number of terms 

in the approximation increases. 
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The above discretization approaches of s ±α may lead to finite impulse response (FIR) or infinite impulse response (IIR)

form depending upon whether we use PSE or CFE expansion methods. The FIR form approximation of s ±α usually is less

efficient due to the very high order of the FIR realization for same accuracy of IIR form. Also compared to the PSE method

the CFE method of a function has faster and larger domain of convergence in the complex plain [34,36,37] . Therefore in this

paper we consider only the CFE realization of s ±α . The function H(z −1 ) can be expressed in continued fraction as follows 

H(z −1 ) ≈ a 0 (z −1 ) + 

b 0 (z −1 ) 

a 1 (z −1 ) + 

b 1 (z −1 ) 

a 2 (z −1 )+ b 2 (z −1 ) 

a 3 (z −1 )+ b 3 (z −1 ) 

a 4 (z −1 )+ ... . 

(15)

where the cofficients a i ’s and b i ’s are either rational functions of variable z −1 or simply constants. By truncating (18) and

using different values of μ we get different approximations of the operator s ±α . Some of the approximations are listed below

for μ = 0, T = 1 and α = −0 . 80 . In these results we write the approximation as H n (z −1 ) , where n denotes the number of

terms used in truncation 

H 2 (z −1 ) = 

2 . 381 − 1 . 429 z −1 + 0 . 04762 z −2 

2 . 381 − 3 . 333 z −1 + z −2 

H 3 (z −1 ) = 

6 . 266 − 6 . 892 z −1 + 1 . 654 z −2 − 0 . 02757 z −3 

6 . 266 − 11 . 9 z −1 + 6 . 667 z −2 − z −3 

H 4 (z −1 ) = 

(
18 . 27 −29 . 24 z −1 +13 . 78 z −2 −

1 . 838 z −3 +0 . 01838 z −4 

)(
18 . 27 −43 . 86 z −1 +35 . 71 z −2 

−11 . 11 z −3 + z −4 

)
H 5 (z −1 ) = 

(
56 . 72 −119 . 1 z −1 +84 . 69 z −2 −

23 . 29 z −3 +1 . 996 z −4 −0 . 01331 z −5 

)(
56 . 72 −164 . 5 z −1 +175 . 4 z −2 −

83 . 33 z −3 +16 . 67 z −4 −z −5 

) (16)

The step response for these transfer functions is shown in Fig. 1 . As shown in this figure higher the number of terms used

in the CFE the response of discrete transfer function response approaches to the continuous response closely, which clearly

requires more hardware. Therefore there is trade-off between accuracy and hardware cost for each approximation. 

Now lets investigate the effect of tuning knob μ on the frequency response of these approximations. For this analysis we

select third order approximation and vary the tunning parameter μ and set the sampling time T = 0.1. The approximations

are denoted as H μ(z −1 ) , which are listed below. 
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Fig. 2. BODE plot of fractional integrators obtained in (17). The response illustrates the use of tuning knob μ when sampling Time T = 0.1. 
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H 0 . 00 (z −1 ) = 

959 . 7 − 1799 z −1 + 989 . 7 z −2 − 144 . 3 z −3 

170 . 7 − 192 z −1 + 48 z −2 − z −3 

H 0 . 25 (z −1 ) = 

254 . 2 − 405 . 1 z −1 + 159 . 4 z −2 − 5 . 531 z −3 

38 . 24 − 25 . 09 z −1 − 2 . 912 z −2 + z −3 

H 0 . 50 (z −1 ) = 

3 . 122 e 04 − 4 . 098 e 04 z −1 + 8049 z −2 + 2325 z −3 

4096 − 768 z −1 − 1248 z −2 − z −3 

H 0 . 75 (z −1 ) = 

120 . 6 − 124 . 4 z −1 − 9 . 185 z −2 + 16 . 74 z −3 

14 . 09 + 3 . 964 z −1 − 5 . 698 z −2 − z −3 

H 1 . 00 (z −1 ) = 

55 . 02 − 41 . 27 z −1 − 20 . 63 z −2 + 9 . 457 z −3 

5 . 818 + 4 . 364 z −1 − 2 . 182 z −2 − z −3 
(17) 

similarly we get impact of tunning knob μ when sampling time T = 0.0 0 01, as follows. 

H 0 . 00 (z −1 ) = 

(
1 . 707 e 05 −320 0 0 0 z −1 +1760 0 0 z −2 

−2 . 567 e 04 z −3 

)
170 . 7 − 192 z −1 + 48 z −2 − z −3 

H 0 . 25 (z −1 ) = 

(
4 . 52 e 04 −7 . 204 e 041 z −1 +2 . 834 e 04 z −2 

−983 . 5 z −3 

)
38 . 24 − 25 . 09 z −1 − 2 . 912 z −2 + z −3 

H 0 . 50 (z −1 ) = 

(
5 . 552 e 06 −7 . 287 e 06 z −1 +1 . 431 e 06 z −2 

+4 . 134 e 05 z −3 

)
4096 − 768 z −1 − 1248 z −2 − z −3 

H 0 . 75 (z −1 ) = 

(
2 . 144 e 04 −2 . 211 e 04 z −1 −1633 z −2 

+2977 z −3 

)
14 . 09 + 3 . 964 z −1 − 5 . 698 z −2 − z −3 

H 1 . 00 (z −1 ) = 

9785 − 7339 z −1 − 3669 z −2 + 1682 z −3 

5 . 818 + 4 . 364 z −1 − 2 . 182 z −2 − z −3 
(18) 

The Bode plot of results in (17) and (18) are shown in Figs. 2 and 3 respectively. As shown, if Tustin operator ( μ = 1) is

used the high frequency response of this approximation completely differ from the ideal continuous time case, which shows

that the role of tuning knob μ is useful for some applications as illustrated in Figs. 2 and 3 . 

Above approximations of the fractional operator can be realized in discrete hardware by using various approaches such

as direct form I, direct form II etc. However as direct form II requires less resources as compared to direct form I, therefore

we realize the approximation by using direct form II structure [34] . The difference equation corresponding to 2nd order

realization is given below. 

y (n ) = 

1 

a 1 

(
b 1 x (n ) + b 2 x (n − 1) + b 3 x (n − 2) − a 2 y (n − 1) − a 3 y (n − 2) 

)
(19)

4. Dynamics of fractional order HR neuron 

The transition from equilibrium state to the unstable state of a dynamical system is controlled by its parameters

[40–42] . Therefore the stability analysis of a non-linear dynamical system requires thorough investigation of different pa-

rameter combinations of a non-linear model. 
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Fig. 3. BODE plot of fractional integrators obtained in (18). The response illustrates the use of tuning knob μ when sampling Time T = 0.0 0 01. 

Fig. 4. Stable region of the linear fractional order ( α) system when 0 < α < 1. 
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The stability analysis of linear fractional order autonomous system is given in [42,43] . A linear fractional order system is

given as: 

0 D 

α
t x = Ax and x (0) = x 0 (20)

where x ∈ R 

n and A ∈ R 

n ×n is an n x n matrix, ( n ∈ N ). Let λ be the eigenvalues of matrix A. 

(i) Linear system (20) is asymptotically stable if and only if | arg ( λ)| > 

απ
2 . 

(ii) Linear system (20) is stable if and only if | arg ( λ)| ≥ απ
2 is satisfied for all eigenvalues of the matrix A with critical

eigenvalue | arg ( λ)| = 

απ
2 having periodic dynamic behaviour. The stable regoin of a fractional order system is shown

in Fig. 4 . 

As mentioned in equation (8) , the HR fractional order neuron has three coupled non-linear fractional differential equa-

tions. For stability analysis and firing properties of above neuron we will treat I, r and α as variables. In general fractional

HR neuron exhibits three kinds of behaviours:(i) spiking (ii) bursting, and (iii) chaotic. 

Suppose that (x ∗
1 
, x ∗

2 
, x ∗

3 
) is the equilibrium point of HR neuron (8). The jacobian J of HR neuron (8) at point (x ∗

1 
, x ∗

2 
, x ∗

3 
)

is given as 

J = 

[ 

2 bx ∗1 − 3 a x ∗1 
2 1 −1 

−2 dx ∗1 −1 0 

rs 0 −r 

] 

(21)

Let the eigenvalues of (11) are λ1 , λ2 , λ3 , then the stability of the equilibrium point (x ∗
1 
, x ∗

2 
, x ∗

3 
) is defined as: 

(1) if | arg ( λi )| > 

π , then the equilibrium point (x ∗ , x ∗ , x ∗ ) is locally asymptotically stable. 
2 1 2 3 
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Fig. 5. Transition from resting to spiking state of integer order HR when a = 1,b = 3,c = 1,d = 5,s = 4,r = 0.001 and variable stimulus current I. (a) Resting 

state when I = 1.2 α = 1, (b) X 1 ( t ) & X 3 ( t ) Phase space trajectory for α = 1 I = 1.20, (c) X 1 ( t ) & X 2 ( t ) Phase space trajectory for α = 1 I = 1.20 (d) Peridic 

spiking I = 4 α = 1, (e) X 1 ( t ) & X 3 ( t ) Phase space-stable limit cycle trajectory for α = 1 I = 4 (f) X 1 ( t ) & X 2 ( t ) Phase space trajectory for α = 1 I = 4. 
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(2) if | arg ( λi )| ≥ π
2 , then the equilibrium point (x ∗1 , x 

∗
2 , x 

∗
3 ) is locally stable. 

(3) If | arg ( λi )| < 

π
2 , then the equlilibrium point (x ∗

1 
, x ∗

2 
, x ∗

3 
) is unstable, where i = 1,2,3. 

The transition from resting state to the spiking state of equilibrium point (x ∗1 , x 
∗
2 , x 

∗
3 ) of (8) is controlled by these param-

eters r, α and I. When α = 1 the fractional HR neuron becomes ordinary HR neuron. 

When a = 1,b = 3,c = 1,d = 5,s = 4, x e = −1.6, r = 0.001 then all the eigenvalues of (21) have negative real part for

0 < I < 1.26. Therefore | arg ( λi )| > 

απ
2 , for 0 < α ≤ 1. Hence the equilibrium point is locally stable for any value of fraction

α. When I > 1.26 the eigenvalues of Jacobian matrix (21) have positive real part at the equilibrium point (x ∗
1 
, x ∗

2 
, x ∗

3 
) and

then | arg ( λi )| < 

απ
2 for 0 < α ≤ 1. Therefore the equilibrium point is locally unstable. This is shown in figures ( 5 ) and

( 6 ) for both the integer and fractional order cases respectively. As the value of stimulus current increases, the phase space

approaches to a stable limit cycle. The trajectory approaches to a stable limit cycle for different values of I in integer and

fractional order HR neuron and the neuron fires periodically depicts the spiking behavior. This is illustrated in the phase

space diagrams in figures 6(e), 6(f) and figure 7(e), 7(f) respectively. 

For the integer order HR neuron the equilibrium point is unstable when I > 1.26, but it may be locally stable for the

fractional order HR neuron. To illustrate this consider I = 1.30, then the equilibrium point of (8) is ( −1.3212, −7.7282,1.1151),

the eigenvalues of (11) are: λ1 = −14 . 1674 , λ2 = 0 . 0011 + 0 . 0167 i and λ3 = 0 . 0011 − 0 . 0167 i . Therefore, | arg ( λ1 )| = π ,

| arg ( λ2 )| = 1.5050 and | arg ( λ3 )| = 1.5050. From the stability criteria mention above, the point is locally stable if α <

1 . 5050 . 2 π = . 9581 and the equilibrium point is unstable when α > .9581. This is illustrated in figure 7(d) where the mem-

brane potential approaches to the resting value after sometime. Figure 7(e) shows the limit cycle for α = 0 . 9 , when I = 1.5

and the fractional HR neuron displays periodic spiking behaviour. 

The bifurcation study of Integer order HR neuron has already been carried out in [44,45] . In our bifurcation study we

treat α as a variable and study its impact on its dynamical behavior. Nemerical simulations shows that for different values

of order the HR neuron displays different types of bursting behaviors. The integer order HR neuron shows chaotic behavior

at I = 3.0,b = 2.96, when other parameters are kept same as given above. The fractional neuron may exhibits the same

behavior for different values of parameters choosen above. Nemerical simulations shows that for different values of order

the HR neuron displays different types of bursting behaviors. As shown in Fig. 7 above the HR neuron shows chaotic bursting

at α = 0.95, period 1 burst for α = 0.9, period 2 burst when α = 0.88. The frequency of bursting pattern increases as the

order of the fractional neuron decreases. Therefore the bifurcation properties can be controlled by the fractional order ( α)

also, thus giving us another degree of freedom for dynamical analysis for HR neuron. Numerical simulations show that the

bursting pattern depends on the parameters I and r. This is illustrated in Fig. 8 . For both the integer and fractional neuron

the bursting characteristics change with these parameters. The bursting frequency increases as r increases and the number

of spikes in each burst is changing with I. 
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Fig. 6. Transition from resting to spiking state of integer order HR when a = 1,b = 3,c = 1,d = 5,s = 4,r = 0.001 and variable stimulus current I. (a) Resting 

state when I = 1.2 α = 0.9, (b) X 1 ( t ) & X 3 ( t ) Phase space trajectory for α = 0.9, I = 1.20, (c) X 1 ( t ) & X 2 ( t ) Phase space trajectory for α = 0.9 I = 1.20 (d) 

Peridic spiking for I = 1.5, α = 0.9, (e) X 1 ( t ) & X 3 ( t ) Phase space-stable limit cycle trajectory for α = 0.9, I = 1.5 (f) X 1 ( t ) & X 2 ( t ) Phase space trajectory for 

α = 0.9, I = 1.5. 

Fig. 7. Bursting pattern characteristics for different values of α when a = 1,b = 3,c = 1,d = 5,s = 4, Bursting frequency increases as α decreases(a) Period 

one burst at α = 0.9, (b) Period two burst at α = 0.88,(c) Multi-bursting at α = 0.75 and (d) Chaotic burst at α = 1 and α = 0.95 in (h) and (i) respectively. 
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Fig. 8. Bursting characteristics for different values of I and r, when a = 1,b = 2.7,c = 1,d = 5,s = 4.Number of bursts increases as the value of bursting 

parameter r increases from r = 0.001 to 0.006 in (a) to (b) respectively. Number of spikes increases in burst as input stimulus I increases 1.6 to 1.9 in (c) 

to (d) respectively. Frequency of burst increases as r increases from 0.003 to 0.005 in (e) to (f) respectively. Both r and I increase from r = 0.002, I = 1.4 to 

r = 0.006, I = 1.6 in (g) to (h) respectively. (i) shows recovery current under chaotic behaviour when α = 1 (j) shows the recovery current variable under 

chaotic behaviour. 
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5. Coupling of fractional HR neurons 

In this section, primarily dynamical behavior of two coupled fractional order Hindmarsh Rose (HR) neurons are presented.

The communication in biological neurons in brain occurs through synaptic connection called as synapses between the two

neurons. The signal that a neuron receives from the other neurons travels through this synaptic connection between them
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Table 1 

MAE computations for different values of coupling fac- 

tor with fractional integrator of order α = 0 . 9 . 

C i MAE RS MAE SS MAE BS 

x pre 1 − x post1 x pre 1 − x post1 x pre 1 − x post1 

−3.0 1.2092 2.5476 2.6527 

−2.0 1.1832 2.5136 2.6462 

−1.0 1.1449 2.4420 2.6167 

−0.5 1.1006 2.3954 2.5732 

0.5 0.6936 0.9865 0.8892 

1.0 0.0572 0.0863 0.0656 

2.0 0.0327 0.0652 0.0432 

3.0 0.0224 0.0456 0.0345 

4.0 0.0067 0.0089 0.0073 

5.0 0.0023 0.0035 0.0039 

Abbreviations: MAE RS (Mean absolute error for resting 

state), MAE SS (Mean absolute error for spiking state), 

MAE BS (Mean absolute error for bursting state) 

n is taken as 80 0 0 in each calculution of MAE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hotpaper.nethotpaper.net
that depends upon the threshold value of the voltage level of the presynaptic neuron. Therefore the synaptic connection acts

as a gate between two neurons. The synaptic junction can be modeled as coupling function between different neurons in the

brain. When the value of the presynaptic voltage reaches to the threshold value, voltage transmission takes place through the

synaptic connection between two neurons [1–5] . The synchronization of neuronal architectures play a very significant role

for the processing of biological signals and play important role for the study and understanding of fundamental architecture

of biological brain. The coupled network based on fractional order HR neuron has all the parameters of single HR neuron

and the coupling function. Therefore, the synchronization and the dynamics of coupled HR neuron system can be controlled

by that parameters I, r, b, α and the synaptic function. 

The coupled model is specified as follows: 

d αx pre 1 

dt α
= x pre 2 − x pre 3 + f 1 (x pre 1 ) + g(x pre 1 , x post1 ) 

d αx pre 2 

dt α
= c − dx 2 pre 1 − x pre 2 

d αx pre 3 

dt α
= r(s (x pre 1 + x e ) − x pre 3 ) 

d αx post1 

dt α
= x post2 − x post3 + f 2 (x post1 ) + g(x pre 1 , x post1 ) 

d αx post2 

dt α
= c − dx 2 post1 − x post2 

d αx post3 

dt α
= r(s (x post1 + x e ) − x post3 ) (22)

where { 

f 1 (x pre 1 ) = I − ax 3 pre 1 + bx 2 pre 1 + a 1 cos (2 π f 1 t) 

f 1 (x post1 ) = I − ax 3 post1 + bx 2 post1 + a 2 cos (2 π f 2 t) 
(23)

where x pre 1 and x post 1 respectively denote the membrane potential of presynaptic and postsynaptic neurons, x pre 2 and x post 2

denotes the spiking current variables of pre and post-synaptic neurons, similarly x pre 3 and x post 3 are pre and post-synaptic

neuron bursting variables and g ( x pre 1 , x post 1 ) is the coupling function. In this coupling we have added two sinusoidal sources

to evaluate the effectiveness and robustness of the proposed control scheme for all time. These two sinusoidal noise per-

turbations of high frequency is used to simulate the ionic channel noise of neurons, which is actually the most common

disturbances in computational neuroscience. Here we assume the coupling function is linear and is defined as: 

g(x pre 1 , x post1 ) = C(x pre 1 − x post1 ) (24)

where C is the coupling factor. 

Fig. 9 shows the different behaviors of two fractional order coupled neuron for different values of coupling factor. In all

the cases the synchronization between neurons increases as the value of coupling factor increases. Each figure in (9) shows

the phase space curve for presynaptic and postsynaptic neurons. The synchronization increases as the value of coupling

increases which can be seen in Fig. 10 and Table 1 . Fig. 10 and Fig. 11 shows that the absolute error of potentials of two

neurons decreases as the value of coupling factor increases from −3 to 5. 
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Fig. 9. Synchronization characteristics of two fractional HR neurons in Resting, Spiking and Bursting states when α = 0 . 80 . Unsynchronized at C = −0.5 and 

synchronization increases as the value of C increases from 0.5 to 5 as shown in the phase space diagrams. 

Table 2 

Resource utilization of the altera DE2-115 board. 

INTO 

Res. 1 2 3 4 5 Avi 

LEs. 3825 5349 6783 8229 9540 114480 

Util. 3% 5% 6% 7% 8% 

Reg. 3455 4823 6089 7367 8636 114480 

Util. 3% 4% 5% 6% 8% 

Mul. 12 12 12 12 12 266 

Util. 4% 4% 4% 4% 4% 

Mb 0 0 0 0 0 3981312 

Util 0% 0% 0% 0% 0% 

Po 316.5 344.35 367.31 387.33 419.25 1.2 

Use. mW mW mW mW mW V 

Fre. 100 100 100 100 100 Hz 

FPAA FPAA-1 128 ± 38 mW Ref. ± 2 

Version FPAA-2 56 ± 17 mW [26] V 

CMOS Analog Design 112 nW Ref. ± 0.65 

Based [27] V 

Abbreviations : RES(Resource name), UTIL (Percentage of resource utilization), LEs (Logic 

elements), MB (Memory bits used),AVI (Total availaible resouces), MUL(18 x 18s Mul- 

tipliers used), INTO(Order of integrator used), Po. Use.(Power used), Fre.(Frequency). 
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Fig. 10. Mean absolute error in Resting state, Bursting State and Spiking state of two fractional order neurons. The synchronization error decreases as the 

value of coupling factor increases. 

Fig. 11. The flow diagram of fractional HR neuron (a) The membrane potential x 1 ( n ) (b) The Spiking variable x 2 ( n ) (c) The adaptation variable x 3 ( n ), 

Fractional Integrator( ∫ α ). 
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6. Hardware Design 

In this section we present the hardware implementation of fractional HR neuron. The first step in the hardware realiza-

tion is to obtain the discrete realization of the given model. To obtain the hardware design we use the fractional integrators

presented in section (III) above. The second step is to determine the number of bits for the signal generated in the model.

As seen from above the maximum span of the membrane potential is from −2.5 to 2.5, therefore 3 bits are required to rep-

resent the membrane potential. However, an overflow due to the function f 1 ( x 1 ), f 2 ( x 1 ), f 3 ( x 1 ) and due to coupling function

multipliers can occur. To increase the accuracy of calculations and avoid any overflow, a bit width of 32 that consists of 8

bit integer part and 24 bit fractional part is considered. The rationale behind the utilization of more bits is to achieve a
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better representation of floating point values. Also to represent the fractional part of the values more accurately we use 32

bit fixed width, as fixed point has less cost and complexity compared to floating point. In this 8 bits will be assigned to

integer part and 24 will be used for fractional part. The flow diagram of hardware is shown in the Fig. 11 . 

7. Implementation results 

Altera DE2-115 circuit board is used for the implementation of above model. As seen above to obtain accurate digi-

tal approximation of fractional integrator more hardware is needed. Therefore more accurate the approximation more the

hardware resource utilization in the realization.Hence there is trade off between the accuracy and resource utilization for

fractional modeling of HR neuron. The resource utilization of above model is summarized in Table 2 for different integrator

approximations. 

Conclusion 

A low cost hardware implementation of fractional Hindmarsh Rose (HR) neuron is implemented in this paper. The hard-

ware results demonstrate several dynamical behaviors depicted by this fractional neuron, which can also be controlled by

the order of the fraction used in the neuron model. The bursting frequency increases as the order of fraction decreases. The

accuracy of the digital realization of the fractional operator increases as the number of terms used in the approximation

increases which also increases the hardware and power consumption. Therefore there is trade-off between accuracy and

resource usage of fractional order HR neuron. A coupled fractional order system is also implemented in presence of noise.

The two neurons were coupled using a linear coupling function. The synchronization between two neurons increases as

the coupling factor increases, thereby decreasing the mean absolute error (MAE) between the membrane potentials of the

two neurons. The dynamic behavior produced by this network depends upon the parameter values of HR model, current

stimulus and coupling parameters, producing different patterns of bursting, spiking and chaotic behaviors with minimum

computational error. 
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