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a b s t r a c t

The application of graph theory in diffusion weighted resonance magnetic images have
allowed the description of the brain as a complex network, often called structural net-
work. For many years, the small-world properties of brain networks have been studied
and reported. However, few studies have gone beyond of clustering and characteristic
path length. In this work, we compare the structural connection network of a healthy
brain and a brain affected by Alzheimer’s disease with artificial small-world networks.
Based on statistical analysis, we demonstrate how artificial networks can be constructed
using Newman–Watts procedure. The network quantifiers of both structural matrices
are identified inside a probabilistic valley. Despite of similarities between structural
connection matrices and artificial small-world networks, increased assortativity can be
found in the Alzheimer brain. Due to limited experimental data, we cannot define
a direct link between Alzheimer’s disease and assortativity. Nevertheless, we intend
to call attention for an important network quantifier that has been neglected. Our
results indicate that network quantifiers can be helpful to identify abnormalities in real
structural connections, for instance Alzheimer’s disease that disrupts the communication
among neurons. One of our main results is to show that the network indicators of
the Alzheimer brain are almost identical with the small-world network, except the
assortativity.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the first fully reported neural network was the worm C. elegans [1]. The nervous system of C. elegans consists
of 302 neurons connected through 5000 chemical and 600 electrical synapses. Due to high clustering and short average
distance between nodes, Watts and Strogatz suggested that C. Elegans brain network can be considered small-world [2,3].
Small-world networks have been observed in brain networks of animals and humans [4–7]. Evidences of small-world
properties can also be found in ensembles of neurons in vitro [8]. The smallworldness of neuronal networks is hypothesised
to be a consequence of optimisation process associated with minimal wiring cost, robustness and balance between local
processing and global integration [9,10].
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Brain networks can be obtained in different levels, such as microscale, mesoscale, and macroscale [11,12]. Microscale
is in the level of the neurons and synapses, macroscale is used to define brain regions and large-scale communication
pathways. Mesoscale is an intermediate level between micro and macroscale, where connections between large portions
of the neuronal system are defined. A simple example of mesoscale network is the mini-columns [13].

Neuronal networks are defined into structural or functional [14]. Functional networks are based on EEG, MEG or fMRI
measures [15]. Functional networks of Alzheimer’s patients present increased path length when compared with healthy
subjects [16].

Structural connections can be characterised by diffusion weighted magnetic resonance imaging (DW-MRI) and graph
theory [17]. DW-MRI analyses water diffusion in white matter, and together with fibre tractography it can be used to
identify structural connections in the brain [18]. The structural connection matrices of macaque and cats exhibit a complex
structure [19]. The presence of clusters and modular architecture in structural connection matrices are observed by means
of cortical thickness measurements [20]. Brain networks with small-world properties and exponentially truncated power
law distribution were also reported [21].

In humans, the structural connection matrix mediates several complex cognitive functions [22]. Abnormalities in struc-
tural networks were found in patients with psychiatric disorders and neurodegenerative diseases [23–26]. Disconnection
between frontal and temporal cortices were observed in patients with Schizophrenia [27,28]. Hyperconnectivity in the
frontal cortex were reported in patients with Autism [29]. Alzheimer’s patient showed increased path length and reduced
global efficiency [17]. The alterations in brain networks are good indicators that network properties can be used as
biomarkers for clinical applications [30].

Using diffusion tensor tractography, Lo et al. [17] constructed brain networks from experimental data of healthy and
Alzheimer’s subjects. The network is divided in 78 areas according to the automated anatomic label template [31]. The
connection between the areas are defined in terms of the number of fibres, that were obtained through fibre assignment
by continuous tracking algorithm [32].

In this work, we analyse the network properties of structural connection matrices of one healthy subject and one
subject suffering of Alzheimer’s disease. After identifying the network properties, such as, transitivity, path length,
assortativity, we demonstrate that similar networks can be constructed using Newman–Watts procedure. One of our main
results is to show that the network indicators of the Alzheimer brain are almost identical with the small-world network,
except the assortativity.

In Section 2, we provide a brief discussion about the network representation of the connectome. In Section 3, we
introduce basic quantities that can be used to quantify networks. In Section 3.2, we demonstrate how to generate a
sample of small-world networks with statistical significance. In Section 4, we compare the properties of human brain
networks to small-world networks. In Section 5, we present our final remarks.

2. Methodology

Our analysis consist of quantification of network properties, that are going to be discussed in Section 2.1. The
procedures to generate a sample of small-world networks with statistical significance are going to be discussed in
Section 2.2.

2.1. Properties of networks

Network properties provide information about segregation, integration and influence [33,34]. Segregation properties
are associated with the presence of clusters or modules and integration properties are related to the network ability to
transmit information through its nodes. Segregation and integration are linked with the network features while influence
focus on the node features proving information about the relevance of a node inside the network.

2.1.1. Eigenvalues of the adjacency matrix
The eigenvalues of the adjacency matrix A are obtained by solving the characteristic equation of A,

det(A − λI) = 0, (1)

where I is the identity matrix and the values of λ that satisfy Eq. (1) are the eigenvalues [35]. If the network is symmetric,
Aij = Aji, then all the eigenvalues are real.

2.1.2. Degree and node strength
Degree κi is the number of neighbours of a node i,

κi =

N∑
j=1

Aij, (2)

where N is the network size. It is considered one of the simplest measures to provide information about the influence of
the network. The degree distribution is used to differentiate regular networks from random networks.
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For weighted networks (Wij), the use of node strength si instead of degree κi may be more appropriated [36]. Node
strength si is defined as the sum of the node connections,

si =

N∑
j=1

Wij. (3)

2.1.3. Transitivity
Transitivity T , also known as clustering, is a measure of the segregation of a network. The transitivity T is a measure

of the amount of clustering between the node i and its ki neighbours, the maximum number of connections between
i neighbours is Cmax(i) = ki(ki − 1)/2. Ci is defined as the ratio between the number of active connections over the
maximum number of connections Cmax(i). The transitivity T is the average over all nodes of the network.

The transitivity shows the effective proportion of the triangulation formed between the sites as a measure of clustering
capacity, G(E, V ). Then, T is calculated by the following proportional ratio

T =
3δ(G)
τ (G)

, (4)

where δ(G) is the number of triangles in graph G and τ (G) denotes the number of triples in graph G [37].
One simple method is to use the arithmetic mean [38]. If the nodes i, j, and k are connected, forming a triplet, the

value of the triplet is the arithmetic mean between Wij and Wjk. A triplet is considered a close tripled when the nodes i,
j, and k are all connected to each other.

2.1.4. Characteristic path length
Characteristic path length L measures the average of the shortest paths dij between all pairs of nodes in the network,

L =
2

N(N − 1)

N∑
i=1

N∑
j=1

dij. (5)

This quantity is used for weighted and unweighted networks, it provides information about the network integration.
When dealing with diffusion process and weighted networks, to calculate the shortest paths dij the inverse of the node
strength should be used [36]. For example, if W12 = 2, then dij = 1/2, this approach considers that the higher is the node
strength the faster information can be diffused through it.

2.1.5. Modularity
Networks can be divided in two or more modules, the trivial solution is to divide them into two modules, where one

module has one node and another module containing all the remaining nodes. Basically, the modular structure is defined
for any network and the question is to know the best method to identify modules in complex networks. An optimised
quantity to characterise the modularity Q was defined by Newman [39], that is given by

Q =
1
4m

∑
ij

(
Aij −

kikj
2m

)
(sisj + 1), (6)

where m = 1/2
∑

i ki, si, and sj are indices that depend on the group. The network is divided in two groups, if the site j
belongs to group 1, then sj = 1, if j belongs to group 2, then sj = −1. Q can be either positive or negative, positive values
indicate the possible presence of community structure.

2.1.6. Assortativity
Assortativity (ASR) is a measure of the tendency of high connected nodes to be connected to others of similar degree

k [40]. When high connected nodes are more often connected to low connected nodes, the network exhibits dissortative
mixing. To define assortativity it is necessary to define the remaining q(k) and p(k). The probability that a random node
has a degree k is given by the degree distribution p(k), however, the probability to select a random edge is not proportional
to p(k) but to kp(k), because the most connected nodes receive more connections. Considering that node i is connected
to node j through a random selected edge, the remaining degree is the number of nodes that leaves the node j, excluding
node i. The normalised remaining degree distribution is given by

q(k) =
(k + 1)p(k)∑

j jp(j)
. (7)

The assortativity ASR is defined as:

ASR =
1
σ 2
q

∑
ij

ij(e(i, j) − q(i)q(j)), (8)

where σ 2
q is the variance of the remaining degree and e(i, j) is the joint probability distribution of the remaining degree of

two nodes [41]. The assortativity A is defined in the interval −1 ≤ A ≤ 1, when A = 1 the network has perfect assortative
mixed patterns, A = 0 indicates the network is not assortative and A = −1 means the network is completely dissortative.
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Table 1
Cronbach’s alpha.
Alpha Internal consistency

0.9 ≤ α Excellent
0.8 ≤ α ≤ 0.9 Good
0.7 ≤ α ≤ 0.8 Acceptable
0.6 ≤ α ≤ 0.7 Questionable
0.5 ≤ α ≤ 0.6 Poor
α < 0.5 Unacceptable

2.2. Statistical analysis

In order to construct a sample of small-world networks we used multivariate data analysis and selected the networks
whose networks properties satisfied a set of 34 questions (Table 2).

2.2.1. Multivariate data analysis
Multivariate analysis is a branch of statistics that deals with the relationship between many variables, including the

reduction of the number of variables observed during an experiment. The main tools for multivariate data analysis are
principal component analysis (PCA) [42], factor analysis [43], classifications [43], structural equations models (SEM) [44,
45], among other techniques. In our case, the multivariate analysis of the data is useful to vary the possible second order
relationships between variables not directly correlated, such as transitivity, assortativeness and the modularity of the
human network. At the end of this paper, we will show how these measures are related using the SEM [45].

2.2.2. Development of a questionnaire
We apply a questionnaire to a population in the small-world models artificially generated with network size in 3 to

100 sites, from a single connection to the global connection. The determination of sample [46]

n =

∑100
N=3

∑N
k=1

(N
k

)
p̂q̂z2α/2

p̂q̂z2α/2 + (
∑100

N=3
∑N

k=1

(N
k

)
− 1)E2

, (9)

for optimisation p̂ = q̂ =
1
2 , with error E ≈ ±3% in N = 2499 population with zα/2 is a z-score distribution with level

of significance α ≈ 5%. In this case, the sample is n ≈ 492 small-world models. This questionnaire is composed of 34
variables or questions about graph proprieties and applied to each small-world. Each model randomly generated with a
certain probability is measured with these thirty-four variables.

We verify the quality of the questionnaire through Cronbach’s α [47]

α =
K

K − 1

(
1 −

∑
i σ

2
Yi

σ 2
Xi

)
, (10)

where K is the number of components, σ 2
Xi

is the variance of the observed total test scores, and σ 2
Yi

is the variance of the
current sample of generated small world. The questionnaire quality (Table 1) applied to small-world networks is equal to
0.89, indicating a good Internal consistency [45,47]. There are different reports about the acceptable values of α. In our
study, we use a narrow range of α (Table 1) that is commonly accepted in the literature, mainly for dichotomous or Likert
scale questions.

The questionnaire is composed of thirty-four questions (or variables) measured directly in each artificial small-world
network, as shown in Table 2. Each variable measures an important network property and the comparison between the
human network and the small-world model is given by means of these measures. The small global templates are generated
with 10 sites up to 100 sites. Each generated model has different connections of its neighbourhood between a single
neighbour and the global network. This way, 492 samples of small-world networks are produced. The measure of sampling
adequacy (RMSA) through the Kaiser–Meyer–Olkin (KMO) test indicates considered reasonable for value KMO= 0.73 [48].
The KMO and RMSA measures are given by

KMO =

∑k
i=1
∑k

j=1 rij∑k
i=1
∑k

j=1 r
2
ij + a2ij

, (11)

and

RMSA =

∑k
j=1 rij∑k

j=1 r
2
ij + a2ij

, (12)

where rij is the correlation matrix term and aij is the anti-image-correlation matrix term. In this method, the inverse
correlation matrix is close to the diagonal matrix. To verifies if matrix correlations is statistical equivalent to an identity
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Table 2
Variables of questionnaire - graph.
N Number of nodes p Probability connection
DE Density edge L Average path length
Rep Reciprocity E Edges
N Vertices NL Number of links
NLI Internal number of links DL link Density
TST Total System Throughput TSFR Total System Flow Rate
Cn Conectancie ALW Average Link Weight
ACT Average Compartment Throughflow Cp Compartmentalisation
T Transitivity ASR Assortativity
Ecc Eccentricity D Diameter
Imax Maximum interweaving Imin Minimum interweaving
Q Modularity E Efficiency
R Radius Kmax Max K-Core
Kmin Min K-Core Kmean Mean K-Core
Iso Isomorfism Auto Automorphism
EfcM Number of edge with max efficiency Efcm Number of edge with minimal efficiency
λp Principal eigenvalues detM Determinant matrix

Table 3
Network indicators (W: Weighted Un: Unweighted).

Healthy Alzheimer

W Un W Un

Transitivity T 0.578 0.578 0.560 0.559
Assortativity ASR 0.081 0.010 0.226 0.125
Path length L 2.248 2.248 2.281 2.281
Modularity M1 0.451 0.423 0.483 0.428
σ 23.27 0.590 7.534 0.590
Average degree 8.000 1.383 17.487 1.383

matrix, we use the Bartlett’s test. The basic hypothesis is that population’s correlation matrix is an identity matrix
equivalent. In our variables group, p-value ≪ 0.05 implies the rejection of the null hypothesis and accepting the factorial
analysis.

3. Results

3.1. Structural connection matrices

In this work, we use two structural connection matrices, one for the healthy brain (Fig. 1(a)) and other for the
Alzheimer’s brain (Fig. 1(b)) [17]. The matrices were obtained by Lo et al. [17], where the nodes of the brain networks
were determined through automated anatomical labelling template. They used diffusion magnetic resonance imaging
tractography methods and fibre assignment by continuous tracking algorithm to determine the edges and the number of
fibres, respectively. According to the number of fibres, we define the weight values, that are distributed by the frequency
of the interconnected fibre. Both networks are weighted and symmetric, the weight is associated with the intensity of
connections and can assume four values: 0 (no connections, white region), 1 (low density of connections, indigo circles),
2 (intermediate density of connections, red circles), and 3 (high density of connections, orange circles). The main results
for the networks are shown in Table 3. Fig. 1 exhibits two adjacency matrix connection Wij: (a) healthy brain and (b)
Alzheimer’s brain. The eigenvalues for these adjacency matrix are evaluated in Fig. 2. The healthy structural connection
matrix is in black and Alzheimer’s structural connection matrix is in red. The eigenvalue spectrum for small world with
78 nodes is p = 0.0375 (blue line). The ordinate eigenvalues are very close for three structures matrix. The eigenvalues
are equivalent when there is some difference in the dispersion of adjacency matrix.

3.2. Small-world networks

The small-world networks have not only a high clustering coefficient (like regular graphs), but also a high average
shortest path length (like random graphs) [2]. Many real world networks exhibits small-world property, such as social [49],
technological [50], and biological [5] networks. One phenomenon that has been observed in small-world networks is the
synchronisation, for instance synchronous behaviour in coupled oscillators [51] and clustered network of neurons [52].

A network with small-world properties can be generated by means of different methods [53]. The most common
method was developed by Watts and Strogatz [53], where the regular edges are replaced by random edges. When about
1% of the total edges are replaced, the network exhibits high transitivity and low path length [2]. For our analysis, we
consider an alternative method, where instead of randomly replace regular edges by random edges, we only add random
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Fig. 1. Weighted connection matrix Wij for (a) healthy and (b) Alzheimer’s brains. The weight is associated with the intensity of connections: 0 (no
connections, white region), 1 (low density of connections, indigo circles), 2 (intermediate density of connections, red circles), and 3 (high density of
connections, orange circles).

Fig. 2. Eigenvalue spectrum for the weighted matrices of Fig. 1. Healthy structural connection matrix is in black and Alzheimer’s structural connection
matrix is in red. Eigenvalue spectrum for small-world with 78 nodes and connection probability is p = 0.0375 in blue continue line.
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Table 4
Transitivity loss (weighted).

Healthy Alzheimer Loss

Transitivity 0.57813 0.5598876 3.1%
Nodes 78 78
Links total 1040 1044
Transfer rate 1438 1364 5.4%
Leak rate 1438 1364 5.4%

edges, known as Newman–Watts procedure [54]. We add pNK new random edges, where N is the network size, K is the
regular network degree, and p is the probability to add new edges. We vary p and identify the small-world properties
comparing T and L with the values of the regular network T (0) and L(0). We find

• Healthy brain

DL: link density −→
DL
2

=
13.3333

2
≈ 7, (13)

• Alzheimer’s brain

DL: link density −→
DL
2

=
13.38462

2
≈ 7. (14)

The number of nodes in the human graph is 78 sites and the average degree is 7 neighbours per node. Due to this fact
we create the equivalent connection network under these conditions to depend exclusively on the probability of calling.
It is generated small-world graph with number of nodes N = 78, 7 neighbours per node, and without the likelihood of
connection (p = 0), implying in average length L0 = 3.27273 and transitivity C0 = 0.69231. For both networks of Fig. 1

C
C0

>
L
L0

. (15)

For healthy brain, we find Lhealthy human = 2.24875 and Chealthy human= 0.57813. C/C0 is approximately 1.4%
more than Alzheimer’s brain, and L/L0 is approximately 3.1% less than Alzheimer’s brain. The propagated information
in Alzheimer’s network presents greater difficulty for diffusion of information in network, becoming more complex than
healthy human matrix. Therefore, there seems to be a relationship between the transfer of the network and its grouping,
i.e., relations between assortivity, modularity and transitivity.

3.2.1. Regression analysis
In a convenience sample, for n = 429 small-world type networks, five replicas are executed to create variation within

the others. The dispersion of the transitivity according to the logarithm of the connection probability shows a decay
adjusted by generalised model Gaussian family with link identity

f (y|µ, σ 2) = exp
[

1
σ 2

(
yµ −

µ2

2

)
+

(
−

1
2
ln(2πσ 2) −

y2

2σ 2

)]
, (16)

resulting in the following regression

TSW = 0.300314 − 0.029338 ln p. (17)

For instance, when the probability connection is p = 9.1188196×10−4, then log p is equal to −7 and TSW is approximately
0.50568. This probability value p is in agreement with the probability of small-world connection. When the connection
probability increases, the dispersion of the transitivity value increases as well. On the other hand, the decrease in
probability linkage causes the dispersion to become smaller and more concentrated, characterising a good small-world
region. TH = TM = TSW is valid for the small-world model. Another feature of Eq. (17) is its rate of transitivity in relation
to the log of the probability,

dTSW
d ln p

= −0.029338 ≈ −3%. (18)

The ratio of transitivity to ln p is equal to the loss value in the small-world model when we compare the matrix of healthy
human adjacency with disease Alzheimer human matrix.

The transfer rate and the rate of flow in the network with Alzheimer’s exhibit a drop equal to that caused in the
transitivity when compared with the human network in the normal state, as shown in Table 4. It suggests that the rate
of transfer and rate of flow for people with Alzheimer’s disease declines with 5.4%, possibly due to the fall in transitivity
in 3.1%.
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Fig. 3. Probabilistic valley as functions of modularity (Q ) and transitivity (T ) for:(a) Assortativity and (b) probability of non-local connections. The
red dot is located in the region where the modularity (≈ 0.45) and transitivity (≈ 0.58) have values approximately equal to the healthy brain. In
addition, it coincides with the result of the assortativity (≈ −0.02) in the Alzheimer’s brain.

3.2.2. Assortativity
One of the most difficult measure to be statistically analysed is the assortativity of the network. Due to the fact that

the network topology of small-world is very sensitive to the probability of (re)connection. This can be verified in healthy
and Alzheimer’s networks. For T = 0.57, the values of assortativity show huge variation. However, the assortativity of
the Alzheimer’s brain is 2.5 times higher than for healthy brain (Table 3).

We calculate the assortativity distribution for small-world networks for n = 492 samples. In a sample, for example
N = 10 and second order connection, the assortativeness presents < ASR >= −0.01335938 that is not statistically
zero according to t-Student test for the hypothesis H0 : µASR = 0. There is no significant evidence supporting the null
hypothesis for a p-value ≪ 0.05, inclining us to accept the hypothesis that the assortativeness in the sample question is,
in fact, negative. This does not imply the formation of positive assortativeness as verified in the graph.

3.2.3. Probabilistic valley
The probabilistic valley is a region where the small-world structure behaves by sequences of abrupt changes. It

is precisely in this region that we identify abrupt behaviour of assortativeness, given the equivalent modularity and
transitivity. These three measures of the small-world model that are equivalent to the measurements of the human matrix
are found in this valley. The probabilistic voucher is developed through the structural equations model (SEM), in which
it is related indirectly to assortativity, transitivity and modularity. As assortativeness represents the equivalent of the
correlation between the links of the sites of a network, we write the assortativity in function of the transitivity and the
modularity of the network for determinate probabilistic valley.

The probabilistic valley region indicates a possible existence of probability as a function of the modularity, transitivity
and efficiency, that it is in agreement with the SEM analysis. This indicates that there is a possible dependence on
the functions of modularity, assortativeness, transitivity and efficiency, according to the SEM analysis. In the same
region random overflow occurs in assortativity increasing transitivity and modularity. The increase in assortativity and
transitivity implies in the decay of the connection probability, which confirms that the probability value decreases. A more
detailed view of the level curve with the modularity in the abscissa of the assortative at the ordinate reveals a complex
structure of the curves. Outside this region the value of the assortativeness is zero or close to zero.

The valley has many interesting behaviour. To generate Fig. 3, we consider a set of 100 independent models of small-
world networks starting with 10 sites up to the amount 100 sites. In all models, we vary the probability of linkage between
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Fig. 4. Relative values of path length L/L(0) and transitivity T/T (0) as a function of the probability. The results for healthy and Alzheimer’s networks
are shown by blue and red dots, respectively. L(0) and T (0) correspond to the values of the path length and transitivity values for the regular
network (p = 0).

Table 5
Values of the healthy brain and small-world network.

Health human Small-world Error
(real) (Simulated) (ε)

Average path length 2.2487 2.1964 +2.32%
Density of links 13.333 14.000 −5.00%
Transitivity 0.5781 0.5386 +6.79%
Assortivity 0.0815 0.0882 −8.32%
Eccentricity 3.6667 3.5128 +4.20%
Modularity 0.4515 0.4889 −8.27%

the non-coupling state (p = 10−6) and the overall state (p = 1). The red dot in Fig. 3 is located in the region where the
modularity (≈ 0.45) and transitivity (≈ 0.58) have values equal to the results found in the healthy brain. The same point
coincides with the result of the assortativity (≈ −0.02) in the Alzheimer’s brain. This graph located in this point has 78
sites with 7 connections neighbours and probability range 8.10−8 < p < 0.5.

4. Discussion

When we compare the values of the network quantifiers (transitivity, assortativity, modularity, . . . ) of the brain
networks and the small-world samples, we observe they are located in the probabilistic valley. The characteristic path
length and transitivity of the small-world samples are presented in Fig. 4. The agreement between the samples and the
brain networks occurs at p = 0.0375 and it can be observed by the blue and red dots in the figure. Comparing healthy and
Alzheimer’s networks, we found a difference of 3.1% for transitivity. Transitivity is greater for healthy than Alzheimer’s
brain, while characteristic path length (L) is the opposite.

The weighted connection matrix eigenvalues Wij is useful for the comparison between the matrix structures. In Fig. 2,
we display the eigenvalue spectrum for both networks of Fig. 1. We verify that the eigenvalues of both networks are
similar. The eigenvalues of the small-world samples are very close to the human networks.

Table 5 shows that the average path length of the healthy brain is very close to small-world network. The transitivity
, assortativity, eccentricity, and modularity are almost identical. In Table 6, we see that the Alzheimer’s brain and small-
world network have similar values, except the assortativity value, ε = 59.62%. The positive transitivity is in accordance
with previous works [55]. The huge difference in the assortativity was unexpected. However, in functional networks,
increased assortativity was observed in patients with clinical dementia rating level 1 [56]. In structural networks, the
increased assortativity was reported in patients suffering of Alzheimer’s disease with mild cognitive impairment [57].

5. Conclusions

In this work, we show that small-world networks can be used to mimic healthy brain networks. In our case, the healthy
brain can be reproduced by a Newman–Watts small-world network of p = 0.0375. For average path length, for example,
the agreement is 97%.
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Table 6
Values of the Alzheimer’s brain and small-world network.

Alzheimer’s Small-world Error
brain (real) (Simulated) (ε)

Average path length 2.28172 2.1964 +3.74%
Density of links 13.3846 14.000 −4.59%
Transitivity 0.55989 0.5386 +3.80%
Assortivity 0.21846 0.0882 +59.62%
Eccentricity 3.76923 3.5128 +6.80%
Modularity 0.49083 0.4889 +0.39%

We find a relation of construction among the variables associated with the transmission of information in the network,
such as the transitivity (0.57813 for the healthy brain and 0.5386 for the small-world network), the assortativity (0.08151
for the healthy brain and 0.08829 for the small-world network), the eccentricity (3.66667 for the healthy brain and
3.51282 for the small-world network), and the modularity (0.45157 for the healthy brain and 0.48891 for the small-
world network), whose values are very close to each other. In all four measures, we obtained errors (ε) smaller than
10% in the measurements up or down. Both healthy and Alzheimer’s networks were within the simulated region for a
small-world sample, indicating a close linkage probability of 3.75%. A small-world model in this region, for an equivalent
assertiveness value, has very similar graph properties. Therefore, the human network (diseased or not) behaves as a
small-world network.

We verify that the healthy brain can be mimicked by networks with small-world properties. The network indicators of
the Alzheimer’s brain are almost identical with the small-world network, except the assortativity. Despite of our limited
set of data, we believe that assortativity can be associated with important changes in structural connections of the brain
of Alzheimer’s patients.

We have focused in the network composition differences between a normal person and another with Alzheimer.
However, a statistical verification should be considered to validate our present conjecture. Here we only use one patient
sample, at clinical level, on the other hand, lots of patient samples are required to conclude one indicator for a disease.
Due to this fact, in future works, we plan to analyse the network properties of structural connection matrices considering
a larger sample of healthy patients and patients suffering of Alzheimer’s disease.
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