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A B S T R A C T

In this study, after generating experimental data points of Zinc Oxide (ZnO)–Silver (Ag) (50%–50%)/Water
nanofluid, an algorithm is proposed to calculate the best neuron number in the Artificial Neural Network (ANN),
and the performance and correlation coefficient for ANN has been calculated. Then, using the fitting method, a
surface is fitted on the experimental data, and the correlation coefficient and performance of this method have
been calculated. Finally, the absolute values of errors in both methods have been compared. It can be seen that
the best neuron number in the hidden layer is 7 neurons. We concluded that both methods could predict the
behavior of nanofluid, but the fitting method had smaller errors. Also, the ANN method had better ability in
predicting the thermal conductivity of nanofluid based on the volume fraction of nanoparticles and temperature.
Finally, we found that, in ANN, all outputs, the maximum absolute value of error is 0.0095, and the train
performance is 1.6684e-05.

1. Introduction

Nanofluids have had many problems, such as deposition, impurity,
corrosion, and increasing pressure drop, until the idea of using nano-
sized particles was first put forward by Maxwell in 1881 and a major
revolution in heat transfer was created in the fluids [1]. Nanofluids are
fine-grained particles between 1 and 100 nm suspended in a base fluid.
Typically, nanoparticles of metals such as copper, aluminum, po-
tassium, silver, and oxides, as well as MWCNT and SWCNT and base
fluids, are also predominantly of relatively low conductivity fluids.
They are used as heat transfer conductors. Nanoparticles are much
more stable than larger particles such as microparticles and have a
higher surface area of contact with the fluid [2–10]. Recently, Artificial
Neural Networks (ANNs) are widely used in many scientific and en-
gineering fields. These networks have shown their potential in pre-
dicting the nonlinear or complex behavior of systems. The history of
ANNs refers to the 1940s. During this decade, Warren McCulloch and

Walter Pitts created a simple model based on the algorithms which
were named threshold logic, and then in 1956, Rochester Holland and
Duda introduced neural network machines. In 1958, Rosenblatt worked
on pattern recognition, which led to perceptron. In 4965, Ivakhneko
and Lapa published the first networks, including many layers [11–17].

Yousefi and Mohammadiyan Nezhad [18] and Hemmat Esfe et al.
[19] obtained the thermal conductivity of Al2O3 nanofluids using ANN.
They found that there is a good agreement between the theoretical and
the experimental values of the thermal conductivity of the Al2O3/water
nanofluid and correlation coefficient. Mechiri et al. [20] modeled using
ANN the thermal conductivity of CueZn nanofluids. They found that
these models were in good agreement with the experimental data.
Hemmat Esfe et al. [21] studied the thermal conductivity of Al2O3/
water–EG (40–60%) nanofluid. They showed that the trained ANN had
provided a good agreement between the predicted values and experi-
mental data. Hosseinian Naeini et al. [22] predicted the thermal con-
ductivity of Fe2O3/water nanofluid based on ANN. Their results show
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that ANN is capable of predicting nanofluid thermal conductivity with
excellent precision. Aghayari et al. [23] predicted the thermal con-
ductivity of Fe3O4 / water nanofluid by ANN. They concluded that the
ANN is an effective method for the prediction of the thermal

conductivity of nanofluid. Ahmadloo and Azizi [24] obtained the
thermal conductivity and viscosity of MnFe2O4 nanofluid using an
ANN. They showed that the ANN is very good tool to predict the
properties of nanofluids. Tahani et al. [25] predicted the thermal con-
ductivity of Graphene oxide/water nanofluid using ANN. Their results
show that their model can precisely predict the thermal conductivity of
the nanofluid. Kamalesh et al. [26] predicted the thermal conductivity
of nanofluids containing TiO2 with different base fluids such as -Water,
Ethylene Glycol, and Engine Oil nanofluids. They observed that the
ANN data are in good agreement with experimental results. Hojjat [27]
predicted the Nusselt number of non-Newtonian nanofluids using ANN.
They found that ANN predicts the Nusselt number of nanofluids more
accurately than the previously proposed correlation. Mohamed and
Habashy [28] modeled the thermal conductivity of Al2O3 and TiO2

/Propylene Glycol nanofluid using ANN. They found that the ANN data
are consistent with experimental data. Mohamed [29] modeled prop-
erties of MgO and SiO2–TiO2 / ethylene glycol nanofluids using ANN.
They found that the ANN model can be utilized as an efficient tool to
predict the properties of nanofluids.

In this paper, we predict the thermal conductivity of Zinc
Oxide–Silver (50%–50%)/Water hybrid Newtonian nanofluid using
ANNs. After generating experimental data points of nanofluid, an al-
gorithm is proposed to calculate the best neuron number in the ANN,
and the performance and correlation coefficient for ANN has been
calculated. Then, using the fitting method, a surface is fitted on the
experimental data, and the correlation coefficient and performance of
this method have been calculated, and finally, the absolute values of
errors in both methods have been compared.

2. Experimental procedure

Te transient hot-wire method using KD2-Pro and KS1 probe was
used to calculate the thermal conductivity of nanofluid [30–33]. To
calculate the thermal conductivity, the required masses must first be
obtained, such as the mass calculation, and after stabilizing with con-
siderations in determining the thermal conductivity, we place the probe
in the mixture for 2 min for each experiment [34–36]. It must be borne

Table 1
Specifications of ZnO nanoparticles [36].

Density (gcm−3) Color Shape Specific surface (m2g−1) Size (nm) Purity Particle

5.606 Milk white Spherical 20–60 10–30 %99+ ZnO

Table 2
Specifications of Ag nanoparticles [36].

Bulk density (grcm−3) Color Shape Specific surface (m2g−1) Size (nm) Purity Particle

10.5 Black Spherical 20–16 30–50 %99+ Silver

Fig. 1. Thermal conductivity of nanofluid versus temperature
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Fig. 2. Thermal conductivity of nanofluid versus ϕ

Fig. 3. Mathematical model of a neuron.
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in mind that in order to obtain the correct results, considerations must
be taken into consideration, including that the water should be per-
fectly vertical and fixed without clamping. The device must be cali-
brated prior to the test, and a temperature bath can also be used to keep
the temperature constant during the data collection [37,38]. Tables 1
and 2 show the properties of nanoparticles.

Fig. 1 shows the thermal conductivity of ZnO–Ag (50%–50%)/water

nanofluid versus the temperature at a different volume fraction of na-
noparticles (ϕ). By examining Fig. 1, it is found that the temperature is
a very important factor, and its absence in classical relations results in a
severe deviation from the results. As is evident, in the same volume
fraction of nanoparticles, the increase in temperature leads to a sig-
nificant increase in the thermal conductivity, which can be attributed to
the particle motion. Increasing the temperature also reduces the
thickness of the nanolayers. An increase in the volume fraction of na-
noparticles means an increase in solid particles with a higher thermal
conductivity in the fluid, but this factor is very sensitive because it can

Fig. 4. The proposed algorithm to find the best neuron number

Table 3
the sorted performance of ANN.

Neuron
number

All performance Train
performance

Validation
performance

Test performance

7 1.66842E-05 1.9928E-05 7.02973E-06 1.01197E-05
6 2.53201E-05 4.27217E-05 7.08254E-06 1.39949E-05
8 2.67636E-05 3.72297E-05 1.54128E-05 1.22122E-05
10 5.16584E-05 6.35924E-05 2.83999E-05 2.67475E-05
9 6.65934E-05 0.000145768 2.50699E-05 2.33706E-05
11 8.85316E-05 0.000159682 3.11479E-05 4.21055E-05
13 0.00010083 8.37181E-05 5.09442E-05 6.64435E-05
12 0.000103278 0.000149718 5.15384E-05 5.02473E-05
14 0.000116032 0.000113141 6.07801E-05 7.03651E-05
16 0.000122764 0.000130041 8.54952E-05 5.85793E-05
17 0.000164122 7.70419E-05 0.00012896 9.69136E-05
20 0.000186899 8.44163E-05 0.000147952 0.00011064
21 0.000189859 0.000209087 9.14271E-05 0.000113215
15 0.00020094 9.18948E-05 0.000139643 0.00013048
19 0.00023814 0.000186925 0.000132355 0.000152656
18 0.000268679 0.000164963 0.000256382 0.000119985
26 0.000277923 5.30575E-05 0.000266743 0.00015663
24 0.000308507 0.000104027 0.000279234 0.000171314
25 0.000437917 0.000378468 0.000269537 0.000254883
29 0.000443407 0.000193274 0.000386333 0.000242925
22 0.000446951 0.0002837 0.000320342 0.000261723
23 0.000547646 0.000535497 0.00036653 0.000283079
28 0.00062304 0.000565875 0.000510438 0.000277368
31 0.000828442 0.000578526 0.000669521 0.000423905
30 0.000892451 6.58194E-05 0.000848129 0.000537854
27 0.001038771 0.000573702 0.000666674 0.000680144

Table 4
The correlation coefficient between experimental data and ANN outputs.

Neuron number Train Validation Test All

7 0.998858 0.996431 0.992235 0.997229
6 0.997714 0.993361 0.993335 0.996094
8 0.99808 0.990556 0.986502 0.995403
10 0.99628 0.976468 0.9723 0.990737
9 0.991725 0.988002 0.980302 0.988838
11 0.990529 0.971793 0.949107 0.984973
13 0.994856 0.962871 0.92478 0.981649
12 0.990109 0.953693 0.935731 0.981757
14 0.992247 0.965814 0.937327 0.980551
16 0.992465 0.940734 0.938425 0.978838
17 0.995218 0.919542 0.917722 0.974696
20 0.994962 0.918033 0.842023 0.969619
21 0.98922 0.930349 0.876552 0.968641
15 0.99415 0.953847 0.902133 0.973103
19 0.988741 0.913137 0.858394 0.957623
18 0.989665 0.909689 0.863462 0.959195
26 0.997094 0.902279 0.865209 0.956127
24 0.993417 0.918562 0.819586 0.954342
25 0.976994 0.862376 0.836948 0.932107
29 0.990211 0.827144 0.839676 0.933185
22 0.983465 0.83137 0.8381 0.929744
23 0.973943 0.799716 0.818153 0.925055
28 0.963816 0.78568 0.870399 0.917491
31 0.967506 0.712917 0.684246 0.87945
30 0.995866 0.778671 0.741102 0.88756
27 0.960664 0.77931 0.770808 0.895945
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increase as long as it does not cluster and settle. Nanoparticles and their
accumulation decrease the thermal capability of nanofluids. The
highest increase in thermal conductivity is related to the highest tem-
perature and the highest volumetric percentage. In low volume frac-
tions of nanoparticles, the effect of temperature is almost lower, but
with the increasing volume fraction of nanoparticles, the temperature
changes further on the nanofluid. It was also found that the relationship
between thermal conductivity and volume fraction of nanoparticles is
almost linear.

Fig. 2 shows the thermal conductivity of ZnO–Ag (50%–50%)/
Water nanofluid versus ϕ at different temperatures. Fig. 2 shows that by
increasing the ϕ at all temperatures, we have an increase in thermal
conductivity. This increase is more pronounced in a lower volume
fraction of nanoparticles. The main reason could be the increase in
Brownian motion and the collision of more particles as well as the in-
crease in energy exchange due to more collisions. However, at higher
temperatures, the intermolecular bonds become looser, and the fluid
becomes more thermally stable. On the other hand, in a very low ϕ, the

thermal conductivity shows low sensitivity to temperature, but with the
increasing ϕ, the temperature difference increases and changes sig-
nificantly in this coefficient.

3. Artificial Neural Networks (ANNs) method

In this study, the different ϕ and temperatures have been used to
measure the thermal conductivity of ZnO–Ag (50%–50%)/water na-
nofluid. ANNs are often judged by their performance. ANN's perfor-
mance is considered as the Mean Square Error (MSE). Error is the dif-
ference between the experimental data and the calculated values by
ANN. In Eq.1 the MSE has been presented,

∑= −
=

MSE
n

Y Y1 ( ^ )
i

n

i i
1

2

(1)

In Eq. 1, n is the number of experimental data points, Yi is the target,
and Ŷi is the predicted target.

Fig. 5. ANN train outputs.

Fig. 6. ANN validation outputs.
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In ANN's the value of MSE is called performance, and it should be
near zero. A mathematical model of a real neuron is depicted in Fig. 3,
which consists of weights, bias, and activation function.

In this model, xi is the ith input, wi, r is the weight of rth data point
related to the ith neuron, bi is the bias of neuron and f is the activation
function. The process of data in neurons is presented in Eq.2.

∑=
⎛

⎝
⎜ +

⎞

⎠
⎟

=

Y f w x bi
j

n

ij j i
1 (2)

In this study, the activation function of all layers (except of the last
one) is tansig. The tansig is presented in Eq.3. The activation function of

the last layer is purelin,

=
+

−−sig n
e

tan ( ) 2
1

1n2 (3)

The learning algorithm for this ANN is Levengerg-Marquardt. This
algorithm was presented by Kenneth Levenberg in the 1940s and then it
rediscovered by Donald Marquardt in the 1960s. The Levenberg
Marquardt is one of the most common and powerful algorithms in the
learning process of ANNs.

Experimental data is categorized into three main parts, including
train, validation, and test randomly. The train data consists of 70% of
points, validation 15%, and test also consists of 15% of data. In the

Fig. 7. ANN test outputs.

Fig. 8. ANN all outputs.

Table 5
the coefficients of the fitted surface.

Coefficients p00 p10 p01 p20 p11 p30 p21
Numerical Values 0.579263154 0.009537 0.001481 −0.06677 0.003572 0.026872 −0.00082
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current study, an algorithm is used to find the best neuron number in
the hidden layer. The proposed algorithm is depicted in Fig .4.

In the presented algorithm, for each neuron number in the hidden
layer, the ANN is simulated several times, and during each iteration, the
performance is calculated, and then the mean value of the performance
of iterations is considered as the performance of that neuron number. In
this algorithm, the neuron numbers have been changed from 8 to 31
neurons. The number of inner iterations is 20 times. The results of this
algorithm are shown in Table 3, in which the best neuron numbers are
sorted based on the performance values. Not only the performances of
all experimental data points are calculated, but also the train, valida-
tion, and test performances are presented.

It can be seen that the best neuron number in the hidden layer is 7
neurons. To judge better about the outputs, another criterion, which is
called the correlation coefficient, is used. The correlation coefficient
determines the compatibility between inputs and outputs. The corre-
lation coefficient is calculated by Eq.4,

=
− −

ρU V
E U μ V μ

σ σ
,

[( )( )]U V

U Y (4)

In Eq.4, Uand V are targets and outputs, respectively.μU is the mean
of U and μV is the mean value of Vand σU, σV are considered as the
standard deviations of U and V, respectively. Also, the correlation
coefficient for train, test, validation, and all data points are presented in
Table 4.

Considering Table 4, it can be seen that for a network with 7 neu-
rons in the hidden layer has the best overall correlation coefficient for
train, validation, test, and all data points. The train, validation, and test
outputs of the optimum ANN are presented in Figs. 5 to 8. In Fig. 5,
ANN train outputs are displayed. In ANN train outputs, the maximum
absolute value of error is 0.0095, and the train performance is 1.9928e-
05.

In Fig. 6, ANN validation outputs are displayed. In ANN validation
outputs, the maximum absolute value of error is 0.0050, and the train
performance is 7.0307e-06.

In Fig. 7, ANN test outputs are displayed. In ANN Test outputs, the
maximum absolute value of error is 0.0045, and the train performance
is 1.0120e-05.

In Fig. 8, ANN's all outputs are displayed. In ANN All outputs, the
maximum absolute value of error is 0.0095, and the train performance

Fig. 9. the fitted surface.

Fig. 10. the experimental, ANN and surface fitting outputs.
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is 1.6684e-05.

4. Surface fitting

Considering the experimental data points, there are two inputs
(Volume fraction of nanoparticles and temperature) and there is only
one output (Thermal conductivity). Using a surface fitting method, the
surface has been generated. By applying functions with different orders,
the best results are related to a third-order function for volume fraction
and a first order for temperature. The fitted surface has been presented
in Eq.5.

Fittedsurface
(x,y)=p00+p10*x+p01*y+p20*x^2+p11*x*y+p30*x^3+p21*x^2*-
y (5).

In Eq.5, x represents ϕ and yrepresents temperature. The coeffi-
cients of this function have been shown in Table 5.

In Fig. 9 the fitted surface has been shown. The MSE in surface
fitting method is 1.8518e-05. The correlation coefficient in surface
fitting method is 0.9971.

In Fig. 10 the experimental ANN and surface fitting outputs have
been shown. It can be seen that both methods can predict the thermal
conductivity of nanofluid.

In Fig. 11, the absolute value of error of ANN and fitting method has
been compared. It can be seen that the ANN method has smaller ab-
solute value of error compared to the surface fitting method.

5. Conclusion

In this study, after generating the experimental data for different
volume fraction of nanoparticles ranges (0, 0.125, 0.25, 0.5, 1, 1.5 and
2%) and temperatures (25, 30, 35, 40, 45, 50), thermal conductivity of
ZnO–Ag (50%–50%)/water nanofluid has been predicted by two
methods including ANN and surface fitting method. In the ANN
method, an algorithm is proposed to find the best neuron numbers of
the hidden layer. Also, the correlation coefficient for train, validation,
and test data has been calculated. In the fitting method, a surface has
been fitted on the experimental data points, and then the correlation
coefficient of this method has been calculated. Finally, the absolute
value of errors for both methods has been compared.

• The best neuron number in the hidden layer is 7 neurons.

• Both methods could predict the behavior of nanofluid, but the fitting

method had smaller errors.

• The MSE in the surface fitting method is 1.8518e-05. The correlation
coefficient in the surface fitting method is 0.9971.

• In ANN All outputs, the maximum absolute value of error is 0.0095,
and the train performance is 1.6684e-05.

• The ANN method had better ability in predicting the thermal con-
ductivity of ZnO–Ag (50%–50%)/water nanofluid based on the
ϕand temperature.
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