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a b s t r a c t

Artificial neural networks have been used as a powerful processing tool in various areas such as
pattern recognition, control, robotics, and bioinformatics. Their wide applicability has encouraged
researchers to improve artificial neural networks by investigating the biological brain. Neurological
research has significantly progressed in recent years and continues to reveal new characteristics of
biological neurons. New technologies can now capture temporal changes in the internal activity of the
brain in more detail and help clarify the relationship between brain activity and the perception of a
given stimulus. This new knowledge has led to a new type of artificial neural network, the Spiking
Neural Network (SNN), that draws more faithfully on biological properties to provide higher processing
abilities. A review of recent developments in learning of spiking neurons is presented in this paper.
First the biological background of SNN learning algorithms is reviewed. The important elements of
a learning algorithm such as the neuron model, synaptic plasticity, information encoding and SNN
topologies are then presented. Then, a critical review of the state-of-the-art learning algorithms for
SNNs using single and multiple spikes is presented. Additionally, deep spiking neural networks are
reviewed, and challenges and opportunities in the SNN field are discussed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The human brain is a very complex system and is constructed
of approximately 90 billion neurons (Azevedo et al., 2009). It
is structurally organized by trillions of interconnected synapses.
Information is transferred between neurons by electrical impulses
called spikes. The effect of a spike, which is sent by a presynaptic
neuron to a receiving neuron, depends on the strength of the
synapse that connects the two neurons. The synaptic strengths
and the connection pattern between neurons have a significant
role in the information processing capability of nervous systems.
The brain’s processing ability to solve complex problems has
inspired many researchers to investigate its processing function
and learning mechanisms. Artificial Neural Networks (ANNs), as
a powerful and flexible computing means to solve complex prob-
lems, have emerged as a result of this research on the brain’s
processing functionality.

ANNs are inspired by the biological nervous system and are
successfully used in various applications (Hinton et al., 2012;
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Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006).
However, their high abstraction compared to their biological
counterpart (Pham, Packianather, & Charles, 2008) and their in-
ability to capture the complex temporal dynamics of biological
neurons have resulted in a new area of ANNs where the focus
is placed on more biologically plausible neuronal models known
as Spiking Neural Networks (SNNs). Thanks to their ability to
capture the rich dynamics of biological neurons and to rep-
resent and integrate different information dimensions such as
time, frequency, and phase, SNNs offer a promising computing
paradigm and are potentially capable of modelling complex in-
formation processing in the brain (Brette et al., 2007; Gerstner &
Kistler, 2002; Hodgkin & Huxley, 1952; Izhikevich, 2004, 2006;
Kasabov, Dhoble, Nuntalid, & Indiveri, 2013; Maass & Zador,
1999). SNNs are also potentially capable of dealing with large
volumes of data and using trains of spikes for information rep-
resentation (Kasabov et al., 2013). Additionally, SNNs are suitable
for implementation on low power hardware.

It is broadly agreed that spikes (a.k.a pulses or action poten-
tials), which represent short and sudden increases in the voltage
of a neuron, are used to transfer information between neurons
(Gerstner & Kistler, 2002). The encoding of information through
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spikes is still a matter of debate in the computational neuro-
science community. Previously, it was supposed that the brain
encodes information through spike rates (Masquelier & Deco,
2013). However, neurobiological research findings have shown
high speed processing in the brain that cannot be performed by a
rate coding scheme alone (Brette, 2015). It has been shown that
human visual processing can perform a recognition task in less
than 100 ms by using neurons in multiple layers (from the retina
to the temporal lobe). It takes about 10 ms processing time for
each neuron. The time-window is thus too small for rate coding
to occur (Thorpe, Delorme, & Van Rullen, 2001; Vreeken, 2003).
The rapid information processing in the electro sensory system
of electric fish (Heiligenberg, 1991) and in the auditory system of
echo-locating bats (Kuwabara & Suga, 1993) are other examples
of high speed information processing in biological nervous sys-
tems. High speed processing tasks can be performed using precise
timing of spikes (Vreeken, 2003). Additionally, the firing of so
many spikes in rate coding of a stimulus demands considerable
energy and resources. Moreover, the precise timing of spikes has
a higher information encoding capacity in a small set of spiking
neurons (Paugam-Moisy & Bohte, 2012). Therefore, it seems clear
that the precise timing of individual spikes, and not just the
number of spikes or firing rate, is likely to convey information.

However, the exact learning mechanism in which a neuron is
trained is an open question. Recently, biologists have found vari-
ous forms of biological synaptic plasticity, which are governed by
spikes (Feldman, 2012). These various forms of synaptic weight
and delay learning (Lin & Faber, 2002) are compatible with the
spiking neuron model, whereas there is considerable difficulty for
their application in traditional models.

The activity of a biological neural system can be studied at
various scales, levels and perspectives, for example genes and
molecules, single-cell electrophysiology, multi neuron recordings,
and cognitive neuroscience and psychophysics. Simulation and
mathematical theories are used in the literature to link the var-
ious levels. In the bottom-up approach of investigating the bi-
ological nervous system, the knowledge of lower levels (such
as properties of ion channels) is used to describe the higher
level phenomena such as the generation of an action potential or
memory formation. Hodgkin and Huxley’s model of a biological
neuron is an example of a bottom-up description of a neuron.
In the biophysical neuron model, the properties of ion channels
with different time constant and different dynamics in a cell
membrane are modelled (Gerstner, Sprekeler, & Deco, 2012). The
activity of a biological neuron system can be investigated in
highly extended levels.

In this paper, the review starts from the level of a single
neuron and then progresses to biologically plausible learning
algorithms for a single neuron as well as populations of neurons.
First the biological background of SNN learning algorithms is
reviewed. The important elements of a learning algorithm such
as the spiking neuron model, synaptic plasticity, information en-
coding and SNN topologies are then studied. Subsequently, state
of the art learning algorithms for SNNs are reviewed. Finally,
challenges and opportunities in the SNN field are discussed.

2. Biological background

Neurons represent the elementary processing units of the
brain. They communicate by sending and receiving action poten-
tials (Gerstner & Kistler, 2002). Neurons are connected to each
other, through synapses, in an intricate pattern making specific
structures. A review of the literature shows that the important
considerations in the design of a learning algorithm for SNNs are
as follows: neuron models, communication through synapses, the
topology of the network, and the information encoding/decoding
schemes. The following review discusses the impact of these
aspects.

2.1. Spiking neuron models

In 1952, Hodgkin and Huxley (1952) performed experiments
on the giant axon of the squid and built a four dimensional
(4D) detailed conductance-based neuron model which can repro-
duce electrophysiological measurements. However, the intrinsic
computational complexity of this model increases its computa-
tional cost. Consequently, more simple, phenomenological spik-
ing neuron models are used for simulating large scale SNNs,
neural coding and memory (Gerstner & Kistler, 2002). The biolog-
ical plausibility and the implementation cost of various spiking
neuron models are compared in Izhikevich (2004). The Leaky
Integrate-and-Fire (LIF) model (Koch & Segev, 1998) and the Spike
Response Model (SRM) (Gerstner, Kistler, Naud, & Paninski, 2014)
are two popular 1D spiking neural models with low computa-
tional cost, but they offer poor biological plausibility compared
with the Hodgkin and Huxley model. The 2D model of Izhike-
vich (Izhikevich, 2003) offers a good trade-off between biological
plausibility and computational efficiency. Although it can produce
various spiking dynamics, many of these characteristics such as
Chaos and Bi-stability have not been used in current learning
algorithms.

According to biological evidence, a neuron can operate as an
integrator or Coincidence Detector (CD) (König, Engel, & Singer,
1996). In an integrator model the neuron integrates incoming
Post Synaptic Potentials (PSP) in a longer time interval than
in a CD. The integrator model takes advantage of the effect of
not only input spikes with short inter spike intervals, but also
input spikes that are relatively far from each other. However CDs
use the effect of the input spikes that are near to each other
(i.e. have short inter spike intervals) to generate the neuron total
PSP (König et al., 1996). Learning algorithms that use an integra-
tor model focus on synaptic weight plasticity, however, the CD
learning algorithm exploits synaptic delay modulation to learn
(Pham et al., 2008). Thus, there is potential to improve biological
plausibility and computational ability of SNN learning algorithms
by adjusting both synaptic weights and delays to construct new
learning algorithms.

Leaky Integrate-and-Fire (LIF) neuron model: Detailed
conductance-based neuron models (Hodgkin & Huxley, 1952)
can reproduce electrophysiological signals to a high degree of
accuracy, but they are computationally complex. Simple phe-
nomenological spiking neuron models with low computational
cost are highly popular for studies of neural coding, memory, and
network dynamics. The LIF is a one dimensional spiking neural
model with low computation cost (Gerstner et al., 2014), that is
commonly adopted in the literature. The sub threshold dynamics
of the LIF neuron are defined by the following equation:

τm
dvm (t)

dt
= − (vm (t) − Er) + RmI (t) (2.1)

where vm(t) is the membrane potential, τm is the membrane time
constant, Er is the membrane rest potential which is a constant,
Rm is the membrane resistance, and I(t) is the sum of the current
supplied by the input synapses. I(t) is calculated by the following
equation:

I (t) = W · S(t) (2.2)

where W = [w1, w2, . . . , wN ] is the weight vector. S (t) =

[s1 (t) ; s2 (t) ; . . . ; sN (t)] is the spatiotemporal input spike pat-
tern containing N input spike trains, si (t) for i = 1, 2, . . . ,N .

si (t) =

∑
f

δ(t − t fi ) (2.3)
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where t fi is the firing time of the f th (f = 1, 2, . . .) spike in the
ith input spike train, si (t). si (t) is applied to the ith synapse, and
δ(t) is a Dirac function.

When the membrane voltage, vm(t), reaches the threshold
level, Vth, an output spike is generated, and the membrane voltage
resets to the rest potential, Er , and stays at the resting level for
period of time tref , called the refractory period.

2.2. Synaptic plasticity

Synaptic plasticity (i.e. change in synaptic efficacy) is consid-
ered to be the biological underpinning of learning and memory.
The exact relationship between microscopic synaptic properties
and macroscopic functional consequences remains highly contro-
versial (Morrison, Diesmann, & Gerstner, 2008). Unsupervised, su-
pervised, and reinforcement learning are the three known types
of learning strategies and the following details these approaches
with a focus on synaptic plasticity. However, there is also biolog-
ical evidence that the synaptic delay is not always constant and
can be modulated during synaptic plasticity (Lin & Faber, 2002).

2.2.1. Unsupervised learning
Unsupervised learning is progressed according to local events,

and the local events do not have any notion of the task to be
solved, and also they do not have any notion of the change being
‘good’ or ‘bad’. Learning simply involves an adaptation accord-
ing to local activity. Hebb’s in 1949 postulate, which describes
how synaptic connections should be modified, has inspired many
unsupervised approaches (Morrison et al., 2008). Unsupervised
learning may be constructed from a combination of the following:
(a) spontaneous growth or decay of weights in the absence of any
activity (Turrigiano & Nelson, 2004); (b) effects caused by post-
synaptic spikes alone independent of presynaptic spike arrival
(Artola, Brocher, & Singer, 1990); (c) effects caused by presynap-
tic spikes, independent of postsynaptic variables — the case for
short-term synaptic plasticity (Vasilaki & Giugliano, 2013); (d)
effects caused by presynaptic spikes in conjunction with postsy-
naptic spikes or in conjunction with postsynaptic depolarization
(Hebbian terms) (Clopath, Büsing, Vasilaki, & Gerstner, 2010); (e)
all of the above effects may depend on the current value of the
synaptic weight (Morrison et al., 2008), e.g. close to a maximum
weight synaptic changes could become smaller (Morrison et al.,
2008). Although Hebbian plasticity is used in the current SNN
learning algorithms, other synaptic plasticity such as short-term
plasticity is less used.

Spike Timing Dependent Plasticity (STDP) is a variant of the
Hebbian unsupervised learning algorithm. This rule is proposed
to describe the changes of a synaptic weight according to the
relative timing of pre and postsynaptic spikes. According to STDP,
a synaptic weight is potentiated if a presynaptic spike comes
shortly before a postsynaptic spike. If the time interval between
the pre- and postsynaptic spike is t = tpost − tpre and t > 0
then the synaptic weight will be potentiated. The magnitude of
the potentiation is a function of t which decays exponentially
with a time constant τ+ and can be calculated by A+e−t/τ+ ,
where A+ is the maximum synaptic change. Alternatively, if a pre
synaptic spike occurs shortly after the postsynaptic spike, then
the synaptic efficacy is decreased. The magnitude of the decrease
can be calculated by A−et/τ− , where A− represents the maximum
depression, and τ− is a time constant. Fig. 1 shows the synaptic
changes as a function of time interval t. The shape of an STDP
function does not have to be fixed across a network and different
synapses can have differing shapes (parameters) for this function.
According to physiological evidence, the generality of STDP is
debated because the order of pre- and post-synaptic spikes is
only important in some situations, depending on the presynaptic

Fig. 1. STDP learning time window. If the post neuron fired after the presynaptic
spike, the weight of synaptic connection from pre- to postsynaptic neuron is
increased. The magnitude of change decreases as A+e−t/τ+ . Reverse order results
in a decrease of the synaptic weight with magnitude A−et/τ− .
Source: The figure is adapted from González-Nalda (2009).

activity such as firing rate (Tetzlaff, Kolodziejski, Markelic, &
Wörgötter, 2012).

Biological experiments show that the standard pair-based
STDP models (i.e. pre-before-post and post-before-pre) cannot
give a full description of STDP in a biological neuron. There are
experimental researches that investigate multiple-spike protocols
(Morrison et al., 2008). Symmetric triplets STDP in the form
of pre-post-pre and post-pre-post, which are a simple exam-
ple of multiple-spike STDP, are investigated experimentally in
Bi and Wang (2002), Froemke and Dan (2002), Froemke, Tsay,
Raad, Long, and Dan (2006) and Wang, Gerkin, Nauen, and Bi
(2005). There are different multiple-spike STDP models that are
developed to predict the experimental results (Morrison et al.,
2008). One simple triplet STDP model is developed in Pfister and
Gerstner (2006).

Pfister and Gerstner (2006) implemented a triplet STDP with
local variables called traces. The trace related to a presynaptic
neuron j is shown by xj(t), and the post synaptic neuron ‘i’
corresponds to two traces y1i (t) and y2i (t) with fast and slow
dynamics respectively (τ1 < τ2) as shown in Fig. 2 (Morrison
et al., 2008). The LTD in the triplet STDP is similar to standard
paired based STDP. A weight is depressed in proportion to the fast
postsynaptic trace, y1i (t) as shown by unfilled circles in Fig. 2. At
the moment of a postsynaptic spike LTP is induced in proportion
to the presynaptic trace xj(t) (similar to the standard pair based
STDP) and the slow postsynaptic trace y2i (t) as shown in Fig. 2 by
filled circles.

The ability of the multiple spike STDP to model the synaptic
plasticity of a biological neuron shows that the learning algo-
rithms that work based on multiple spikes are more biologically
plausible and multiple spike coding can be an appropriate choice
for modelling the information processing in the brain.

Local dendritic depolarization related STDP: Several recent
studies have investigated how a synapse location within the
dendritic tree influences STDP. Dendritic mechanisms can pro-
duce different learning rules in different dendritic domains of the
same neuron (Kampa, Letzkus, & Stuart, 2007; Letzkus, Kampa,
& Stuart, 2006). Nearby synapses within dendritic branches con-
tribute to local associative plasticity. Therefore, local dendritic
depolarization is the main tool to manage the plasticity (Feldman,
2012). In other words local dendritic PSPs can change the STDP
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Fig. 2. Triplet STDP is governed by a trace corresponding to presynaptic spikes,
xj (t), and the two fast (y1

i (t)) and slow (y2
i (t)) traces related to postsynaptic

spikes. LTD (Long Term Depression) takes place at the time of a presynaptic spike
in proportion to the momentary value of y1

i (t) as shown by unfilled circles. A
synaptic weight is potentiated at the time of a postsynaptic spike in proportion
to the momentary value of presynaptic trace (xj (t)) and value of the slow trace
y2
i (t) as shown by black filled circles.

Source: The figure is adapted from Morrison et al. (2008)

characteristic. This change can be in various forms. For example,
anti-Hebbian LTD on cortical pyramidal cells is converted into
Hebbian STDP depending on the location of the plasticity within
the dendrite tree. The association of local dendritic depolarization
and STDP may be useful in improving the information processing
ability of neurons by specifying different synapses for different
types of input information and by providing dynamic control
over plasticity. Spike timing will be a main factor of plasticity
in some circumstances; however, it will not be a prominent
factor in others (Feldman, 2012). STDP has been used to de-
sign learning algorithms for spiking neural networks (Ponulak
& Kasiński, 2010; Srinivasa & Cho, 2012). However, different
biological characteristics of STDP are not considered in the learn-
ing algorithm, and it seems that the consideration of the new
biological property of STDP (Local dendritic depolarization related
STDP) might contribute to the design of a new learning algorithm
which is more biologically plausible and has new interesting
computational characteristics.

2.2.2. Supervised learning
There is evidence that confirms the existence of supervised

or instruction-based learning in the brain (Carey, Medina, & Lis-
berger, 2005; Doya, 1999; Ito, 2000; Knudsen, 2002). One form
of the supervised learning is governed by an instruction signal.
It is believed that these signals are provided in the learning
modules by sensory feedback (Carey et al., 2005; Knudsen, 2002)
or by other neuronal assemblies (Doya, 1999; Ito, 2000). However,
the exact mechanism of supervised learning in the brain is not
clear (Sporea & Grüning, 2013). The cerebellum is thought to
be the primary site for supervised learning in the brain (Jörntell
& Hansel, 2006; Ponulak & Kasinski, 2011). Supervised learning
at the level of a neuron has been demonstrated experimentally
by Fregnac and Shulz (1999). Naturally, a few inputs to strong
synapses can drive a neuron response and therefore drive learn-
ing of other input synapses. If these strong inputs are controlled
for a target-specific task, they act as a teacher for the postsynaptic
neuron.

2.2.3. Reinforcement learning
Behaviours are learnt not only through direct instructions,

but more often by exploring available actions in the presence
of reward signals. In reward-based or reinforcement learning the
direction and amount of change of the learning free parameters
depends on the presence or absence of a success signal (Schultz,
Dayan, & Montague, 1997). Reinforcement learning initially is un-
derstood by psychological evidence. Recently, it has been shown
that the concentration of dopamine which can act as a reward
signal affects the synaptic change in various parts of the brain.
Dopamine is a neuromodulator which is emitted by dopaminergic
cells (Ponulak & Kasinski, 2011).

2.2.4. Delay learning
The existence of synaptic delay in the mammalian neocortex

is proven by experimental research and depending on the type
and location of the neurons, the synaptic delay could be as short
as 0.1 ms and as long as 40 ms (Izhikevich, 2006; Paugam-
Moisy, Martinez, & Bengio, 2008; Swadlow, 1992). The effect of
the time delay on the processing ability of the nervous system
is well established (Gilson, Bürck, Burkitt, & van Hemmen, 2012;
Glackin, Wall, McGinnity, Maguire, & McDaid, 2010; Xu, Gong,
& Wang, 2013; Xu, Zeng, et al., 2013). For instance, it has been
shown that delays have an important role in the mammalian au-
ditory pathway for perception of sound localization (Glackin et al.,
2010). Additionally, according to biological evidence the synaptic
delay can be changed according to input and output spikes (Lin &
Faber, 2002). This biological evidence of delay learning provides
an inspiration in developing new learning algorithms that exploit
delay learning in addition to the usual weight learning.

2.3. Information encoding

How neurons encode information using spikes is one of the
important questions discussed in neuroscience. It is assumed that
neural information is conveyed either in the firing rate, or in
the precise timing of spikes (temporal coding). Various forms
of firing rate encoding exist, such as spike count, spike density,
or population activity (Gerstner & Kistler, 2002). Although rate
coding is commonly used in traditional ANNs, such an approach
may not convey all the information related to a rapid processing
task such as colour, visual information, odour and sound quality
processing as the information encapsulated in the precise timing
of spikes is ignored (Cariani, 2004; Hopfield, 1995; Mohemmed,
Schliebs, Matsuda, & Kasabov, 2013).

Examples of temporal coding methods include time to first
spike, Rank-Order Coding (ROC) (Rullen & Thorpe, 2001), latency
code, phase coding, coding by synchrony (Ponulak & Kasinski,
2011), and polychronisation (which is a group of neurons time-
locked to fire in various precise times (Izhikevich, 2006)). Yu,
Tang, Tan, and Li (2013b) have shown that coding based on
precise timing of spikes can convey more information than ROC
which ignores the time differences between spikes. Additionally,
ROC is more sensitive to noise, because, the rank of each spike is
dependent on the rank of other spikes. If the rank of a single spike
is changed as a result of a small noise component, then the ranks
of the other spikes are subsequently changed. Consequently, the
resulting pattern is completely different from the original pattern
(Yu et al., 2013b).

2.4. SNN topologies

A common classification of SNN topologies considers three
types of topologies, namely feed-forward, recurrent and hybrid
networks. Synfire chain and fault-tolerant SNN proposed in Srini-
vasa and Cho (2012) are two examples of hybrid networks where
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some subpopulations may be strictly feed-forward while others
may have recurrent topologies.

According to statistical analysis, a cat’s cerebral cortex struc-
ture can be considered a clustered network (Lameu et al., 2012).
Each cluster is a scale-free network with highly connected hubs.
Those hubs are strongly connected together, i.e. a high number
of neurons in different hubs are connected (Lameu et al., 2012).
Hazan and Manevitz (2012) have shown that specifying certain
kinds of topological constraints, which have been claimed as
reasonably biologically plausible, can restore robustness in SNNs
(Hazan & Manevitz, 2012).

It is well established that the topology of SNNs in a brain
dynamically changes during the learning process. Bassett et al.
(2012) have shown that primary sensorimotor and visual re-
gions have a relatively stiff core that changes little over time
but they have flexible periphery regions which change more
frequently (Bassett et al., 2012). Evolving spiking neural net-
work (eSNN) (Belatreche, Maguire, & McGinnity, 2007; Wysoski,
Benuskova, & Kasabov, 2008), dynamic evolving SNN (deSNN)
(Kasabov et al., 2013), dynamic cluster formation using popu-
lations of spiking neurons (Belatreche & Paul, 2012), and the
online supervised learning method with adaptive structure in
Wang, Belatreche, Maguire, and McGinnity (2014) are exam-
ples of SNNs with dynamic topology. The evolving structure of
SNNs enhances their processing ability as well as improving their
biological plausibility.

3. Review of some state of the art learning algorithms for
SNNs

In the previous section some biologically plausible elements
that might be used to construct spiking neural network learning
algorithms were introduced. This section presents a critical re-
view of state of the art learning algorithms for spiking neurons.
First, the learning algorithms that can train each neuron to fire
a single spike are reviewed. Then, the learning algorithms that
train a single neuron or a single layer of neurons to learn multiple
spikes are discussed. After that, learning of multiple spikes in
a multilayer spiking neural network are reviewed. The delay
learning ability of spiking neuron is discussed in Section 3.4.
Finally, recent Deep Spiking Neural Networks are reviewed.

3.1. Learning a single spike per neuron

SpikeProp (Bohte, Kok, & La Poutre, 2002) is one of the first
supervised learning methods for spiking neurons. SpikeProp was
inspired by the classical backpropagation algorithm. SpikeProp is
a multilayer spiking neural network, and it is applied success-
fully to classification problems. In the network, two neurons are
connected through multiple connections with different weights
and delays (see Fig. 3). SpikeProp, much like other gradient-
based methods, is based on the estimation of the gradient of an
error function and thus has local minima problems. In addition,
silent neurons or non-firing neurons are another problem which
prevents the calculation of the gradient.

Back-propagation with momentum (McKennoch, Liu, & Bush-
nell, 2006; Xin & Embrechts, 2001), QuickProp (McKennoch et al.,
2006; Xin & Embrechts, 2001), Resilient propagation (RProp)
(Ghosh-Dastidar & Adeli, 2007; McKennoch et al., 2006; Silva &
Ruano, 2005) Levenberg–Marquardt BP (Silva & Ruano, 2005),
and the SpikeProp based on adaptive learning rate (Shrestha &
Song, 2015) are various learning algorithms proposed to improve
the performance of SpikeProp. In the first supervised learning
algorithms for multilayer spiking neural networks for learning the
precise timing, each neuron is trained to fire only a single spike. In
the mentioned learning methods all neurons in the input, output

Fig. 3. (a) The Spiking neural network architecture used in Ghosh-Dastidar and
Adeli (2007), McKennoch et al. (2006) and Silva and Ruano (2005); (b) each
neuron is connected to the next neuron by multiple synapses with different
delays.
Source: The figure is adapted from Ghosh-Dastidar and Adeli (2007).

and hidden layers can only fire a single spike. The mentioned
learning algorithms depend on the neuron model used in the
network.

Belatreche, Maguire, McGinnity, and Wu (2003) used evolu-
tionary strategies to train both synaptic weights and delays for
classification tasks. The proposed approach has good performance
when compared to Spike-Prop, yet the training algorithm is time
consuming.

In Pham et al. (2008) a self-organizing spiking neural network
is designed for pattern clustering. The spike response neuron
model with constant weights (which are chosen randomly) is
used as a CD. The parameter of the CD is chosen so that the CD
fires if its input synapses have spikes close to each other. The
output layer is constructed of a two-dimensional grid. A CD is
considered for each node in the grid. The number of neurons in
the input layer is equal to the dimension of the input pattern.
A Hebbian based rule is used to shift the synaptic delays. In
other words, the synaptic delays are the learning parameters,
and the proposed SOM (Self-organizing map) adjusts the synaptic
delay of the winner neuron and the neurons near to the winner
during adaptation stage. The Hebbian based learning is designed
to adjust the synaptic delay so that the peaks of the input spike
responses coincide with each other which cause the receiving
neuron to fire. In the model only the first spike of an output is
considered. The neuron threshold level is set to a small value at
the beginning of the learning and is then increased during differ-
ent learning epochs. The CDs with a high degree of coincidence
can fire in response to a specific input. During learning, an input
pattern is applied to the network and the neuron that fires first
is considered as the winning neuron. Then the neurons that are
in a neighbourhood of the winner are considered to contribute
in a Hebbian learning process. The contribution of a neuron in
the learning process is a function of its spatial distance from the
winner. The function has a Gaussian shape and the winner is the
centre of the function. The training procedure is stopped when
the total change of the connection delays falls below a minimum
value, or the delay change remains constant.
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The SNN approach proposed in Pham et al. (2008) can be
compared to the properties of a traditional SOM (Kohonen, 2013).
In a basic SOM the neighbourhood Gaussian function has a time
varying width which is decreased by the learning epochs. This
shrinking property of the neighbourhood function is not used
in the SNN approach proposed in Pham et al. (2008). Accord-
ing to this property the first stage of learning should cover a
large number of neurons around the winner and as the learning
progresses it is decreased. The appropriate neurons are chosen
to become more selective to the specific input pattern by this
method. Furthermore, in the SOM for SNNs a simple learning
algorithm based on the delay shift is used, however to date there
are various learning algorithms for SNN based on the weights
learning such as the algorithms proposed in Bohte et al. (2002)
and Mohemmed, Schliebs, Matsuda, and Kasabov (2012) that can
be used to design SOM with higher computation ability than the
computation ability of the algorithm mentioned in Pham et al.
(2008).

Wysoski et al. (2008) proposed an evolving Spiking Neu-
ral Network (eSNN) by using a Hebbian-based training. eSNN
changes its structure in order to respond optimally to different
input visual patterns. It uses hierarchical layers and can be used
for online learning applications. Rank order coding (ROC) and a
simplified type of integrate-and-fire neuron model are used in
eSNN. The algorithm only uses the information in the first spike
of each input synapse and it ignores the information that is in
the following spikes. In eSNN learning procedure each neuron
can fire a single spike. A latency code is used to convert a real
value related to input pattern to temporal information in the
input spikes. Despite the application of the latency code, it uses
a neuron model that works based on order of the input spikes
and the precise time of input spikes is not too important for the
neuron. Additionally, two different input patterns generated by
the latency code can have same order of input spikes; however,
they can have completely different temporal patterns relating
to different classes. The other problem of eSNN is that it works
only based on the first spike and the effect of the other input
spikes is not reflected on the synaptic weights adjustment. So the
network can only work on the single spike per input and it cannot
capture the information related to spatiotemporal input pattern
with multiple spikes in each input spike train. Although eSNN is
composed of four layers, learning is only taking place in a single
layer (layer L3 in Fig. 4).

In Kasabov et al. (2013) a dynamic eSNN (deSNN) was pro-
posed to capture the information in more complex spatiotempo-
ral input patterns composed of multiple spikes. deSNN (Kasabov
et al., 2013) uses rank-order learning (similar to eSNN Wysoski
et al., 2008) as well as the spike driven synaptic plasticity (SDSP)
learning rule. deSNN initializes the input weights based on the
rank of the first input spikes. The initial value of each synaptic
weight is adjusted based on SDSP. SDSP adjusts each weight by
using the other input spikes that come after the first one. A
weight is potentiated when it receives an input spike, and it is
depressed in each time step that it does not receive an input
spike. By this strategy the information of the first spike as well
as the following ones are captured (Kasabov et al., 2013).

The neuron model that is used in eSNN (Wysoski et al., 2008)
and deSNN (Kasabov et al., 2013) is different from the standard
biologically plausible neuron model such as LIF or SRM. The
model works on the order of input spikes and it does not have
a leakage in the generated PSP. The leakage can be an essential
property of a biological neuron that is sensitive to the time inter-
val and consequently it can be sensitive to temporal information
inside the spatiotemporal input pattern. Although, each synaptic
input in deSNN can have multiple spikes, the output can generate
a single spike.

The tempotron (Gütig & Sompolinsky, 2006), a neuron with
supervised learning ability, can learn to separate two different
classes. Tempotron learns to spike in response to ‘+’ patterns and
to be silent in response to ‘−’ (there are two classes, and the two
classes are shown by ‘+’ and ‘−’). During training, if no output
spike was elicited in response to a ‘+’ pattern, each synaptic
efficacy is increased. Conversely, if an output spike appears in
response to a ‘−’ pattern the synaptic efficacies are decreased.
Although this model is considered to be biologically plausible,
its processing ability is restricted to binary classification. Further-
more, the scalability aspect was not discussed and it is not clear
how this method can be used to process real world datasets.

Yu, Tan, and Tang (2012), Yu et al. (2013b) and Yu, Tang,
Tan, and Yu (2014) used Tempotron for pattern recognition and
a latency code is used to encode input patterns. A three layer
structure including encoding neurons, tempotron and a readout
layer, is used. However, it has only a single learning layer in which
each neuron is trained based on Tempotron. Each neuron can only
fire once within the encoding window.

The learning algorithms mentioned in this section can train
neurons to fire only a single spike in response to a set of inputs
within a simulation time window. Some of them can learn spa-
tiotemporal input patterns with multiple input spikes per input
synapse.

3.2. Learning multiple spikes in a single neuron or a single layer of
neurons

Multiple spikes significantly increase the richness of the neural
information representation (Borst & Theunissen, 1999; Ponulak &
Kasiński, 2010). Single-spike coding schemes limit the diversity
and capacity of information transmission in a network of spiking
neurons (Xu, Zeng, et al., 2013). Moreover, training a neuron
to fire multiple spikes is more biologically plausible compared
to a single-spike learning scheme (Sporea & Grüning, 2013; Xu,
Gong, & Wang, 2013). Temporal encoding through multiple spikes
transfers important information in biological neural assemblies
and the information cannot be expressed by a single spike coding
scheme or a rate coding scheme. Although the exact mechanisms
of biological coding schemes in the brain are not well under-
stood, the biological evidence shows that multiple spikes coding
schemes have a pivotal role in the brain. For example, in the neu-
ronal circuits of zebra fish brain, spatiotemporal spiking sensory
inputs composed of spike trains are mapped to precise timing of
spikes to execute well-timed motor sequences (Memmesheimer,
Rubin, Ölveczky, & Sompolinsky, 2014). This biological evidence
has motivated the development of learning algorithms for spiking
neurons to fire multiple spikes with precise timings (Xu, Gong, &
Wang, 2013).

Supervised Hebbian learning rules were used in Legenstein,
Naeger, and Maass (2005) and Ruf and Schmitt (1997) for learn-
ing temporal patterns. Although this approach has interesting
properties such as locality, scalability and the ability of on-line
processing, the authors indicated that convergence cannot be
guaranteed in a general case. Another problem with all super-
vised Hebbian methods is continuous synaptic change even if the
neuron fires exactly at the right times.

Statistical methods optimize the weights in order to maximize
the likelihood of getting postsynaptic spikes at the desired times
(Pfister, Toyoizumi, Barber, & Gerstner, 2006). However, it is
difficult to learn complex spike trains using statistical methods.
The proposed method in Pfister et al. (2006) has not been applied
to real world data processing.

ReSuMe (Ponulak, 2005; Ponulak & Kasiński, 2010) is another
supervised learning algorithm that is based on a combination
of STDP and anti-STDP learning windows to produce multiple
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Fig. 4. Although eSNN (Wysoski et al., 2008) has a four-layer architecture, only the synaptic weights of the neurons in the third layer (L3) are trained and the other
layers have constant synaptic weights.
Source: The figure is adapted from Wysoski et al. (2008)

desired output spikes. It is a biologically plausible supervised
learning algorithm that is designed to produce a desirable output
spike train in response to a spatiotemporal input spike pattern.
The input and output spike sequences are generated randomly
and the LIF neuron model is used in Ponulak (2005) and Ponulak
and Kasiński (2010), however the learning algorithm does not
depend on the model of spiking neuron. ReSuMe is based on
the Widrow-Hoff rule which comes from a simple derivation
of an error function in classical neural networks. The STDP is
driven by using a remote teacher spike train to enhance appro-
priate synaptic weights to force the neuron to fire at desired
times. Using remote supervised teacher spikes enables ReSuMe
to overcome the silent neuron problem existing in the gradient
based learning methods such as SpikeProp. The ability of on-
line processing and locality are two remarkable properties of
ReSuMe. The capabilities of ReSuMe have inspired research into
new learning algorithms (Florian, 2012; Glackin, Maguire, Mc-
Daid, & Sayers, 2011; Mohemmed et al., 2013; Sporea & Grüning,
2013). ReSuMe works based on weight adjustment, and it is a
well-known learning method.

Ponulak and Kasiński (2010) proposed ReSuMe to adjust the
synaptic weights of a neuron to generate a desired spike train,
sd (t), in response to a spatiotemporal input spike pattern S (t) =

[s1 (t) ; s2 (t) ; . . . ; sN (t)]. ReSuMe weight adjustment is based on
the input, actual output and desired output spike trains. Ponu-
lak incorporated precise spike times in the Widrow-Hoff rule
and employed STDP and anti-STDP windows to adjust synaptic
weights and enable supervised learning according to (3.4).

dwi(t)
dt

= [sd (t) − so (t)][a +

∫
+∞

0
Tw(s)si (t − s) ds] (3.4)

where, wi(t), is the weight of the ith synapse at time t . The
constant a is a non-Hebbian term. If the number of spikes in the

actual output spike train, so (t), is more (less) than the number
of spikes in the desired spike train, sd (t), then the non-Hebbian
term decreases (increases) the weights. This term speeds up the
learning procedure. Tw(s) is the learning window and like STDP
it has an exponential function that decays with a time constant.

Tw (s) =

{
Ae−s/τ for s ≥ 0
0 for s < 0

(3.5)

Where τ is the exponential function decay time constant. The
term A represents the amplitude of long term potentiation. The
term

∫
+∞

0 Tw(s)si (t − s) ds represents the convolution of the
learning window, Tw(s), and the ith input spike train. As dis-
cussed in Ponulak and Kasiński (2010) the weight wi is increased
at the instance of spikes in the desired spike train, sd(t), if its
input contains a spike shortly before a desired spike, whereas
it is decreased if its input contains a spike shortly before an
actual output spike. When the actual spike train approaches the
desired spike train the weight increments and decrements com-
pensate each other and the weights become stable. In ReSuMe
the synapses do not have delays.

The Spike Pattern Association Neuron (SPAN) learning algo-
rithm (Mohemmed et al., 2012) is similar to ReSuMe, in that it
combines STDP and anti-STDP processes and is also derived from
the Widrow-Hoff rule. The novelty of this algorithm is that it
transforms spike trains into analogue signals such that common
mathematical operations can be performed on them. SPAN can
learn multiple desired spikes and can only train a single neuron
(Fig. 5). Despite SPAN’s similarity to ReSuMe, Mohemmed et al.
(2012) did not compare its performance with ReSuMe. In Mo-
hemmed et al. (2013) SPAN is extended to train a SNN consisting
of multiple spiking neurons to perform a classification task. In the
method the neurons construct a single layer of spiking neuron.
Although SPAN can train a neuron to fire multiple spikes, only
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a single desired spike is trained in Mohemmed et al. (2013) for
spatiotemporal patterns corresponding to a class.

Florian (2012) proposed a learning algorithm to train a neu-
ron to fire a desired spike train in response to a spatiotempo-
ral input pattern. The algorithm is called Chronotron (Florian,
2012). Chronotron has two versions: I-learning with high biolog-
ical plausibility and E-learning with high memory capacity and
high computational cost. Florian et al. used a SRM for the neuron
and a kernel function as a spike response. The total normalized
PSP of a synapse j, λj(t), is defined as the summation of all the
kernel functions related to past presynaptic spikes in the synapse
j until t . λj(t) is called a normalized PSP because the effect of the
weights is removed in the PSP and it only reflects the presynaptic
spikes effect (number of input spikes and the time interval of the
spikes). λj(t) is used to construct a graphical illustration of the
chronotron. This graphical illustration gives a good overview of
the spike learning problem, so that it can be used to investigate
the effect of the various parameters on the learning procedure.
In E-learning, an error function, E, is calculated according to a
desired spike train and the actual output of the neuron. The error
function has a factor associated with the insertion, deletion and
shift of the actual spikes toward the desired ones. The error is
used to estimate the weight change, ∆wj = −

∂E
∂wj

. After further
simplification an approximate mathematical formulation for ∆wj
is obtained. ∆wj is influenced by the synapse normalized PSP at
the time of some actual output spikes that should be removed
and some desired spikes that should be inserted and also it is
influenced by the time shift that is necessary to shift the other
actual output spikes towards the corresponding desired spikes.
During the calculation of ∆wj some simplifications are applied;
however the impact of such an approach is not justified (Florian,
2012). The intrinsic complexity and discontinuity of the dynamics
of the spiking neuron implies that the traditional gradient descent
method cannot easily be used whereas some heuristic methods
inspired by the biological evidence should be employed.

The other version of the chronotron, I-learning, is inspired by
ReSuMe and a weight is increased at the desired spike instant and
it is decreased at the time of output spikes. In ReSuMe a weight
change is managed by a decaying exponential function which
is associated with the usual STDP learning window. However, I-
learning is managed by the difference between two exponentials
similar to the ∝ kernel with two time constants. One of the time
constants is associated with the increasing part of the function
and the other related to the decaying part. Chronotron does not
have the non-Hebbian constant which is used in ReSuMe to speed
up the learning procedure. Chronotron is a learning algorithm for
a single neuron and it can train the neuron to fire multiple spikes
at desired times in response to a corresponding spatiotemporal
input pattern. Learning algorithms at the level of a neuron have
been the subject of considerable recent research such as Tem-
poteron (Gütig & Sompolinsky, 2006), ReSuMe (Ponulak, 2005;
Ponulak & Kasiński, 2010) and SPAN (Mohemmed et al., 2012).
PSD (Precise-Spike-Driven Synaptic Plasticity) (Yu, Tang, Tan, &
Li, 2013a) is another example of learning methods that can train
a single neuron to fire multiple desired spikes.

The synaptic weight association training (SWAT) algorithm
proposed in Wade, McDaid, Santos, and Sayers (2010) merges
STDP and the Bienenstock–Cooper–Munro (BCM) (Jedlicka, 2002)
learning rule to train neurons in a single layer of spiking neurons.
In the BCM model, synaptic plasticity depends on the activity of
the corresponding postsynaptic neuron. It potentiates a synaptic
weight if the firing rate of the post synaptic neuron is higher
than a threshold level, and it depresses the synaptic weight if
the postsynaptic neuron firing rate is less than the threshold
level. In SWAT, BCM is used to modulate the height of an STDP
learning window to stabilize the weight adjustment governed by

STDP. While STDP and BCM are used to train the output layer,
the hidden layer in SWAT is used as a frequency filter to extract
features from input patterns. The method only can use rate coding
in the input and output patterns.

DL-ReSuMe (A Delay Learning-Based Remote Supervised
Method for Spiking Neurons) (Taherkhani, Belatreche, Li, &
Maguire, 2015b) integrates weight modulation with the synaptic
delay shift to map a random spatiotemporal input spike pattern
into a random desired output spike train in a supervised way. DL-
ReSuMe can achieve up to 10% higher accuracy than ReSuMe and
BPSL (Taherkhani, Belatreche, Li, & Maguire, 2014) (A biologically
plausible supervised learning method for spiking neurons) at a
much faster learning speed. DL-ReSuMe (Taherkhani et al., 2015b)
can learn input spike trains of shorter duration and smaller mean
frequency with a higher accuracy and much faster learning speed
than ReSuMe. One interesting feature of DL-ReSuMe method is
the ability to solve the silent window problem in a spatiotemporal
input pattern.

DL-ReSuMe (Taherkhani et al., 2015b) adjusts each delay only
once during learning, and after the change it stays fixed and
its corresponding synaptic weight is continually changed in sub-
sequent epochs to train the neuron to fire at desired times.
However, it is possible that the single delay adjustment does not
set the delay at an appropriate value and it needs more tuning.
Specially, when multiple desired spikes are learnt by a neuron,
the effect of delay adjustment on different desired spikes should
be considered to train the delays precisely. Additionally, multiple
changes of the weights alter the previous situation and it is more
likely that the first adjustment of a delay which is appropriate for
the previous weights is not suitable for the new configuration of
the weights. So, the delays also should be updated based on the
weight updates. EDL, an Extended Delay Learning based remote
supervised method for spiking neurons (Taherkhani, Belatreche,
Li, & Maguire, 2015a), was proposed to solve this problem of
DL-ReSuMe by introducing multiple delay adjustments. The main
property of EDL is its regular multiple adjustment of delay and
weights. Irregular multiple adjustments of delays cause distrac-
tion not only in the delay training, but also in weight adjustments,
and consequently it reduces the performance of the learning.
Moreover, in EDL, the multiple delay adjustments become stable
when the neuron reaches its goal.

The Liquid State Machine (LSM) provides an approach that
consists of a dynamic filter. The dynamic filter is constructed by
a recurrent SNN called reservoir. It maps input spike trains to
an internal dynamic state which nonlinearly depend on current
and previous inputs. The output of the LSM is fed to a readout
layer (a simple classifier) which is trained to classify the internal
dynamic state streams (Maass, Natschläger, & Markram, 2004).
LSM can capture temporal information, so it can have promising
results on the applications that deal with temporal information,
i.e. the application that the exact sequence of the input occur-
ring in time is important in addition to the value of the inputs
(Verstraeten, Schrauwen, Stroobandt, & Van Campenhout, 2005).
Because, the recurrent connections in the LSM give a short-term
memory effect through the different loops generated in the recur-
rent network and it helps LSM to process temporal information
in which the history of input is important (Verstraeten et al.,
2005). Speech recognition, robot control, object tracking and EEG
recognition are examples of tasks that are intrinsically temporal.
Speech recognition of isolated digits (Verstraeten et al., 2005),
real-time speech recognition (Schrauwen, D’Haene, Verstraeten,
& Campenhout, 2008), and robotics (Joshi & Maass, 2004) are
examples of applications that use LSM. LSM has comparable per-
formance to state-of-the-art artificial intelligent systems on the
mentioned tasks (Ju, Xu, Chong, & VanDongen, 2013). The men-
tioned learning algorithm for single neurons in Section 3.2 can be
used as readout for a LSM.
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Fig. 5. SPAN trains a spiking neuron to map a spatio-temporal input pattern to an output spike train composed of a number of desired spikes. (b) The training effect
on the development of the output spikes at desired times during different learning trials. (c) The reduction of the error between the actual output spike train and
the desired spike train in addition to its standard deviation.
Source: The figure is adapted from Mohemmed et al. (2012)

The LSM proposed in Maass et al. (2004) has a fixed topol-
ogy and fixed connection weights. Its biological plausibility and
processing performance could be improved by employing other
biologically plausible topologies, and other synaptic plasticity
approaches such as short-term plasticity. Hazan and Manevitz
(2012) implemented an LSM with various topologies to inves-
tigate the effect of the topological constraints on the LSM’s
robustness. Effects of the LIF and the Izhkevich neuron model
(Izhikevich, 2003) are also investigated and shown to be qual-
itatively similar. Different types of read out methods such as
Widrow & Hoff, Back-Propagation, SVM and Tempotron (Gütig &
Sompolinsky, 2006) are used in Maass et al. (2004).

Paugam-Moisy et al. (2008) proposed a multi-timescale learn-
ing rule for SNNs where the reservoir has unsupervised synaptic
plasticity driven by STDP and axonal conduction delays. Poly-
chronous spiking patterns emerge inside the reservoir. A poly-
chromous group is a specific group of fired spikes by neurons
inside the reservoir. The spikes in a polychronous group are
not synchronous, i.e. they are not fired in same time, however
they have a time-locked firing pattern, i.e. there are a specific
time intervals between the spikes. It is believed that in a bi-
ologically plausible SNN, where the synaptic plasticity of the
network is governed by STDP and there are conduction delays be-
tween neurons, polychromous groups appear (Izhikevich, 2006;
Paugam-Moisy et al., 2008). In Paugam-Moisy et al. (2008) it is
supposed that applying input patterns from the same class can ac-
tivate a specific polychronous group, however the polychronous
group is not activated when patterns from other classes are
applied. They proposed a supervised learning algorithm to adjust
the delays related to readout neurons to learn firing patterns of
different polychronous groups related to different classes. The
SNN uses biologically plausible elements such as STDP synaptic
plasticity and axonal conduction delays, and it is also used to
classify a large dataset (US Postal Service: USPS, Hastie, Tibshirani,
& Friedman, 2001). A layer of spiking neurons is used to classify
an input pattern in a supervised manner. Only the delays of the
readout neurons are adjusted during the supervised learning. The
delays are adjusted to force the neuron related to the target
class to fire before the neuron related to the other class. The
learning method tries to maximize the time difference between
the negative class and positive class during the classification of
two classes. It has relatively poor performance in comparison
with traditional classification methods. The synaptic weights of

the readout neurons are not changed. The neurons in LSM can
fire multiple spikes; however the readout neuron can fire a single
spike. Using a readout that can fire multiple spikes can increase
the biological plausibility of the method.

Although the mentioned supervised learning methods can
train multiple output spikes, they work based on a single training
neuron or single-layer of neurons. It is difficult to design a
multilayer network of spiking neurons with supervised learning
ability to fire multiple desired spikes, because the complexity of
the learning task is increased by increasing the number of spikes
and layers (Ghosh-Dastidar & Adeli, 2009; Xu, Gong, & Wang,
2013). In this situation the learning algorithm should control
various neurons to generate different desired spikes. However, a
real biological system is composed of a large number of intercon-
nected neurons (Ghosh-Dastidar & Adeli, 2009; Sporea & Grüning,
2013; Xu, Gong, & Wang, 2013).

3.3. Learning multiple spikes in a multilayer spiking neural network

A multilayer neural network has higher information process-
ing ability than a single layer of neurons. It has been shown that
a perceptron multilayer neural network has a higher processing
ability than a single layer of neurons. A single layer perceptron is
limited to the classification of linearly separable patterns. How-
ever, a multilayer feedforward perceptron neural network can
overcome the limitation of the single layer network (Haykin,
2009). The higher processing ability of a multilayer neuronal
network is not only proven in the classical neuronal network,
but is also confirmed in the spiking neural network. Sporea and
Grüning (2013) have shown that a multilayer spiking neural
network can perform a nonlinear separable logical operation,
i.e. XOR, however the task cannot be accomplished without the
hidden layer neurons. So single neurons or single-layer of neurons
cannot simulate the learning of a biological neural network with
a high processing ability, and designing a learning algorithm for
a multilayer network of spiking neuron with the ability of firing
multiple spikes is essentially required (Ghosh-Dastidar & Adeli,
2009; Sporea & Grüning, 2013; Xu, Gong, & Wang, 2013).

Bichler, Querlioz, Thorpe, Bourgoin, and Gamrat (2012) intro-
duced a two-layer network for spiking neuron capable of extrac-
tion of temporally overlapping features directly from unfiltered
Address-Event Representation (AER) silicon retina data, using
only a simple, local STDP rule and 10 parameters in all for the
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Fig. 6. (a) The structure of the multilayer neural network proposed by Xu, Gong, and Wang (2013) to train multiple spikes (b) In the network two neurons are
connected by multiple sub connection with different delays (c) each neuron in the hidden layer or output layer can fire multiple spikes.
Source: The figure is adapted from Xu, Gong, and Wang (2013)

neurons (LIF neuron is used in this method). Although the pro-
posed learning algorithm is unsupervised, its 10 parameters are
optimized through a supervised manner. A simplified form of
STDP is used in the method. In the special form of STDP used in
Bichler et al. (2012), during LTD all the input weights are reduced
by a constant value, regardless of the time difference between
presynaptic spike and post synaptic spike times, i.e. tpost − tpre.
However, in a biologically plausible form of STDP, the amplitude
of a weight adjustment depends exponentially on the time differ-
ence. Additionally, the weight adjustment of the neurons in the
hidden layer is independent of the activity of the output neurons.

The online learning algorithm for SNNs proposed in Wang
et al. (2014) is used to classify real valued input data. It is
composed of three layers. In the input layer the real valued data
are encoded to the precise timing of spikes through population
coding scheme. The structure of the hidden layer is changed
dynamically by using a clustering algorithm. STDP and anti-STDP
are used to train neurons in the output layer. The method (Wang
et al., 2014) uses latency coding in the first layer and the time to
the first spike in the hidden layer, and it uses rating coding in the
output layer to associate the applied input pattern to the class of
the neuron that fire more spikes. Additionally, the training in the
hidden and output layers operate independently. Consequently, it
is hard for the network to find appropriate interaction between
the activity of the different layers. Moreover, it is not explained
whether adding and removing neurons to the hidden layer is a
property of the biological neural network or this characteristic
is only added to the artificial neural network to improve its
performance.

In the previous gradient descent learning algorithms for net-
work of spiking neurons like SpikeProp, QuickProp (McKennoch
et al., 2006) and RProp (Ghosh-Dastidar & Adeli, 2007), each neu-
ron in the input, hidden and output layers can only fire a single
spike. Booij and tat Nguyen (2005) and Ghosh-Dastidar and Adeli

(2009) extended the multilayer SpikeProp (Bohte et al., 2002) to
allow each neuron in the input and hidden layers to fire multiple
spikes. However, each output neuron can fire only a single spike.
Xu, Gong, and Wang (2013) proposed the first supervised learning
method based on the classical error backpropagation method that
can train a multilayer network of spiking neurons to fire multiple
spikes (Fig. 6). In this supervised learning method all the neurons
in the input, hidden and output layers can fire multiple spikes.
The network has multiple neurons at the output layer and each
of the neurons can learn to fire their desired spike trains.

SpikeProp (Bohte et al., 2002), QuickProp (McKennoch et al.,
2006), RProp (Ghosh-Dastidar & Adeli, 2007), and the methods
proposed by Booij and tat Nguyen (2005) and Ghosh-Dastidar
and Adeli (2009) adjust synaptic weights of a SNN to train each
output neuron to fire at a desired time. In the methods, the sum
of the square error for output neurons is considered as the error
function. i.e. E = 0.5

∑
j∈J (t

a
j − tdj )

2 where j is the index of the
jth output neuron from the output neuron set, J. taj and tdj are the
firing times of the first actual output spike and the desired spike
of the jth output neuron, respectively.

The difficulty of designing an algorithm which trains multiple
spikes in the output neurons is summarized as follows: there is
not a constant number of actual output spikes, especially when
working with the multilayer neural network with multiple spikes
for each neuron. In this situation it is difficult to construct an
error function. Secondly, when the number of spikes is increased
as a result of increasing the number of neurons, the interfering
effect of the various desired spikes on the weight changes is
also increased and consequently the learning becomes difficult.
When the weights are adjusted to train a neuron to learn a spike,
this adjustment affects the neuron that has been learnt from
other desired spikes. This effect can be referred to the interfering
effect. So, when the number of the spikes is increased, the limited
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resources (learning parameters) should be adjusted in response to
many demands (desired spikes). In other words, different desired
spikes may lead to adjustment of learning parameters in opposite
directions and finding an optimum value to satisfy the different
situations is difficult. In order to overcome the first problem,
Xu, Gong, and Wang (2013) supposed that the number of actual
spikes and the number of desired spikes are identical, i.e. they
are equal to Fj for jth output neuron, and they calculate the error
function theoretically according to this assumption. They use E =

0.5
∑N

j=1
∑Fj

f=1(t
(f )
j − t̂(f )j )2 as the error function to calculate the

square error of the output neurons, where N is the number of
output neurons in the output layer, and t(f )j and t̂(f )j are the firing
times of the f th actual output spike and desired spike of the jth
output neuron, respectively. Then during the experiment, if the
number of spikes in the actual spike train is not equal to the
number of spikes in the desired spike train, they consider all the
spikes in the spike train that has the lower number of spikes, say
nl, and they only consider the first nl spikes of the longer spike
train. It does not seem to be an effective method to solve the first
difficulty, because the learning method might adjust the network
learning parameters for a desired spike which already has an
actual output spike at the desired time. Consider a situation that
the number of actual output spikes is higher than the number of
desired spikes and there is a high number of early actual output
spikes. The high number of the early actual output spikes causes
that the method associates an early undesired actual spike to a
far desired spike and overlook the actual spike that already is
at the desired time. Finding a method that works based on local
time event or temporal event can improve the method. Xu, Gong,
and Wang (2013) believe that their learning algorithm overcomes
the second problem by using the principle of ‘‘the Bigger PSP,
the Bigger Adjustment (BPBA)’’ in their learning. According to
the BPBA principle at the instant of weight adjustment, t , the
changes of each synapse are in proportion to the height of the PSP
produced in the synapse at the time t . This is equivalent to what
happens during STDP. In STDP the presynaptic spike near to the
post synaptic spike has a big PSP and their synaptic weights also
are changed by a big value. Xu, Gong, and Wang (2013) defined an
error function based on the time difference between actual output
spike trains and desired spike trains. Then the derivation of the
error function with respect to the synaptic weights is calculated,
and a learning rule with a large mathematical equation for chang-
ing the synaptic weights is extracted. The constructive effect of
one of the mathematical elements is described according to BPBA
principle; they do not investigate the effect of other mathematical
elements in the learning rule. It is not clear what happens if some
of the mathematical elements in the learning rule are simplified,
similar to what is done in Gütig and Sompolinsky (2006) for the
chronotron. The simulation results in Xu, Gong, and Wang (2013)
have shown that ReSuMe is more efficient and accurate than
the proposed method of Xu et al. for simulation times that are
less than 600 ms. However the algorithm can be used to train
a multilayer neural network. If ReSuMe is improved for learning
a multilayer SNN, it might have good accuracy and efficiency
compared to the method that is proposed in Xu, Gong, and Wang
(2013).

Gradient based methods suffer from various problems. A sud-
den jump in the network training error, called surge, is considered
as one of the major problems, and it can cause failure in learn-
ing (Shrestha & Song, 2015). The non-monotonic and nonlinear
behaviour of the neuron membrane potential make it difficult
to minimize the constructed error and consequently leads to
these surges during training (Shrestha & Song, 2013, 2015; Takase
et al., 2009). The problem increases when the output neurons are
trained to fire more than a single spike. Additionally, construction
of an error function becomes difficult, because, the number of

actual output spikes is not usually the same as the number of
desired spikes during learning (Xu, Gong, & Wang, 2013). Al-
though, training multiple spikes is difficult, it is a biologically
plausible coding scheme (Sporea & Grüning, 2013; Xu, Gong, &
Wang, 2013) and it can convey more neural information (Borst &
Theunissen, 1999; Ponulak & Kasiński, 2010). This implies that
the decoding scheme has an important effect on the learning
tasks. After investigation of gradient based methods and their
application in Adeli and Hung (1994), Ghosh-Dastidar and Adeli
(2007) and Hung and Adeli (1993, 1994), it is concluded that
the application of STDP which works based on local events is
worth further investigation to design learning algorithms for a
multilayer network of spiking neurons (Ghosh-Dastidar & Adeli,
2009).

STDP and anti-STDP were used in Sporea and Grüning (2013)
as the first biologically plausible supervised learning algorithm
for classification of real world data using a multilayer spiking
neural network. Each neuron in the input, hidden and output
layers of the network can fire multiple spikes. In the learning
algorithm, the output spikes produced by the hidden neurons are
not considered during training of the learning parameter of the
hidden neurons. In other words the output spikes of the hidden
neuron are not considered during the STDP and anti-STDP related
to the hidden neuron input weight adjustments. However, in a
biological neuron, the pre and post synaptic spikes of a neuron are
usually used in STDP. Additionally, the spikes fired by the hidden
neurons have a significant effect on a training task in a multi-
layer spiking neural network. Applying the hidden neuron output
spikes during the learning of the hidden neuron can lead to a
more biologically plausible learning algorithm, and improve the
accuracy of the method. Another negative aspect of the learning
method used for the hidden layer in Sporea and Grüning (2013)
is that the same method was used for adjusting the input weights
of both inhibitory and excitatory neurons. However, different
weight adjustment strategies that reflect appropriately the effect
of positive and negative PSP produced by the excitatory and
inhibitory neurons in a hidden layer can be used to improve the
performance of the method.

A biologically plausible supervised learning algorithm for spik-
ing neural networks is proposed in Taherkhani, Belatreche, et al.
(2018) and Taherkhani, Cosma, and McGinnity (2018). It uses the
precise timing of multiple spikes which is a biologically plausible
coding scheme to transmit the information between neurons. The
learning parameters of neurons in the hidden layer and output
layer are adjusted in parallel to train the network. It uses biolog-
ical concept such as STDP, anti-STDP and delays learning to train
the network. Simulation results show that the proposed method
in Taherkhani, Belatreche, et al. (2018) and Taherkhani, Cosma,
and McGinnity (2018) has improved performance compared to
the fully supervised algorithm that trains multiple spikes in all
layers proposed in Sporea and Grüning (2013). The improvement
of the proposed method is achieved because of some significant
properties of the method. First, it has used the firing times of
spikes fired by the hidden neurons to train the input weights
of the hidden neurons. However, in Sporea and Grüning (2013)
the firing time of a hidden neuron is not considered. Another
property of the proposed method is the application of different
appropriate approaches to adjust the weights related to inhibitory
and excitatory neurons in a hidden layer. Delay learning increases
the complexity of the learning method and consequently the
running time, however, it can improve the performance of the
method. Additionally, delays are a biologically plausible property
and it is a natural property of a real biological system.

The various algorithms discussed in this section are summa-
rized in Table 1 according to their ability to train a single desired
spike or multiple desired spikes, and their structure (a single
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neuron, a single layer of neurons, and multiple layers of spiking
neurons). The learning algorithms are highly concentrated on
learning a single spike (the second row) or on a single neuron
(the second column) which are comparably simple tasks. The
rate coding, which works based on multiple spikes without con-
sidering the precise timing of the spikes, commonly is used in
traditional ANNs. After finding the biological evidence that proves
the encoding of information in the precise timing of the spikes,
learning algorithms are devised to capture the information in the
precise time of spikes. The first learning algorithms for spiking
neurons such as SpikeProp (Bohte et al., 2002) work based on a
single spike. Other examples of the learning algorithms that learn
a single spike are shown in the first row of Table 1. However, the
learning algorithms which work based on multiple spikes (the
third and the fourth rows of Table 1) train a more biologically
plausible learning task. Investigation of biological neurons shows
that the synaptic plasticity models working based on multiple
spikes are a better representation of their biological counter-
parts based on experimental data (Bi & Wang, 2002; Froemke
& Dan, 2002; Froemke et al., 2006; Morrison et al., 2008; Seth,
2015; Wang et al., 2005; Zuo, Safaai, Notaro, Mazzoni, Panzeri,
& Diamond, 2015). Additionally, multiple spikes convey more
information (Borst & Theunissen, 1999; Ponulak & Kasiński, 2010;
Xu, Gong, & Wang, 2013). The fourth column of the table con-
tains examples of learning algorithms for multilayer networks
which are biologically plausible learning algorithms. Although,
the multilayer learning algorithms that can train multiple spikes
are more biologically plausible, training multiple spikes is a dif-
ficult learning task for a multilayer network. Therefore, finding a
learning algorithm for multilayer network of spiking neurons to
train multiple desired spikes remains a challenging task.

3.4. Learning algorithms with delay leaning ability

Experimental research has proven the existence of synap-
tic delays in biological neural (Katz & Miledi, 1965; Minneci,
Kanichay, & Silver, 2012; Parnas & Parnas, 2010). The synaptic
delay influences the processing ability of the nervous system
(Gilson et al., 2012; Glackin et al., 2010; Xu, Gong, & Wang,
2013). There is biological evidence that the synaptic delay can be
modulated (Boudkkazi, Fronzaroli-Molinieres, & Debanne, 2011;
Lin & Faber, 2002). ‘Delay Selection’ (Ghosh-Dastidar & Adeli,
2007, 2009) and ‘Delay Shift’ (Adibi, Meybodi, & Safabakhsh,
2005) are two approaches that have been developed for de-
lay learning in SNNs. Two neurons are connected by multiple
synapses (sub connections) with various time delays in the delay
selection method. The weights related to appropriate delays are
increased and the weights of connections with unsuitable delays
for learning desired spikes are decreased. For example, SpikeProp
(Bohte et al., 2002) used a ‘Delay Selection’ method.. Similarly,
other research (Ghosh-Dastidar & Adeli, 2007, 2009; McKennoch
et al., 2006; Shrestha & Song, 2015; Sporea & Grüning, 2013; Xu,
Gong, & Wang, 2013) has constructed multiple synapses with dif-
ferent synaptic weights and delays between two neurons. Using
sub-connections with various synaptic delays improves the learn-
ing performance by producing output spikes at different desired
times. However, the number of learning parameters (synaptic
weights) is increased and consequently the computational cost
is increased.

The delay shift approach is used to train a CD. A CD fires in
response to coincident input spikes. Synaptic delay adjustment
in the model is an essential characteristic of the learning algo-
rithm (Adibi et al., 2005; Pham et al., 2008). Pham et al. (2008)
proposed a self-organizing delay shift method to train a CD. A
Radial Basis Function (RBF) network is trained in Adibi et al.
(2005) using a delay shift approach. In this method a synaptic

delay vector makes the centre of the RBF neuron. If input spike
patterns are close to this centre, they will fire the neuron. In a
CD, the weights are considered constant and are not modified.
However, the synaptic weight modulation has a dominant effect
on the processing ability of spiking neural networks. DL-ReSuMe
(Taherkhani et al., 2015b), EDL (Taherkhani et al., 2015a), and
the supervised method proposed in Taherkhani, Belatreche, et al.
(2018) and Taherkhani, Cosma, and McGinnity (2018) for mul-
tilayer SNN are other examples that use delay shift method for
training.

3.5. Deep Spiking Neural Networks

Deep learning methods have achieved successful performance
in different applications especially in image recognition (Hinton &
Salakhutdinov, 2006; LeCun, Bengio, & Hinton, 2015). The ability
of deep learning to integrate the feature extraction and feature
learning processes enables it to be applied to challenging prob-
lems that are difficult to be solved by traditional
machine learning methods, since traditional machine learning
methods have separate feature engineering and feature learn-
ing processes (Taherkhani, Belatreche, et al., 2018; Taherkhani,
Cosma, & McGinnity, 2018). Although, deep learning architectures
have shown promising results, their processing ability is far
below their biological counterpart, the brain.

In a Deep Neural Network (DNN), several processing layers are
staked to make a deep multilayer structure. All or most of the
stacked layers are trained to increase the selectivity ability of the
overall deep learning method and make a robust representation
of the input data on different layers (LeCun et al., 2015). The
deep learning methods that work with raw input data are con-
sidered as representation learning methods. In a representation
deep learning method the raw inputs are applied to a network
and the network extracts representations which are required for
classification or detection from the raw input data (LeCun et al.,
2015).

3.5.1. Backpropagation for supervised learning
Backpropagation for supervised learning method has an im-

portant role in the successful results of classical deep learning
methods (LeCun et al., 2015). Consequently, appropriate back-
propagation learning algorithms for Deep Spiking Neural Network
(DSNN) can result in successful performance for DSNNs. Zenke
and Ganguli (Zenke & Ganguli, 2018) have proposed a voltage
based gradient decent approach, called SuperSpike, to train a
multilayer network of deterministic integrate-and-fire neurons
to process spatiotemporal spiking patterns. They proposed a bio-
logically plausible strategy for credit assignment in a deep SNN.
In the gradient approach, the partial derivative of the hidden
neurons is approximated by the product of a nonlinear function of
postsynaptic voltage and related filtered presynaptic spike train.
Using a nonlinear function of the postsynaptic voltage, instead
of the postsynaptic spike train as credit assignment for hidden
neurons, overcomes the problem of silent neuron in the network
without injecting noise which might reduce the method accuracy.
Additionally, SuperSpike used synaptic eligibility traces to im-
port temporal activity in the credit assignment rule. Experiments
carried out by Neftci, Mostafa, and Zenke (2019) revealed that
SuperSpike does not have good performance for large multilayer
SNN. Additionally, it is not applied for real world applications.

Mostafa (2018) proposed a backpropagation learning method
for SNNs composed of multiple layers. Nonleaky integrate-and-
fire neurons were used in this network. The neuron synaptic
current kernels are exponentially decaying functions. The time
of the first spike is considered as the desired output. A differen-
tiable function has been constructed to relate the times of input
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Table 1
Learning algorithms for spiking neural networks.

Single neuron Single layer Multilayer

A single spike Evolving spiking neural network (eSNN)
(Belatreche et al., 2007; Wysoski et al.,
2008), Tempotron (Yu et al., 2012, 2013b,
2014),
Multiple SPAN (Mohemmed et al., 2013)
LSM (Paugam-Moisy et al., 2008), Pattern
Clustering (Pham et al., 2008)

SpikeProp (Bohte et al., 2002),
Backpropagation with momentum
(McKennoch et al., 2006; Xin &
Embrechts, 2001), QuickProp
(McKennoch et al., 2006; Xin &
Embrechts, 2001), Resilient
propagation (RProp) (Ghosh-Dastidar
& Adeli, 2007; McKennoch et al.,
2006; Silva & Ruano, 2005),
Levenberg–Marquardt BP (Silva &
Ruano, 2005), The SpikeProp based
on adaptive learning rate (Shrestha &
Song, 2015), Evolutionary strategy
(Belatreche et al., 2003)

A single output spike &
multiple spikes in input or
hidden layers

Tempotron (Gütig & Sompolinsky, 2006)
Supervised Hebbian learning (Ruf &
Schmitt, 1997)

deSNN (Kasabov et al., 2013) (Booij & tat Nguyen, 2005),
(Ghosh-Dastidar & Adeli, 2009)

Multiple spikes ReSuMe (Ponulak & Kasiński, 2010),
SPAN (Mohemmed et al., 2012),
Chronotron (Florian, 2012), Supervised
Hebbian learning (Legenstein et al., 2005),
PSD (Yu et al., 2013a)
BPSL (Taherkhani et al., 2014), DL-ReSuMe
(Taherkhani et al., 2015b), EDL (Taherkhani
et al., 2015a)

Statistical methods (Pfister et al., 2006) (Sporea & Grüning, 2013),
Unsupervised (Bichler et al., 2012),
(Xu, Gong, & Wang, 2013),
(Taherkhani, Belatreche, et al., 2018;
Taherkhani, Cosma, & McGinnity,
2018).

spikes to the time of the first spike of an output neuron using a
transformation. The input spikes that have causal relation with an
output spike are considered, i.e. the input spikes that fire before
the output spike time. Then weights are updated using a derivable
cost function on spike time. In this method the time of the first
spike is considered, and it prevents the neuron to fire multiple
times.

3.5.2. Spiking convolutional neural networks
CNN is a well-known DL method. The early layers in CNN were

inspired from neuron responses in the primary visual cortex (V1).
Primary visual features, such as oriented edges, are detected by
the neurons in the V1 area. In conventional CNN, input images are
convolved with kernels or filters to extract features related to the
edges in early layers and to extract more abstract features, i.e. fea-
tures related to shapes in higher level layers. In the traditional
CNN the parameters of the kernel filters are often trained using
error backpropagation methods. There exist a number of Spiking
CNNs (SCNNs) which utilize hand-crafted convolution kernels and
these SCNNs have been applied in a number of classification tasks
(Kheradpisheh, Ganjtabesh, & Masquelier, 2016; Kheradpisheh,
Ganjtabesh, Thorpe, & Masquelier, 2018; Masquelier & Thorpe,
2007; Tavanaei, Masquelier, & Maida, 2016; Zhao, Ding, Chen,
Linares-Barranco, & Tang, 2015). In hand-crafted convolution ker-
nels, the kernel parameters are fixed whilst the network is being
trained.

Kheradpisheh et al. (2018) have proposed a SCNN where in
the first layer Difference of Gaussians (DoG) filters are used to
extract edges, and hand-crafted DOG filters were used in the first
layer. DOG filters were used to encode the contrast in the input
image to latency spike code. Positive or negative contrasts are
detected by applying a DOG filter over different parts of input
images. The DOG cells emit spikes depending on the contrast, and
they fire spikes in such way that the order in the spikes contains
information about the input image contrast. It is suggested that
this rank order code can be used to perform V1 like edge de-
tection (Delorme, Perrinet, & Thorpe, 2001; Kheradpisheh et al.,
2018). After the first layer there are three pairs of convolutional
and pooling layers. The convolutional layers are trained by STDP.
Additionally, there is a lateral inhibition mechanism in all convo-
lutional layers such that when a neuron is fired, it inhibits other

local neurons by resetting their potentials to zero, and prevents
their firing for the current applied input image. Moreover, each
neuron can only fire once during recognition of an input image.
The learning in a subsequent convolutional layer begins when the
learning in the current convolutional layer is finalized. The SCNN
(Kheradpisheh et al., 2018) used max pooling layers which allow
the propagation of its first emitted input spike. Despite the rank
order coding of input information in the hand-crafted DOG layer,
in the pooling layer only the time of the first spike is considered
and information in the other spikes is ignored. The final pooling
layer in the SCNN is a global max pooling layer which pools on
overall neuronal maps of the last convolutional layer. The output
of the global pooling layer is feed to a non-spiking classifier, i.e. a
linear SVM classifier, to determine the category of the applied
input. Therefore, supervised learning takes place in a non-spiking
method, i.e. SVM. Additionally, instead of using spiking activity
of the last convolution layer, the threshold of the neurons in
the last convolutional layer was set to infinite and the final
potentials are used for the next steps. The performance of the
SCNN on MNIST data was 98.4%. There exist other SCNNs where
all convolutional layers are trained instead of using fixed initial
Gabor filters (Tavanaei, Masquelier, & Maida, 2018).

Illing, Gerstner, and Brea (2019) have shown that localized
receptive fields, i.e. Gabor filters, improve the accuracy of a
networks compared to all-to all connectivity. They have used
integrate-and-fire neurons and STDP to train a shallow SNN that
contains a single hidden layer and a readout layer. The hidden
layer has fixed weights which correspond to random Gabor filters,
and they used a STDP based learning rule to train the readout
layer. The SNN reached a testing accuracy comparable to other
deep SNN on MNIST, i.e. 98.6%. Illing et al. (2019) suggest that
novel biologically plausible deep learning methods should reach
better performance than their shallow counterpart networks.
Additionally, novel biologically plausible deep learning methods
should be tested on more complicated data than MNIST.

3.5.3. Semi-supervised learning methods
Panda and Roy (2016) proposed a convolutional Auto-Encoder

(AE) learning method for SNN. AE is a well-known unsupervised
learning method in classical neural networks. AE maps input to a
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lower dimensional feature space, then it reconstructs the input
data from the low dimensional features. The first procedure is
called encoding and the last procedure that reconstructs the input
from the low dimension features is called decoding. It is supposed
that AE can extract robust and discriminative features in a low
dimensional feature space that can be used to improve classifica-
tion accuracy. Panda and Roy (2016) have used a backpropagation
algorithm for layer wise training of different convolutional layers.
They have used the membrane potential of spiking neurons to
construct an error function. The convolutional layers are trained
independently and are staked in a network. Additionally, they
have used an average pooling layer after each convolutional layer.
The pooling layer calculates the average of membrane potential
of convolutional neurons within a sampling window. Panda and
Roy (2016) have used a backpropagation method to train the
final fully connected output layer. The output layer maps ex-
tracted features from multiple convolutional and pooling layers
to corresponding spiking labels using labelled training data. The
CSNN achieved a high classification accuracy of 99.08% on MNIST
dataset.

Lee, Panda, Srinivasan, and Roy (2018) proposed a learning
algorithm for SCNN. The SCNN pretrains convolutional kernels
using STDP in a layer wise manner. During the pretraining proce-
dure, synaptic weights and neuronal thresholds are trained. At the
time of a post-spike, the shared kernel weights are adjusted. Av-
erage STDP induced weight adjustments are applied when there
are multiple post-neuronal spikes in a feature map. Additionally,
at the time of a post-spike in a feature map, the firing thresholds
of all the neurons in the feature map are uniformly increased.
The threshold of neurons in feature maps exponentially decay
over non-spiking periods. It is supposed that this threshold ad-
justment resembles homoeostasis in biological neurons. After the
pretraining procedure, all the layers in the SCNN are trained using
a gradient descent BP algorithm.

The Deep Belief Networks (DBNs) proposed by Hinton and
Salakhutdinov (2006) and the Deep Boltzmann Machines (DBMs)
proposed by Srivastava and Salakhutdinov (2014) are two classi-
cal deep learning methods that have an unsupervised pretrain-
ing procedure. They have a layer-wise pretraining procedure
and the deep structures of the networks enable them to learn
high-level representation of features. The Restricted Boltzmann
Machine (RBM) is a two-layer neural network that constitutes
the building block of DBNs and DBMs. RBMs are trained by
a method called Contrastive Divergence. Neftci, Das, Pedroni,
Kreutz-Delgado, and Cauwenberghs (2014) have proposed a spik-
ing version of Contrastive Divergence to train a spiking RBM
composed of integrate-and-fire neurons. Neftci et al. (2014) have
used a STDP for Contrastive Divergence. The accuracy of the
spiking DBN on the MNIST data has been compared with feed-
forward fully connected multi-layer SNNs and SCNNs in Ta-
vanaei, Ghodrati, and Reza (2019), and the comparison results
show that the spiking DBN has lower accuracy than the other
SNNs.

3.5.4. Converted classical DNN as DSNN
There are a group of DSNNs which are directly constructed

from the conventional DNN. In the group of DSNNs, first a clas-
sical DNN which is composed of neurons with continuous ac-
tivation values is trained, then the classical DNN is deployed
to a DSNN (Cao, Chen, & Khosla, 2015; Rueckauer, Lungu, Hu,
& Pfeiffer, 2017). By this approach the state-of-the-art methods
for training DNN can be used to construct DSNN to achieve a
competitive performance. This conversion might cause loss of
accuracy in the DSNN compared to the original DNN. Different
techniques (such as introducing extra limitations on neuron firing
rates or network parameters, weight scaling, adding noise, and

using probabilistic weights) have been used to reduce the loss
of accuracy during the conversion from ANN to SNN (Shrestha,
2018). The generated DSNN needs a large number of time steps
to perform the input–output mapping, and the constructed DSNN
cannot capture temporal dynamics of spatiotemporal data (Lee,
Sarwar, & Roy, 2019). Tavanaei et al. (2019) compared a number
of DSNNs, and their result shows that deep SNNs which are
converted from a classical DNN can achieve the highest accuracy
on MNIST data compared to methods that train DSNNs directly.
DSNNs which are constructed by converting a classical DNN to
DSNN usually use rate coding to encode an analog output of a
classical neuron. The rate coding can mask the temporal infor-
mation that can be processed by DSNN (Lee et al., 2019; Mostafa,
2018).

3.5.5. Deep recurrent spiking neural networks
Recurrent neural networks are a class of neural networks

whose internal states evolve with time, and they have been
used in temporal processing tasks such as noisy time series pre-
diction, language translation, and automatic speech recognition
(Bellec, Salaj, Subramoney, Legenstein, & Maass, 2018; Neftci
et al., 2019). Training large RNNs is a difficult task because during
training, functions with long-range temporal and spatial depen-
dencies should be optimized. The non-derivable dynamics of
Spiking RNNs increase training difficulties. Training a deep RNN
is a challenging task, as the dependency in space is extended
in addition to the dependency in time (Neftci et al., 2019). Th
gradient descent method is a powerful method to train learning
parameters in RNNs. In a multilayer network with hidden units
the adjustment of learning parameters (credit assignment) for
hidden units are obtained using the chain rule of derivatives.
Special and temporal credit assignments are two problems that
should be solved to train a RNN. The spatial credit assignment is
a common problem for RNNs and multi-layer perceptrons, and it
is assigned spatially across layers to update learning parameters.

In the gradient descent method, a method similar to the spatial
credit assignment is used for temporal credit assignment through
unrolling the network in time. This method is called Backpropa-
gation Through Time (BPTT). The non-linearity in the activity of
spiking neurons makes it difficult to apply the classical BBTT to
SNN. Different methods have been proposed to address this chal-
lenge. Using biologically inspired local learning rules, converting
trained classical NNs to SNNs, smoothing the network to make it
continuously derivable, and using approximated gradient descent
for SNN are different techniques that have been used to overcome
the problem related to nonlinearity in gradient descent learning
methods for SNNs (Neftci et al., 2019).

The smoothing method can be used to overcome nonlin-
earity issues of the gradient decent learning method for SNNs.
Smoothing models are used in SNN to construct a network with
well-behaved gradients. For instance Huh and Sejnowski (2018)
used an extended version of integrate-and-fire model in which
the nonlinearity of a neuron is replaced by a continuous-valued
gating function. Then a RNN with those neurons was trained
using a standard BPTT. Another group of smoothing models are
probabilistic models which use the log-likelihood of a spike train
as a smooth quantity. Although there are some probabilistic
models that can learn precise output spike timing (Gardner,
Sporea, & Grüning, 2015), probabilistic models usually used rate-
coding at output level and firing probability densities. These
properties reduce their ability to capture temporal information.
Although BBTT is a standard learning method for recurrent neural
networks, BBTT is not a biologically realistic method. Because
in BBTT, error signals should be transmitted backward in time
and space. Bellec et al. (2019) proposed a biologically plausible
learning method using locally available information to make a
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biologically plausible approximation of BBTT. They have used
feedforward eligibility traces of synapses that are available in
a real time at the location of synapses to design the learning
method (Bellec et al., 2019).

4. Challenges and opportunities

Recently, classical DNNs have achieved successful results in
different applications. Despite this, DSNNs are still in the develop-
mental stage and more advanced learning algorithms are required
to train them. The main challenge in training DSNNs is to find
methods to train neurons in a hidden layer of DSNN in interaction
with an output layer and other hidden layers. Supervised learn-
ing using a backpropagation method is a common approach to
train a classical deep (multilayer) artificial neural network (ANN).
However, the nonlinearity discontinuity of SNN activities makes
it difficult to adopt existing backpropagation methods to train
SNNs (Tavanaei et al., 2019). Additionally, it is not biologically
plausible to train a DSNN with the error backpropagation method
(Illing et al., 2019), and backpropagation learning methods do not
mimic the learning of the human brain (Whittington & Bogacz,
2019). It is an important challenge to understand what are the
best biologically plausible network architectures and learning
rules to train DSNNs for information processing. Local learning
rules inspired by STDP are more biological plausible and can be
investigated to design new learning algorithms for SNNs. One
interesting structural property of a biological NN is the recur-
rent connections in the network. BBTT (Neftci et al., 2019) is a
classical method which has been applied to train a RNN. Finding
a biologically plausible alternative for BBTT to train RNN using
biologically plausible local learning rule can be consider as an
important challenge for SNNs.

Neural encoding is an important aspect of learning in a SNN
(Wu et al., 2019). Finding appropriate encoding mechanisms for
spiking activity and designing compatible learning algorithms for
the encoding mechanisms are new challenges in the SNN field.
An optimization method for output spike train encoding has been
proposed in Taherkhani, Cosma, and Mcginnity (2019), and it
has been shown that optimizing the output encoding during the
learning phase in classification tasks can increase classification
accuracy by 16.5% compared to when using a non-adapted output
encoding. Xu, Yang, and Zeng (2019) have shown that the time
distances of input spikes related to actual and desired output
spikes have an important effect on the accuracy of SNN, and
finding an optimal time interval for input spikes to be involved in
the synaptic weight adjustments can improve learning accuracy
by 55% in a SNN. Wu et al. (2019) have shown that input spike
encoding has a significant effect on improving the accuracy of
a learning algorithm for SNNs. In a classification task a sim-
ple output encoding is to assign an applied input to the class
corresponding to the output neuron that has the highest firing
rate. Orchard et al. (2015) have assigned an applied input to the
class related to the output neuron that fires first, and they have
reported this output encoding has achieved a good performance.
On other hand, Diehl et al. (2015) have shown that an increase
in the number of output spikes in the output encoding will
increase the classification accuracy. A population of neurons can
be used instead of a single neuron for each class to reduce the
variance of the output (Pfeiffer & Pfeil, 2018). Therefore, spike
encoding has a prominent effect on the performance of SNNs and
appropriate encoding strategies should be employed. Addition-
ally, learning algorithms should be compatible with the selected
encoding strategy. This is a challenge in biologically plausible
learning methods because it is not clear which encoding method
(or methods) is used in the brain.

Time plays an important role in activity of SNNs. SNNs gen-
erate spatiotemporal spike patterns whereas classical NNs work

with spatial activation. Consequently, SNNs need a specific loss
function that generates an error related to time which is different
from the loss function of a classical NN. There are a considerable
number of DSNNs that use rate-based approach (Diehl & Cook,
2015; Eliasmith et al., 2012; Guerguiev, Lillicrap, & Richards,
2017; Mesnard, Gerstner, & Brea, 2016; Neftci, Augustine, Paul,
& Detorakis, 2016). However, these DSNNs are close to classical
neural networks which work based on continuous values, and
they neglect the information carried by individual spikes that can
lead to a fast computation (Zenke & Ganguli, 2018). For instance,
a widely used method to convert a real value to a spike train is
using the spike train that is drawn from a Poisson process with
a firing rate in proportion to the real value. In this conversion
only the average firing rate of the spike train is important and
the precise timing of spikes is not considered (Bellec et al., 2019).
This can limit the capability of SNNs to process the precise timing
of spikes.

DSNNs are often used for processing the data which has been
used by classical DNNs. For instance, image samples in the MNIST
and CIFAR10 datasets which are constructed from pixels with
continuous values have been used for a long time with classical
DNN, and DSNNs cannot currently outperform classical DNNs
on this data. The nature of these benchmarks is close to the
activation of classical neural network (i.e. they have continuous
values) and they can directly be used by the methods. However,
such data should be converted into spike trains before it can
be used by DSNN. This conversion might destroy some parts
of information in the images, and it can result in a reduction
of accuracy of DSNN (Bellec et al., 2019). Therefore, applying
DSNNs for processing new datasets that have properties which
are compatible with SNNs can lead to improved performance
rather than when processing these datasets using non spiking
neural networks. Research on this type of data can lead to the
emergence of new SNN that can perform processing tasks which
are difficult for conventional DNN. For instance the data obtained
by event-based cameras in Ramesh et al. (2019) or the spiking ac-
tivity that is recorded from real biological nervous system (Maggi,
Peyrache, & Humphries, 2018) originate from original spatiotem-
poral spiking activity and they can be a good candidate to be
used by DSNN. There has been progress in event-based vision
and audio sensors (Liu, Delbruck, Indiveri, Whatley, & Douglas,
2015; Pfeiffer & Pfeil, 2018) and the data extracted from them
can be processed by DSNNs. However, currently, there is a lack
of appropriate benchmark data for evaluating SNNs. SNNs have
the ability to achieve good performance when trained on suitable
datasets that have properties which are compatible with SNNs,
and currently there is an urgent need to develop such benchmark
datasets.

A major capability of classical deep learning methods, es-
pecially deep CNNs, is their capability for hierarchical feature
discovery, where discriminative, abstract, and invariant features
are extracted. Bio-inspired SNNs have brain-like representation
ability, and they potentially have higher representation capabil-
ity than traditional rate-based networks (Maass, 1996; Tavanaei
et al., 2019). The SNNs ability to process temporal data can be
mixed with the hierarchical feature representation capability of
classical deep neural networks to construct a neural network with
a high processing ability.

Advancements in regularization methods for training classi-
cal deep neural networks have improved the performance of
these methods. However, SNNs have different characteristics, and
finding appropriate regularization methods for learning param-
eter adjustment in SNN can be another interesting challenge to
improve the performance of DSNNs.

Processing of the future big data, which is exponentially ex-
panding as a result of advancements in technology, demands
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huge computing resources. This demand requires a novel scal-
able computing framework. Neuromorphic hardware is believed
to be a paradigm that can potentially satisfy such a demand
(Neftci, 2018), because they mimic the brain which has significant
processing ability. The brain can perform information process-
ing with a high level of robustness, efficiency, and adaptivity.
Neuromorphic engineering tries to produce hardware that can
emulate the cognitive and adaptive ability of the brain. The exact
principles of computation in the brain, which contains a mas-
sively parallel self-organizing neural architecture, have not yet
been discovered (Douglas & Martin, 2004). In a situation such as
real-time adaptability, autonomy, or privacy, it is required that
computation performs close to sensors (Neftci, 2018). In this case
computing systems such as neuromorphic hardware with low
power consumption have advantage.

Biological neurons have constraints on communication, and
power consumption, and biological neurons communicate
through sparse spiking activity which reduce energy consump-
tion (Gerstner & Kistler, 2002). Spike events consume energy
and a low number of spikes in sparse spiking activity means
a low power consumption. The state of other activities in the
neuron such as membrane potentials, synaptic states, and neu-
rotransmitter concentrations are local to the neuron. The sparse
communication and the local processing generate a highly scal-
able structure. A computational strategy that works based on
locally available information and sparse global communication
is required to construct neuromorphic hardware with a scalable
structure to solve real-world problems. Designing algorithms
using local events for learning precise timing of spikes in a SNN
can be useful for designing a learning strategy for neuromorphic
hardware. SNNs are compatible for implementation in hardware
as they can be more energy efficient compared to classical neural
networks that work based on continuous values. Additionally, the
nature of information communication in SNNs, which is based on
spike activities, is close to the binary processing in a hardware
platform. However, most of the state-of-the art machine learning
methods work on non-local information that restricts their scala-
bility when they are implemented in hardware. Consequently, the
methods cannot perform online and incremental fast and energy
efficient learning, similar to the learning observed in humans and
animals. New biological plausible learning algorithms for SNNs
are required to design neuromorphic hardware that performs
accurate high speed and scalable low energy computation.

In summary, there is a number of challenges for designing
learning algorithms for DSNN. Designing learning algorithms to
train hidden neurons in an interconnected SNN by overcoming
the discontinues and nonlinear behaviour of SNN to improve their
accuracy is one of the main challenges. It is believed that local
learning rules such as STDP performed in the biological nervous
system can be a good option to design new biologically plausible
learning algorithms for SNNs. Another challenge in training SNNs
is neural encoding. It has been shown that neural encoding has
significant effect on performance of a SNN. However, it is a chal-
lenge to find what is the exact encoding mechanism in the brain
and how to design a learning algorithm to be compatible with
the encoding mechanism. Another challenge in designing learning
algorithms for SNN is the existence of time in the activity of a
SNN. SNNs directly work with time which is a new characteristic
compared to traditional NN. This offers an ability to work directly
with time, however it causes discontinuity in neuron activity
that increases the difficulty of learning. Another challenge is to
make new dataset that use the ability of spiking times, such as
the data generated from event-based vision and audio sensors.
Designing biologically plausible learning algorithms that work
based on local events offers a good opportunity to design learning
algorithms for power efficient neuromorphic hardware.

5. Conclusion

In this paper, the biological background of spiking neurons
was first considered, and then state of the art learning algorithms
for SNNs critically reviewed. According to the literature, there
are different mathematical models for biological neurons. The
models simulate behaviour of a biological neuron in different
level of details. LIF model is a simple one dimensional model
of a biological neuron that needs less computational effort for
modelling a biological neuron and Hodgkin and Huxley is a four
dimensional model that can simulate the dynamic of a biological
neuron with more details. It has a high computational cost.

The review shows that synaptic plasticity is supposed to be
the base of learning in the brain and there are different models
of synaptic plasticity for a biological neuronal system. The mod-
els try to simulate the behaviour of biological synapses based
on experimental data. Literature review shows that standard
pair-based STDP model was used to design biological plausible
learning algorithms for spiking neurons. However, the standard
pair-based STDP model is not the only model for the synaptic
plasticity. It has been shown that multiple-spike STDP models are
biologically plausible models, and they can predict experimental
data captured from biological neurons with a higher precision.
It is not clear how multiple-spike STDP models can be used
to design learning algorithm for artificial neuronal network for
machine learning purpose. Application of the multi-spike STDP
models can lead to design of a more biologically plausible learn-
ing algorithm for spiking neuron and potentially leads to design
a more powerful intelligent system.

According to the review, delays are a natural property of a
biological neural network. On the other hand information conveys
between neurons through precise timing of spikes. Delays can
have direct effect on the precise timing of spikes. Therefore,
designing a learning algorithm that merges the usual weight
adjustment methods with a proper delay learning approach, can
lead to a more biologically plausible learning algorithm with a
higher processing ability.

Traditional neural networks work based on rate coding. The
idea of encoding of information in precise timing of spikes moti-
vated research into the development of learning algorithms such
as SpikeProp that work based on a single spike per neuron. How-
ever, coding scheme based on precise timing of multiple spikes
can convey more temporal information between neurons and it
is more biologically plausible. However, designing a learning algo-
rithm for a network of spiking neurons that conveys information
between neurons through precise timing of multiple spikes is a
difficult task and it demands more research.

A single biological neuron has interestingly different learning
characteristics and many of the learning ability of a single bio-
logical neuron are not considered in their artificial counterparts.
Various learning algorithms for single neurons were reviewed in
this paper. The review shows that designing new learning algo-
rithms for a single neuron with new biological properties is an
ongoing research, and it can lead to generation of new biologically
plausible learning algorithms with higher processing abilities. The
review also shows that multilayer neuronal networks have higher
processing ability compared to a single neuron or single layer of
neurons. It is not clear how the different learning algorithms for a
single neuron with new biologically plausible characteristics can
be extended to train a multilayer network of spiking neurons. A
challenging task remains to design a more biologically plausible
learning algorithm for multilayer spiking neural networks.
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