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a b s t r a c t

Recurrent neural networks (RNNs) have recently achieved remarkable successes in a number of
applications. However, the huge sizes and computational burden of these models make it difficult for
their deployment on edge devices. A practically effective approach is to reduce the overall storage and
computation costs of RNNs by network pruning techniques. Despite their successful applications, those
pruning methods based on Lasso either produce irregular sparse patterns in weight matrices, which
is not helpful in practical speedup. To address these issues, we propose a structured pruning method
through neuron selection which can remove the independent neuron of RNNs. More specifically, we
introduce two sets of binary random variables, which can be interpreted as gates or switches to
the input neurons and the hidden neurons, respectively. We demonstrate that the corresponding
optimization problem can be addressed by minimizing the L0 norm of the weight matrix. Finally,
experimental results on language modeling and machine reading comprehension tasks have indicated
the advantages of the proposed method in comparison with state-of-the-art pruning competitors. In
particular, nearly 20× practical speedup during inference was achieved without losing performance
for the language model on the Penn TreeBank dataset, indicating the promising performance of the
proposed method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Recurrent neural networks (RNNs) have recently achieved
remarkable successes in multiple fields such as image caption-
ing (Anderson et al., 2018; Vinyals, Toshev, Bengio, & Erhan,
2016), action recognition (Pan et al., 2019; Ye et al., 2018),
music segmentation (Liu et al., 2018), question answering (Mao,
Hao, Wang, & Huang, 2018; Sagara & Hagiwara, 2014), machine
translation (Bahdanau, Cho, & Bengio, 2014; Luong, Pham, &
Manning, 2015; Yang, Chen, Wang, & Xu, 2018), and language
modeling (Byeon, Breuel, Raue, & Liwicki, 2015; Liu et al., 2018;
Sutskever, Vinyals, & Le, 2014). These successes heavily rely
on huge models trained on large datasets, especially for those
RNN variants such as Long Short Term Memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997) and Gated Recurrent
Unit (GRU) networks (Cho et al., 2014). With the increasing
popularity of edge computing, a recent trend is to deploy these
models onto end devices so as to allow off-line reasoning and
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inference. However, these models are generally of huge sizes and
bring expensive computation and storage costs during inference,
which makes the deployment difficult for those devices with
limited resources. In order to reduce the overall computation and
storage costs of these models, model compression on recurrent
neural networks has been widely concerned.

Network pruning is one of the prominent approaches to tackle
the compression of RNNs. Narang, Elsen, Diamos and Sengupta
(2017a) presents a connection pruning method to compress RNNs
efficiently. However, the obtained weight matrix via connection
pruning has random and unstructured sparsity. Such unstruc-
tured sparse formats are unfriendly for efficient computation in
modern hardware systems (Lebedev & Lempitsky, 2016; Zhao
et al., 2017) due to irregular memory access in modern proces-
sors. Previous studies (Wen et al., 2017; Wen, Wu, Wang, Chen, &
Li, 2016) have shown that speedup obtained with random sparse
matrix multiplication on various hardware platforms is lower
than expected. For example, varying the sparsity level in weight
matrices of AlexNet in the range of 67.6%, 92.4%, 94.3%, 96.6%,
and 97.2%, the speedup ratio was 0.25×, 0.52×, 1.36×, 1.04×,
and 1.38×, respectively. A practical remedy to this problem is
structured pruning where pruning individual neurons can di-
rectly trim weight matrix size such that structured sparse matrix
multiplication efficiently utilizes the hardware resources.
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Due to the promising properties of structured pruning, the
structured pruning on deep neuron networks(DNNs) has been
widely explored (Ding, Ding, Guo, & Han, 2019; He, Liu, Wang,
Hu, & Yang, 2019; He, Zhang, & Sun, 2017; Zhuang et al., 2018).
However, compared with the structured pruning on DNNs, there
is a vital challenge originated from recurrent structure of RNNs,
which is shared across all the time steps in a sequence. Structured
pruning methods used in DNNs cannot be directly applied to
RNNs. The reason is that independently removing the links can
result in a mismatch of feature dimensions and then induce
invalid recurrent units. In contrast, this problem does not exist
in DNNs, where neurons can be independently removed without
violating the usability of the final network structure. Accordingly
group sparsity (Louizos, Welling, & Kingma, 2017) is difficult to
be applied in RNNs.

To address this issue, we explore a new type of method along
the line of structured pruning of RNNs through neuron selection.
In detail, we introduce two sets of binary random variables,
which can be interpreted as gates to the neurons, to indicate the
presence of the input neurons and the hidden neurons, respec-
tively. The two sets of binary random variables are then used to
generate sparse masks for the weight matrix. More specifically,
the presence of the matrix entry wij depends on both the presence
of the ith input unit and the jth output unit, while the value of
wij indicates the strength of the connection if wij ̸= 0. However,
the optimization of these variables is computationally intractable
due to the nature of 2|h| possible states of binary gate variable
vector h. We then develop an efficient L0 inference algorithm for
inferring the binary gate variables, motivated from the work of
pruning DNN weights (Louizos et al., 2017; Srinivas, Subramanya,
& Babu, 2017).

While previous efforts on structured pruning of RNNs resort
to the group lasso (i.e., the L2,1 norm regularization) for learning
sparsity (Wen et al., 2017), the lasso based methods are shown
to be insufficient in inducing sparsity for large scale non-convex
problems such as the training of DNNs (Collins & Kohli, 2014;
Srinivas et al., 2017). In contrast, the expected L0 minimization
closely resembles spike-and-slab priors (Mitchell & Beauchamp,
1988; Xu, Zhe, Qi, & Yu, 2016; Zhe, Xu, Qi, & Yu, 2015) used in
Bayesian variable selection (Louizos et al., 2017; Srinivas et al.,
2017). The spike-and-slab priors can induce high sparsity and
encourage large values at the same time due to the richer param-
eterization of these priors, while LASSO shrinks all parameters
until lot of them are close to zero. And the L0-norm regular-
ization explicitly penalizes parameters for being different than
zero with no other restrictions. Hence compared with Intrinsic
Sparse Structures (ISS) via Lasso proposed by Wen et al. (2017),
our neuron selection via the L0 norm regularization can achieve
higher adequate sparsity in RNNs.

In this paper, we propose a new type of method to prune
individual neurons of RNNs. Our key contribution is that we
introduce binary gates on recurrent and input units such that
sparse masks for the weight matrix can be generated, allowing
for effective neuron selection under sparsity constraint. For the
first work of neuron selection in RNNs, we attempt to employ the
smoothed mechanism for the L0 regularized objective proposed
in Louizos et al. (2017), motivated from Srinivas et al. (2017).

We evaluate our structured pruning method on two tasks,
i.e., language modeling and machine reading comprehension. For
example, in the case of language modeling of the word level on
the Penn Treebank dataset, our method achieves the state-of-
the-art results, i.e., the model size is reduced by more than 10
times, and the inference of the resulted sparse model is nearly
20 times faster than that of the original model. We also achieve
encouraging results for the recurrent highway networks (Zilly,
Srivastava, Koutník, & Schmidhuber, 2017) on language modeling
and BiDAF model (Seo, Kembhavi, Farhadi, & Hajishirzi, 2016) on
machine reading comprehension.

2. Related work

Despite model compression has achieved impressive success
in DNNs (e.g., CNNs) (Ayinde, Inanc, & Zurada, 2019; Han, Mao, &
Dally, 2016; Mohammed & Lim, 2017), it is difficult to directly
apply this technology of compressing DNNs to the compres-
sion of RNNs due to the recurrent structure in RNNs. There are
some recent efforts on the compression of RNNs. Generally, the
compression techniques on RNNs can be categorized into the
following types: pruning (Narang, Elsen, Diamos & Sengupta,
2017a; Narang, Elsen & Diamos, 2017; Wen et al., 2017), low-
rank matrix/tensor factorization (Prabhavalkar, Alsharif, Bruguier,
& McGraw, 2016; Ye et al., 2018; Zilly et al., 2017) and quanti-
zation (Hubara, Courbariaux, Soudry, El-Yaniv, & Bengio, 2016;
Wang et al., 2018). Wang, Lin and Zhongfeng (2018) introduce
several strategies including gate activation sparsity, top-k pruning
schemes and mixed quantization schemes to compress LSTMs.
Our work lies in the branch of pruning.

Pruning approaches can be further divided into non-structured
pruning and structured pruning. For non-structured pruning, ele-
ments of the weight matrices can be removed based on some cri-
teria. For example, Narang, Elsen, Diamos and Sengupta (2017a)
present a magnitude-based pruning approach for RNNs, i.e., at
every iteration, the top-k elements of the weights are set as 0.
While such an approach can achieve over 90% sparsity in RNNs
of Deep Speech 2 model with a minor decrease of accuracy,
the obtained non-structured sparse matrices cannot efficiently
accelerate the computation in modern computing platforms due
to the irregular memory access. To improve this, Narang, Elsen
and Diamos (2017) further proposed block-structured pruning in
RNNs via the group lasso regularization. It extends the approach
in Narang, Elsen, Diamos and Sengupta (2017a) to prune blocks of
a matrix instead of individual weights. Wen et al. (2017) also pro-
posed Intrinsic Structured Sparsity (ISS) for LSTMs by collectively
removing the columns and rows for the weight matrices. ISS re-
duces the sizes of basic structures within LSTM units and is more
hardware-friendly for acceleration compared with block structure
in Narang, Elsen and Diamos (2017). Similar to Narang, Elsen and
Diamos (2017), ISS also relies on group lasso for sparsity learning.
Nevertheless, lasso regularization is shown to be insufficient for
large non-convex problems, e.g., the training of DNNs (Collins
& Kohli, 2014). To alleviate this challenge in Narang, Elsen and
Diamos (2017) and Wen et al. (2017), we instead present a
structured sparsity learning method through L0 regularization,
which not only reduces the size of basic structures of LSTMs but
also achieves higher sparsity for non-convex RNN training in a
tractable way.

3. Structured pruning of LSTMs through neuron selection

Without loss of generality, we focus on the compression of
LSTMs (Hochreiter & Schmidhuber, 1997), a common variant of
RNN that learns long-term dependencies. Note that our method
can be readily applied to the compression of GRUs and vanilla
RNNs. Before presenting the proposed sparsification methods, we
first introduce the LSTM network.

it = σ (W ixt + U iht−1 + bi),
ft = σ (W f xt + U f ht−1 + bf ),
ot = σ (W oxt + Uoht−1 + bo),
ut = tanh(W uxt + Uuht−1 + bu), (1)
ct = it ⊙ ut + ft ⊙ ct−1,

ht = ot ⊙ tanh(ct ),

where σ (·) is the sigmoid function, ⊙ denotes the element-wise
multiplication and tanh(·) is the hyperbolic tangent function. xt
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Fig. 1. Illustration on the proposed gate mechanism. (a) shows an illustration of stacked LSTMs with Ŵ and Û , where the parameters in the red box are illustrated
in (b) and (c); (b) shows the gate z2 and s2 controlling the input-to-hidden matrix Ŵ 2 activation of the input neurons, where z2 = s1 since the output of W 1 is the
input to W 2; and (c) shows the gate s2 controlling the hidden-to-hidden weight matrix U2 .

denotes the input vector at the time-step t , ht denotes the current
hidden state, and ct denotes the long-term memory cell state. it ,
ft and ot correspond to the input gate, the forget gate and the
output gate, respectively. For notation simplicity, we let W =

{W i,W f ,W o,W c
} be the input-to-hidden weight matrices, and

U = {U i,U f ,Uo,U c
} be the hidden-to-hidden weight matrices.

3.1. Neuron selection via binary gates

To prune individual neurons in LSTMs, which can simulta-
neously reduce the size, FLOPs of LSTMs, we introduce neuron
selection mechanisms into the design of LSTMs. As illustrated
in Fig. 1(b) and (c), we introduce two auxiliary sets of binary
‘‘gate’’ or ‘‘switch’’ variables: one set of variables (denoted by
z = {zi}) controls the presence of the input neuron i, where
zi ∈ {0, 1} and |z| = m is the number of input neurons the
other set of binary gate switch variables (denoted by s = {sj})
controls the presence of the hidden neuron j, where sj ∈ {0, 1}
and |s| = n is the number of hidden neurons. In this way, wij
controls the strength of the link from the input neuron i to the
hidden neuron j, while zi and sj control the presence of neurons,
and the mask on wij can be calculated by zi × sj. In particular,
such a gating mechanism can induce structured sparsity on the
weight matrices. If zi = 0, all hidden neurons connected to i
will be switched off meaning that the ith column of W will be
all zeros; and sj = 0 will turn off each row of W . Therefore,
by sharing the binary masks across all the gates, we can obtain

structured sparsity on the weight matrices. For convenience, we
re-parameterize the original parameter matrices W and U to Ŵ
and Û as follows,

Ŵ = W ⊙ (zs⊤), Û = U ⊙ (ss⊤), (2)

where ⊙ denotes the element-wise product operation. In this
way, wij controls the strength of the link from the input neuron i
to the hidden neuron j, while zi and sj control the presence of
neurons. Furthermore, our proposed switch mechanism can be
directly applied to stacked LSTMs. As illustrated in Fig. 1(a), since
the output of the lth layer is the input of the l + 1th layer, we
have z l+1

= sl.
To model the uncertainty of each of random ‘‘gate’’ variables zi

and sj, we let zi ∼ Bern(πzi ) and sj ∼ Bern(πsj ), where πzi and πsj
are the parameters of the Bernoulli distributions, and denote the
probability of random variables zi and sj taking value 1, respec-
tively. We can optimize this objective function with πz and πs by
minimizing the L0 norm of the weight matrix to achieve neuron
selection. The L0 norm regularization can explicitly penalize no-
zero parameters of models without further restrictions (Louizos
et al., 2017), and it demonstrates superior advantages over the
L1 norm regularization in the sparse learning. A naive idea in
learning sparsity is to directly utilize the L0-norm regularization
on the weights of LSTMs, which leads to the following objective
function:

L(W ,U) = ED(W ,U) + λ1∥W∥0 + λ2∥U∥0,
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W ∗,U∗
= argmin

W ,U
L(W ,U). (3)

Here ∥W∥0 =
∑m

i=1
∑n

j=1 I(wij ̸= 0) denotes the L0-norm, and
∥U∥0 follows a similar pattern. I(.) is the indicator function, and
m and n denote the number of input units and hidden units,
respectively. ED(W ,U) represents the loss on the dataset D, and
λ1 and λ2 are penalty parameters for the sparsity regularization.

Neuron selection via binary random variables generates masks
for the weight matrix. With the gating mechanism, the L0 norm
in Eq. (3) can be further specified as ∥Ŵ∥0 =

∑
i
∑

j zi × sj
and ∥Û∥0 =

∑
j1

∑
j2
sj1 × sj2 . Hence we can seek to penalize

the number of parameters appearing in LSTM on average. The
expectation of Eq. (3) over the auxiliary masks is reformulated
as follows,

L(W ,U, πz, πs) = EΦ(z|πz )Φ(s|πs)[ED(W ,U, z, s)]

+ λ1

∑
i=1

∑
j=1

πziπsj + λ2

∑
i=1

∑
j=1

i̸=j
πsiπsj + λ2

∑
j=1

πsj , (4)

(W ∗,U∗, π∗

z , π∗

s ) = argmin
W ,U,πz ,πs

L(W ,U, πz, πs).

The item sj × sj in ∥Û∥0 =
∑

j1

∑
j2
sj1 × sj2 denotes the mask

of weight parameters Ujj. The term sj × sj only depends on the
presence of the jth recurrent units. Hence the expectation of sj×sj
is πj. Note that to avoid quadratic terms on sj, we write ∥Û∥0
as the summation of two terms as shown in Eq. (4). Since the
binary gates are shared across layers in stacked RNNs, it may
result in an extremely unbalanced sparse structure in different
layers to penalize the gate variables of different layers with the
same penalty factor. For this reason, we specify independent
regularization for different layers.

3.2. Optimization

It is intractable to learn sparse parametric models by minimiz-
ing the L0 norm based on gradient optimization. The optimization
of the objective in Eq. (4) is problematic due to the discrete nature
of z and s. In principle, the REINFORCE estimator (Williams, 1992)
can be used to compute the gradients, but it suffers from high
variance and slow convergence. On the other hand, the straight-
through estimator (STE) (Bengio, Léonard, & Courville, 2013) can
also be used, however, the mismatch of the parameters between
the forward and backward pass in the optimization leads to
biased gradients and updates.

A more appealing method is to continuously relax discrete
random binary variables by a hard-sigmoid rectification of con-
tinuous random variable with a distribution (Louizos et al., 2017),
as follows:

z = min(1,max(0, τz)), τz ∼ q(τz |φz), (5)

where the q(τz |φz) corresponds to the continue distribution with
parameter φz . Then the probability of the discrete random bi-
nary variables being non-zero is computed by the cumulative
distribution function(CDF) Q (.) of s, as follows:

Φz(z ̸= 0|φz) = 1 − Q (τz ≤ 0|φz). (6)

Then it can not only enable gradient-based optimization of a
generic loss by smoothing the binary gate variables z, but also
allow the variables z to be exactly zero. We can write the contin-
uous distribution q(τz |φz) = q(f (φτz , ϵ)) by using the reparame-
terization trick (Kingma & Welling, 2013; Rezende, Mohamed, &
Wierstra, 2014), where f (.) is a deterministic and differentiable
function and ϵ denotes the uniform or Gaussian free noise. Since
ϵ is independent of the parameters of models, we can directly
take the gradient of the optimization target over the parameters
of the distributions of random variables.

Similarly, we can apply the same procedure to smooth gate
variables s with φs which denotes the parameters of the correl-
ative continuous distribution. Armed with the above approach,
we can generate z and s via the differentiable transformation
in Eq. (8), and therefore shift the optimization over πz and πs
in Eq. (4) to φz and φs in the hard concrete distributions. The
original objective function in Eq. (4) can be reformulated as

L̃(W ,U, φz, φs) = EΦ(z|φz )Φ(s|φs)[ED(W ,U, z, s)]

+ λ1

∑
i=1

∑
j=1

(Φzi (zi ̸= 0|φzi ))(Φsj (sj ̸= 0|φsj ))

+ λ2

∑
i=1

∑
j=1

i̸=j
(Φsi (si ̸= 0|φsi ))(Φsj (sj ̸= 0|φsj ))

+ λ2

∑
i=1

Φsi (si ̸= 0|φsi ).

(W ∗,U∗, φ∗

z , φ
∗

s ) = argmin
W ,U,πz ,πs

L̃(W ,U, Φz, Φs). (7)

As shown in Louizos et al. (2017), an efficient choice of the
smoothing continuous distribution is as follows; the binary con-
crete distribution (Jang, Gu, & Poole, 2017; Maddison, Mnih, &
Teh, 2016) q(τ̂ ) with the parameters logα and β , where logα

and β are the location and temperature parameters respectively,
is stretched from the (0,1) interval to the (ζ , γ ) interval,with
ζz < 0 and γz > 1. Then we apply a hard-sigmoid on its random
samples. More specific, the procedure to smooth gate variables s
is as follows:

u ∼ Uniform(0, 1),

τ̂ = ff((log u − log(1 − u) + logαz)/βz), (8)
τ = τ̂ (ζz − γz) + γz,

z = min(1,max(0, τ )),

where σ is the sigmoid function as introduced before. The proba-
bility of the z being non-zero can be computed by the cumulative
density function Φ(·) of z as follows:

Φz(z ̸= 0|φz) = ff(logαz − βz log
−γz

ζz
), (9)

where φz = {αz, βz, ζz, γz} denotes the parameters of the hard
concrete distribution. Similarly, we can apply the same procedure
to smooth gate variables s.

During testing, we use the following estimator for the final z
and s under a hard concrete smoothness:

z = min(1,max(0,ff(logαz)(ζz − γz) + γz)), (10)

s = min(1,max(0,ff(logαs)(ζs − γs) + γs)). (11)

4. Experiments

To compare with Intrinsic Sparse Structures (ISS) via Lasso
proposed by Wen et al. (2017), we also evaluate our structured
sparsity learning method with L0 regularization on language
modeling and machine reading tasks. In the case of language
modeling, we seek to sparsify a stacked LSTM model (Zaremba,
Sutskever, & Vinyals, 2014) and the state-of-the-art Recurrent
Highway Networks (RHNs) (Zilly et al., 2017) on the Penn Tree-
bank (PTB) dataset (Marcus, Marcinkiewicz, & Santorini, 1993).
For the task of machine reading comprehension, we choose the
Bi-Directional Attention Flow Model (BiDAF) (Seo et al., 2016)
with a small hidden size of 100 on the SQuAD dataset (Ra-
jpurkar, Zhang, Lopyrev, & Liang, 2016). While our structured
L0 norm imposes no shrinkage on the remaining components,
the learned model could be over-fitted if weight decay is not
assigned. Consequently, we follow a similar pattern in Louizos
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Table 1
Learning structured sparsity from scratch in stacked LSTMs.
Method Dropout keep ratio Perplexity (validate, test) LSTMs (input, L1, L2) Size Time (ms) Speedup Multi-add reduction

Vanilla model 0.35 (82.57, 78.57) (1500, 1500, 1500) 66.0M 365.92 ± 10.3 1.00× 1.00×

ISS 0.60 (82.59, 78.65) (1500, 373, 315) 21.8M 39.88 ± 0.7 9.17× 7.48×
Our method 0.65 (81.62, 78.08) (251, 296, 247) 6.16M 18.87 ± 0.3 19.39× 13.95×

Fig. 2. Illustration of word embedding and weight matrices in the two-layer LSTM. The first row presents the embedding layer for the input and output respectively.
The second row shows the weight matrices for the first and second layers. Note that we have concatenated {W i,W f ,W u,W o

} and {U i,U f ,Uu,Uo
} into a single

matrix with shape 3000 × 6000. The blue dots are nonzero weights and the rest ones are structurally pruned to zeros. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

et al. (2017) to impose L2 regularization on model parameters. For
the setting of the hard concrete distribution, we follow the same
pattern in Louizos et al. (2017) for all experiments, i.e., ζ , γ , β

are taken as the hyper-parameters. For logα, it is updated by
back-propagation of the network and initialized by samples from
N (1, 0.1).

4.1. Language modeling

For language modeling, we evaluate two models: stacked
LSTMs and recurrent highway neural networks. Both models are
trained from scratch. We use the word level PTB dataset for
language modeling, which consists of 929k training words, 73k
validation words and 82k test words with 10,000 unique words
in its vocabulary.

4.1.1. Stacked LSTMs
Baselines. We compare our proposed method against two

baselines, the vanilla two-layer stacked LSTM used in Zaremba
et al. (2014) and the ISS method (Wen et al., 2017), which is the
state-of-the-art method in RNN compression. The dropout keep
ratio is 0.35 for the vanilla model. The vocabulary size, embedding
size and hidden size of the stacked LSTMs are set as 10,000,
1500 and 1500, respectively, which is consistent with the settings
in Wen et al. (2017). The results of ISS are taken from the original
paper.

Hyper-parameters Setting. We use NT-ASGD (Merity, Keskar,
& Socher, 2017) for training with an initial learning rate equal to
20.0 and the gradient clipping set to 0.25. Similar to ISS (Wen
et al., 2017), we increase the dropout keep ratio to 0.65 due to
the intrinsically structured sparsity in the network. We use the
default initialization strategy provided in PyTroch1 for the input
and output word embedding as well as the parameters of the
LSTM.

Results. We show the results of stacked LSTMs in Table 1.
It can be observed that our method finds the most compact
structure of the model, i.e. the numbers of the first and second
hidden units are reduced from 1500 to 296 and 247 respectively,

1 https://pytorch.org/

both of which are significantly smaller than the vanilla stacked
model and the ISS method. Besides, the dimension of word em-
bedding vectors also decreases from 1500 to 251. Overall, our
method reduces the model size from 66.0M to 6.16M , which
is more than 10× reduction comparing to the vanilla model.
Theoretically, the computation is reduced by nearly 14× in terms
of multi-add operations. Compared with ISS in Wen et al. (2017),
our structured sparsity learning method reduces the multi-add
computation further by 1.86x and the model size further by
15.64M . The results indicate that our structured L0 regularization
can indeed sufficiently sparse the model. Additionally, despite
the model size being sharply shrunk, our method still achieves
the lowest perplexity on the PTB dataset. The excellent perfor-
mance of our method can be explained by the superiority of our
structured L0 regularization since it poses no penalization over
the remained parameters, while for ISS, the group lasso method
penalizes the norms of all groups collectively, and thereon could
affect the model capacity.

In order to evaluate the practical speedup of the learned struc-
tures of our proposed method and all the baseline, we measure
the speedup of inference on CPU.2 using TensorFlow with Intel
MKL library3 The time is measured with 10 batch size and 30
unrolled steps, and the result is averaged from 1000 times of
inference with standard deviation reported. It can be seen from
Table 1 that the practical inference time is 19.4× faster than
the original model. The actual speedup is even higher than the
theoretical result, and we conjecture that this could be due to
some basic optimization in the MKL library.

To look into the learned structured sparsity, we further visu-
alize the embedding and weights of the stacked LSTMs in Fig. 2
after training 200 epochs. We can see that after structured L0
regularization, the size of word embedding is highly reduced,
and similarly, most rows and columns of the weight matrices are
pruned away. Therefore, such matrices can be re-arranged to a
small and compact structure, leading to practical speed up during
inference.

2 Intel CPU E5-2630 v4 @ 2.20 GHz processor with a total of 40 cores.
3 https://www.tensorflow.org/guide/performance/overview.
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Table 2
Ablative study the penalty parameters of stacked LSTMs.
The penalty scale
λ
(1)
1 , λ

(1)
2 , λ

(2)
1 and λ

(2)
2

Perplexity
(validate, test)

The dimension of
input, 1st, 2nd

(1, 1, 1, 1) (81.73, 78.33) (1020, 215, 250)
(2, 1, 1, 1) (82.87, 79.25) (635, 146, 247)
(3, 1, 1, 1) (85.49, 81.82) (438, 110, 244)
(4, 1, 1, 1) (87.37, 84.22) (333, 88, 242)
(5, 1, 1, 1) (90.83, 84.22) (273, 70, 237)

* We use λ
(1)
1 , λ

(1)
2 , λ

(2)
1 and λ

(2)
2 to denote the times to 0.08/N , e.g., λ

(1)
1 × 0.08/N denotes the

penalty parameter to the input neuron the first layer.

Fig. 3. Perplexity of our method and ISS under different sparsity lev-
els with different regularization strength. For our method, we vary λ in
{0.5/N, 0.56/N, 0.6/N, 0.7/N, 0.8/N} (N denotes the size of the training data
sample). In terms of ISS, we tune the group lasso regularization λ̂ defined in its
paper among {0.006, 0.005, 0.004}.

Ablative Study. We used a two-layer stacked LSTM to verify
the sensitivity of the penalty parameters in Eq. (3). Experimen-
tally, we find that setting all the penalty values to 0.08/N (where
N denotes the number of training data) can lead to good perfor-
mance. For convenience, we use λ

(1)
1 , λ(1)

2 , λ(2)
1 and λ

(2)
2 to denote

the times to 0.08/N , e.g., λ
(1)
1 × 0.08/N denotes the penalty

parameter to the input neuron the first layer. Here the super-
index denotes the corresponding layer. Initially, we set all the
parameters to the same value (i.e., 0.08/N). We find that the
numbers of the first-layer and second-layer hidden units are
reduced from 1500 to 215 and 250 respectively, while the size
of the input only decreases from 1500 to 1020.

Since the first input layer is usually much larger than the
hidden layers, we increase the penalty value of λ

(1)
1 to drop out

more input neurons and to seek much smaller networks. From
Table 2, we can find that with a larger value of λ

(1)
1 , the sparser

input layer can be obtained while with a significant increase in
the perplexity.

4.1.2. Recurrent highway networks
Our method can be further extended to Recurrent Highway

Networks (RHNs) (Zilly et al., 2017). Due to the structure of RHNs,
we only introduce the binary mask z and set its regularization as
λ. During training, we impose L0 regularization over z so as to
learn structured sparsity.

Baselines. To evaluate our structured sparsity learning
method, we choose ‘‘Variational RHN + WT’’ of Zilly et al. (2017)
as our baseline model. The number of units per layer is defined
as the width of RHNs. It has depth 10 and width 830, with totally
23.5M parameters. The implementation of RHNs is available from

Table 3
Learning structured sparsity from scratch in RHNs.
Method Perplexity (validate, test) RHN width Parameter

RNHs (Zilly et al., 2017) (67.9, 65.4) 830 23.5M
ISS (Wen et al., 2017) (68.1, 65.4) 517 11.1M
Our method (68.2, 65.1) 389 7.2M

its authors.4 Aside from the vanilla RHNs, we also compare to the
ISS method, and its results are taken from Wen et al. (2017).

Hyper-parameters Setting. For our method, we use the same
hyper-parameters as those in the baseline, except for that the
parameters of models are initialized uniformly in [−0.08, 0.08],
the dropout ratios are multiplied by 0.75, and we divide the
learning rate by a factor of 1.02 at every epoch after it reaches 35.

Results. Table 3 shows the results obtained by the baseline, ISS
and our method. Comparing to the vanilla RHN and ISS method,
our structured sparsity approach can significantly achieve a more
compact model with width 387 without losing perplexity. The
parameter size also decreases to 7.1M , which is about 69.8%
reduction.

We further investigate the trade-off between perplexity and
sparsity of our method and ISS, and the plot is shown in Fig. 3.
It can be observed that our method can achieve a higher re-
duction of RHNs width than ISS at the same perplexity. With
the same width, our method can achieve lower perplexity as
well. This again demonstrates the superiority of our structured
L0 regularization over group lasso methods in inducing sparsity
for recurrent structures.

4.2. Machine reading comprehension

Machine Reading Comprehension (MRC) is one of the fron-
tier tasks in the field of natural language processing. In MRC,
the models answer a query about a given context paragraph,
and Exact-Match (EM) and F1 scores are two major metrics for
the evaluation (the higher the better). We use the benchmark
Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,
2016), which consists of 100,000+ questions crowd-sourced on
more than 500 Wikipedia articles.

Baselines. We use the BiDirectional Attention Flow Model
(BiDAF)5 (Seo et al., 2016) as the backbone model to evaluate our
structured sparsity learning method. The BiDAF is composed of
bidirectional LSTMs, and our structured L0 regularization method
can be readily applied. We focus on sparsifying the two lay-
ers of the bidirectional LSTM denoted as ModFwd1, ModBwd1,
ModFwd2, and ModBwd2, since they are shown to be most
computationally expensive layers in Wen et al. (2017).

Hyper-parameter setting. We penalize different layers of the
model in a similar pattern to the two-layer LSTMs used language
modeling. We also increase the dropout keep ratio to 0.9 as the

4 https://github.com/jzilly/RecurrentHighwayNetworks
5 We use the code from https://github.com/allenai/bi-att-flow.
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Table 4
Comparison between the vanilla trained BiDAF, ISS method and our method.
Method EM F1 ModFwd1 ModBwd1 ModFwd2 ModBwd2 outFwd outBwd Weight

Vanilla BiDAF 67.98 77.85 100 100 100 100 100 100 2.69M
ISS (Wen et al., 2017) 65.36 75.78 20 33 40 38 31 16 0.95M
Our method 65.67 75.69 26 33 36 36 33 15 0.96M

structured sparsity itself can prevent over-fitting to some extent.
All the rest training schemes are the same as those in the baseline.

Results. Table 4 shows the EM, F1, the number of remain-
ing components and model sizes obtained by the baseline, ISS
and our method. As is mentioned in Wen et al. (2017), the
scale of the vanilla BiDAF is compact enough on the SQuAD
dataset, and it is thereon hard to reduce the hidden size of those
LSTM layers in BiDAF without losing any EM/F1. Our structure
sparsity method achieves competitive sparsity and performance
comparing to the ISS method, both of which produce remark-
ably compressed models under acceptable degradation to the
vanilla BiDAF. The result again demonstrates that our L0 struc-
tured methods can be effectively used to discover the sparsity of
recurrent neural networks.

5. Conclusion

In this paper, we propose a novel structured sparsity learning
method for recurrent neural networks. By introducing binary
gates on neurons, we penalize weight matrices through L0 reg-
ularization, reduce the sizes of the network parameters signifi-
cantly and lead to practical speedup during inference. We also
demonstrate the superiority of our relaxed L0 regularization over
the group lasso used in previous methods. Our methods can be
readily used in other recurrent structures such as Gated Recurrent
Unit, and Recurrent Highway Networks.

For future work, we plan to explore the sparsity constraints
for neuron selection for further reducing the number of model
parameters, to exploit a more appealing unbiased, lower variance
estimator (e.g., the unbiased ARMs-estimator recently proposed
in Yin & Zhou, 2019) for neuron selection. We also plan to
combine neuron selection with quantization algorithms to further
reduce model sizes and FlOPs of RNNs.
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