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a b s t r a c t 

Brain–machine interface (BMI) is a useful technology which creates a new way for disable people to 

communicate with the world, but experimenting with human brains is risky. Hence, a precise mathemat- 

ical model of the information transmission in the process of limb movement is necessary to be estab- 

lished. In this paper, firstly, we improve the classical single-joint information transmission (SJIT) model 

through introducing several neuron models, and the improved model is closer to the true single-joint 

movements. Secondly, a closed-loop system with a Wiener filter-based decoder, an auxiliary controller 

based on model predictive control (MPC) and a network of Izhikevich neurons is formulated based on 

the improved model, and the used network of Izhikevich neurons is more time efficient than the existing 

one. Finally, in this closed-loop system, the intracortical micro-stimulation (ICMS) technology is intro- 

duced to feedback the information from the MPC controller in real time. The auxiliary controller assist 

the brain to control artificial arm by changing the frequency of stimulation current. In this way, the com- 

putational complexity of the optimization problem proposed in this paper is greatly reduced, and the 

closed-loop BMI system designed in this paper can well track the desired trajectory. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Brain–machine interface (BMI), as an emerging interdisciplinary

echnology, has developed rapidly in recent years [1–5] . It creates

 new way to assist the brain communicate with external without

elying on spine and muscle [1] . As a practical technology, BMI is

idely used in the medical field such as the functional recovery

f the movement for disabled people and the support for the el-

erly [6–8] . Generally, the BMI includes three parts: the decoder,

he encoder and the measurement of neural activities in the cere-

ral cortex. Among them, when it is used in the functional recov-

ry of joint movement, the decoder conveys the movement inten-

ion from the brain to the external device and the encoder feeds

he motor information back to the brain [2] . A BMI system can be
� This work is supported by the National Science Foundation of China (61603295), 

utstanding Youth Science Fund of Xi’an University of Science and Technology 

2018YQ2-07), Shaanxi postdoctoral Science Foundation (2018BSHEDZZ124), China 
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ormulated by the BMI, brain and external device (such as the ar-

ificial arm). 

Establishing a proper mathematical model for the information

ransmission in the process of limb movement is significant for

tudying BMI system [9–12] . In recent years, many studies have es-

ablished or applied these kinds of mathematical models. Among

hem, Pollok et al. have analysed the basic principle about how

he brain control fingers to move repeatedly in detail, which based

n the qualitative relationship between brain regions S1/M1 and

nger tapping activity [13] ; based on the neural-network-based

odel used in [14] , Esposti et al. have mentioned that the intro-

uction of the feedback control is benefit to the reaching of limb

n BMI system [14] ; based on the single-joint information trans-

ission (SJIT) model, Kumar et al. have designed a closed-loop BMI

ystem [2,15] . Among these models, the SJIT model which proposed

y Bullock et al. in 1998 has received much attention [2,15,16] . The

ain reasons are as follows: 1) the model depicts the mathemati-

al relationship between the movement of arm joints and neurons

n the brain area 4 and 5, which is easy to be used in theoret-

cal research; 2) the model output is close to the actual output

f human single-joint movement. Nevertheless, the SJIT model is

ot flawless. To facilitate the problem descriptions, this model can

een seen as a system with a controller (the brain), and the limb

https://doi.org/10.1016/j.neucom.2020.03.047
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http://www.elsevier.com/locate/neucom
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Fig. 1. The diagram has been redrawn from [10] , Fig. 1.1, more details of the model 

can be found in [10] . 
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position as the system output. The problem in this system is that

the system overshoot is large. Considering this phenomenon does

not happen in actual human movement, and a large overshoot will

enhance the environmental requirements of the devices in practi-

cal applications, therefore, it is necessary to improve the perfor-

mance of the SJIT model. 

In recent years, there have been many studies on the formula-

tion of the BMI system. According to these studies, the signal from

the brain is changing during the limb movement, which makes

it difficult for the BMI system to meet tracking accuracy require-

ments in practical applications [4] . In an open-loop BMI system,

the movement of the external device is slowly, and introducing

the visual and sensory feedback to system can overcome parts of

drawbacks [4,17,18] . However, the BMI system with the visual and

sensory feedback (also named simple closed-loop system in this

paper) is still cannot match requirements of movement, although

it is better than the open-loop system in reliability and execution

speed. In order to further improve the performance of the BMI sys-

tem, the auxiliary controller should be introduced to the system

[2,4,5] . In this paper, considering the MPC has the following advan-

tages: 1) the objective function can be selected in a flexible way; 2)

the results of system stability and robustness can be conveniently

extended to the analysis of the overall performance of the closed-

loop BMI system; 3) the model and its input constraints and out-

put constraints can be considered in one optimization problem; we

use the model predictive control (MPC) strategy to design the aux-

iliary controller. 

As early as 1990, Daniel et al. have found that intracortical

micro-stimulation (ICMS) technology can affect the judgment of

motion direction [19] . In recent years, the ICMS technology be-

comes a popular method for studying the organization of mo-

tor cortex [20,21] . The animal experiment by Sharlene et al. have

shown that the ICMS can evoke the proprioceptive percepts [22] .

Max et al. have designed a sensory feedback by a charge balance

pulse, and good results have been obtained [23] . In the field of the

BMI, Maria et al. have adopted this technology to convey the er-

ror vector of limb position to the brain, and found that this kind

of feedback is effective [24] . In our previous work [2] , the ICMS

current was used to replace the missing proprioception feedback,

and based on which a closed-loop BMI system was designed. This

work had good performance of driving the artificial arm to reach

the desired position, but the paper has the following two disadvan-

tages: 1) the network of the spiking neurons used in paper [2] is

time consuming although it is useful; 2) the optimization problem

in [2] has 4 decision variables, hence, the optimization problem in

the paper has high computational complexity. 

In this paper, an improved classical SJIT model is proposed

firstly, and then, a closed-loop BMI system with a Wiener-filter-

based decoder, a MPC auxiliary controller and a network of Izhike-

vich neurons is formulated based on the improved model. In this

closed-loop system, an artificial feedback is designed by the ICMS

technology and the network of Izhikevich neurons; the auxiliary

controller is adopted to generate the feedback information which

can bring by the ICMS current. In order to simplify the computa-

tional complexity of optimization problem designed for the aux-

iliary control in this paper, we fixed the shape of ICMS current

waveform and some of its parameters. Finally, a series of simula-

tions are designed in this paper to show the effectiveness of the

proposed measures. 

2. Model improvement and performance test 

2.1. The SJIT model 

Fig. 1 is the SJIT model. The model shows the essential informa-

tion transmission pathways for voluntary control of a single-joint
in limb) movement [10] . It should be noted that, the model can

escribe the qualitative relationship between cortical firing activi-

ies and joint movement clearly, although the model excludes the

reatment of visual feedback during the movement. The SJIT model

s briefly introduced below. 

Briefly, the difference between the target and the perceived

oint position vectors is computed by a population of “difference

ector (DV)” neurons. The activity of these neurons is 

 i (t) = max { T i (t) − x i (t) + B 

r , 0 } , (1)

here 0 ≤ r i ( t ) ≤ 1 is the average firing activity of “DV” neurons

elated to the agonist muscle i . In this paper, the average firing ac-

ivity of neurons related to the agonist muscle i is expressed by

he subscript i and to the antagonist muscle is expressed by the

ubscript j. T i ( t ) represents a population of “target position vector

TPV)” neurons activity which shows the target position of the ag-

nist muscle i. x i ( t ) represents the average firing activity of a popu-

ation of “perceived position vector (PPV)” neurons which compute

he present position of the agonist muscle i continuously. B r is the

ase firing activity of the “DV” neurons. 

Difference vector information is computed by the “DV” neurons

ontinuously and then scaled by a population of “desired velocity

ector (DVV)” neurons as 

 i (t) = max { g(t ) . (r i (t ) − r j (t)) + B 

u , 0 } , (2)

here u i ( t ) is the average firing activity of a population of “DVV”

eurons. B u is the base firing activity of the “DVV” neurons. g ( t ) is

n internal “GO” signal which is assumed to be originated from

he basal ganglia. “DVV” neurons fire only the process of joint

ovement and thus their average firing activity shows a phasic-

ovement time (MT) behavior. The dynamic of the internal “GO”

ignal is modeled as 

d g 1 (t) 

d t 
= ε(−g 1 (t) + (C − g 1 (t)) g 0 ) , (3a)

d g 2 (t) 

d t 
= ε(−g 2 (t) + (C − g 2 (t)) g 1 (t)) , (3b)

(t) = g 0 
g 2 (t) 

C 
, (3c)

here ε is a constant represents the slow integration rate. The

onstant “C” represents the saturation value of the GO signal. 

The “outflow position vector (OPV)” neurons receive informa-

ion from the “DVV” neurons and the “PPV” neurons, and they

hotpaper.net
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how tonic firing activity. The activity of a population of “OPV”

eurons is modeled as 

d y i (t) 

d t 
= (1 − y i (t))(ηx i (t) + max { u i (t) − u j (t) , 0 } ) 

−y i (t)(ηx j (t) + max { u j (t) − u i (t) , 0 } ) , (4) 

here y i ( t ) is the average firing rate of these neurons, and η is a

caling factor. 

The average firing activity of a population of static ( γ S 
i 
(t) ) and

ynamic ( γ D 
i 

(t) ) gamma motoneurons are modeled as 

S 
i (t) = y i (t) , (5a) 

D 
i (t) = ρ max { u i (t) − u j (t) , 0 } , (5b) 

here ρ is a scaling parameter. 

The average firing activity of the primary “(Ia)” and secondary

“II”) muscle spindles afferents are modeled as 

 

1 
i (t) = S(θ max { γ S 

i (t) − p i (t) , 0 } + φ max { γ D 
i (t) − d p i (t) 

d t 
, 0 } ) , 

(6a) 

 

2 
i (t) = S(θ max { γ S 

i (t) − p i (t) , 0 } ) , (6b) 

here s 1 
i 
(t) and s 2 

i 
(t) are the primary and secondary spindles af-

erents average firing activity respectively. p i is the position of the

gonist muscle i. θ is the sensitivity of the static nuclear bag and

hain fibers. φ is the sensitivity of the dynamic nuclear bag fibers.

he saturation of spindles afferents activity is given by the function

(ω) = ω/ (1 + 100 ω 

2 ) . 

The average firing activity x i ( t ) of a population of the “PPV”

eurons is modeled as 

d x i (t) 

d t 
= (1 − x i (t)) max { 	y i (t) + s 1 j (t − τ ) − s 1 i (t − τ ) , 

 } − x i (t) max { 	y j (t) + s 1 i (t −τ ) −s 1 j (t −τ ) , 0 } , (7) 

here τ is the delay time of the spindles feedback and 	 is a con-

tant gain. 

The average firing activity q i ( t ) of a population of “inertial force

ector (IFV)” neurons is modeled as 

 i (t) = λi max { s 1 i (t − τ ) − s 2 i (t − τ ) − �, 0 } , (8) 

here � is a constant threshold. The average firing activity f i ( t ) of

 population of “static force vector (SFV)” neurons is modeled as 

d f i (t) 

d t 
= (1 − f i (t)) hs 1 i (t − τ ) −ψ f i (t )( f j (t ) + s 1 j (t − τ )) , (9) 

here h is a constant gain which controls the strength and speed

f an external load compensation, and ψ is an inhibitory scaling

arameter. 

The average firing activity a i ( t ) of a population of the “outflow

orce and position vector (OFPV)” neurons is modeled as 

 i (t) = y i (t) + q i (t) + f i (t) . (10) 

he average firing activity of these neurons shows a phasic-tonic

ehavior. The average firing activity αi ( t ) of alpha motoneurons is

odeled as 

i (t) = a i (t) + δs 1 i (t) , (11) 

here δ is a stretch reflex gain. 

The joint dynamics of the arm is described by 

d 

2 
p i (t) 

d t 2 
= 

1 

K 

(
M(c i (t) − p i (t)) − M(c j (t) − p j (t)) + E i − V 

d p i (t) 

d t 

)
, 

(12) 
a  
here p i ( t ) is the position of the agonist muscle i within its range

f origin-to-insertion distances. p j ( t ) is the position of the antag-

nist muscle such that p i (t) + p j (t) = 1 . K is the moment of iner-

ia of the limb. V is the joint viscosity. E i is the external force ap-

lied to the joint. M(c i (t) , p i (t)) = max { c i (t) − p i (t) , 0 } represents

he total force generated by the agonist muscle i. c i ( t ) is the muscle

ontraction activity dynamics of which is given by 

d c i (t) 

d t 
= ν(−c i (t) + αi (t)) , (13) 

here ν scales represents the contraction rate. Since the joint is

riven by muscles p i and p j and there exists an internal relation-

hip between the p i and p j , in this paper, we only use p i to express

he joint position. 

.2. The improvement of SJIT model 

The psychophysiological cortical circuit model for voluntary

ovement can be seen as a system. In this system, the brain is

he controller, the joint position is the output of system. The SJIT

odel has the large overshoot which will not happen in the actual

oluntary movement, the simulations in Section 4 also confirm this

roblem. Thus, it is necessary to improve the model. Here, we in-

roduce the “target velocity vector (TVV)” neurons, the “joint veloc-

ty vector (JVV)” neurons and “the relative velocity vector (RVV)”

eurons to improve the SJIT model. 

As Fig. 2 shown, the dashed lines show the added information

hannels. The “TPV” and “JPV” neurons sense the information of

he positions, and deliver the related information to “TVV” and

JVV” neurons, which can translate the positional information to

he velocity information. “RVV” neurons accept the velocity infor-

ation and then translate it to the relative velocity vector of the

oint, and then, the relative velocity vector and the difference vec-

or from “DV” neurons are combined and scaled by “DVV” neurons.

The model of “TVV” neurons and “JVV” neurons are given as 

 

t 
i (t) = 

d T i (t) 

d t 
, v p 

i 
(t) = 

d p i (t) 

d t 
, (14) 

here the v t 
i 
(t) is the average firing rate of “TVV” neurons, v p 

i 
(t) is

he average firing rate of “JVV” neurons. The average firing activity

 

r 
i 
(t) of a population of the “RVV” neurons is modeled as 

 

r 
i (t) = ζ (v t i (t) − v p 

i 
(t)) . (15) 

here the ζ is the compensation coefficient of “RVV”. In the im-

roved model, the average firing rate of “DVV” neurons is de-

cribed as follow: 

 i (t) = max [ g(t )(r i (t ) − r j (t) + v r i (t) − v r j (t)) + B 

u , 0] . (16) 

The introducing of “TVV”,“JVV”,“RVV” refers to the differential

tem of the PID control. An important reason for system overshoot

s that the system has a large lag factor, and the “advance” of dif-

erential terms can largely offset the influence of lag factor. Mean-

hile, the study [11] has also found that the velocity, an “advance”

f differential term, should be considered in the movement model.

hus, we introduce the velocity vector in this system to reduce

he overshoot. We test the performance of the improved model in

ection 4 . 

. The formulation of closed-loop system 

From Fig. 2 , we can know that the commands generated by

DVV”, “OPV” and “OFPV” neurons in brain area 4 can only be ex-

cuted after being transmitted by the spinal circuit, and the “PPV”

eurons receive the position feedback information depend on “Ia”

nd “II”. In the physical system of the user of artificial arm, both of

bove two information transmission channels need to be rebuild.

hotpaper.net
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Fig. 2. The improved model. 

Fig. 3. The designed closed-loop BMI system. 
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In order to compensate the absent information channel, a closed-

loop BMI system shown in Fig. 3 is formulated. In this system, the

decoder is used to compensate for the absent spinal circuit, the

auxiliary controller is used to generate the feedback information

which can be carried by ICMS current, and the network of spiking

neurons is used to encode the feedback information to average fir-

ing rate. Finally, the encoded feedback information is delivered to

the “PPV” neurons. 

Since ICMS technology has been widely used in deep brain

stimulation, this paper uses a biphasic charge-balance waveform

of current to carry the information. A network of Izhikevich neu-

rons is introduced into the closed-loop BMI system to transform

the ICMS current into the average firing rate. The auxiliary con-

troller is designed based on the MPC strategy. The introduction of

the auxiliary controller will improve the effect of recovery the mo-

tor function of arm [2] . This system is similar with the closed-loop

BMI system formed in the paper [2] , but the model used in this

paper is the improved model and the used network of the neurons

is more efficient with time. The optimization problem designed in

this paper contains only one decision variable, which greatly re-

duces the computational complexity compared with the optimiza-
ion problem in the paper [2] . It should be noted that the feedback

nformation to the population of “IFV” and “SFV” neurons are not

onsidered in [2] and this paper. 

.1. Decoder design 

In our previous work, we have designed several decoders, and

ound that the decoder based on Wiener filter had the better per-

ormance [25] . In this paper, we also use this decoder to decode

he information from cerebral cortex. In the process of decoder de-

ign, only the process of data collection is different from that of

revious one. A brief description of data generation is given below.

During data collection, 1600 independent trials of the volun-

ary single-joint extension task are simulated. g 0 is modeled as a

aussian distributed random variable with mean 0.75 and variance

.0025 in these trials. In each trial, the simulation is performed for

.00 s, which includes a position holding period. It should be noted

hat g 0 is a constant for a given trial. 

In the simulation, the sampling time is selected as 10 ms.

he data set including the average firing activity of population

f “DVV”, “OPV”, “OFPV” neurons and the total force difference

hotpaper.net
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Fig. 4. The stimulation current. 

Fig. 5. The network of Izhikevich neurons. 
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s collected by (1), (3) –(13), (14) –(16) . With this, a data set with

80 , 0 0 0 samples is created to train the decoder. 

.2. Auxiliary controller design 

In this paper, an auxiliary controller based on the MPC strategy

s designed to generate the ICMS current to the networks of spik-

ng neurons. By this way, the auxiliary control is added in the BMI

ystem. 

Briefly, when determining the control inputs, the MPC strategy

an explicitly incorporate the constraints of system. When k ≥ 1,

he system model is used to predict the future outputs p i (k +
 + 1 | k ) ( m = 0 , 1 , 2 , . . . , N p − 1 ) which is a function of current

nd future control inputs I c (k + l | k ) ( l = 0 , 1 , 2 , . . . , N c − 1 ). N p is

he prediction horizon. Using these predictions, controlling inputs

 c (k | k ) , I c (k + 1 | k ) , . . . , I c (k + N c − 1 | k ) are computed by minimiz-

ng the cost function J p (k ) at sampling time k, N c is the control

orizon. Only the first computed input I c ( k | k ) is applied to com-

ute the system outputs. At the step k + 1 , the optimization prob-

em is solved again with new measurements [26,27] . 

The optimization problem is formulated as: 

min 

I c (k | k ) ,I c (k+1 | k ) , ··· ,I c (k+N c −1 | k ) 
J p (k ) 

= 

N p −1 ∑ 

m=0 

[(p ∗i (k + m + 1 | k ) −p i (k + m + 1 | k )] 2 (17a) 

.t. ( 1 ) , ( 3 ) − ( 4 ) , ( 8 ) − ( 10 ) , ( 12 ) , ( 14 ) − ( 16 ) , ( 18 ) − ( 20 ) 

(17b) 

15) in (17c) 

28] , 

 c (k + l| k ) ∈ [0 , 50 0 0] f or 0 ≤ l ≤ N c − 1 , (17d) 

 c (k + l| k ) = 0 f or N c ≤ l ≤ N p − 1 , (17e) 

here I c (k | k ) , I c (k + 1 | k ) , . . . , I c (k + N c − 1 | k ) are the control inputs

olved at the time k . In this paper, the control input I c ( k | k ) is used

s the frequency of the ICMS current at time k . J p (k ) is the cost

unction. p ∗
i 
(·) is the desired position of the agonist muscle. p i ( · )

s the output position of the agonist muscle. 

Note that: in the optimization, the continuous time t in

1) , (3) , (4) , (8)–(10) , (12) , (14)–(16) , (18)–(20) can be transformed into

iscrete time k through a sampling operation. 

.3. Network of izhikevich neurons 

The typical biphasic waveform of charge-balanced ICMS current

s adopted in this paper to deliver the information to the brain.

he experiment made by Joseph et al. confirms that the cortical

erception threshold of electrical stimulation in the range of 30–

0 μA [29] . The stimulation current with the width 100 μs /phase is

he “gold standard” for neurostimulation devices [24] . Hence, the

0 μA and 100 μs /phase are chosen as the amplitude and the phase

idth of ICMS current ( Fig. 4 ). The frequency of ICMS current can

e computed through (17) . 

The “PPV” neurons cannot accept the ICMS current directly.

hus, the model of spiking neurons should be introduced as a

ridge between the ICMS current and the “PPV” neurons. The spik-

ng neurons can transform the ICMS current into the average firing

ate. Considering the single neuron is not representative, we for-

ulate the spiking network with 10 0 0 neurons through randomly
onnected weights. The ratio of the inhibitory neurons to excita-

ory neurons in the network is 1–4. The single neuron model in

his network is proposed by Izhikevich in paper [30] . In order to

ake the statement of this model more concise, in this paper, we

all it Izhikevich neuron model. This model can express the neuron

ctivity vividly. This network is shown in Fig. 5 , the gray circles

ith dashed contour represent inhibitory neurons, and the blue

ircles with solid contour represent excitatory neurons. 

The Izhikevich neuron model is as follows [30] : 

˙ 
 = 0 . 04 v 2 + 5 v + 140 − u + I, (18) 

˙ 
 = a (bv − u ) , (19) 

f v ≥ v t mV, then 

{
v ← c 

u ← u + d 
, where v and u are dimensionless

ariables, and a, b, c, d are dimensionless parameters. v is the

embrane potential of neuron. u is the membrane recovery vari-

ble. v t = 30 is the firing threshold, the firing rate is the times of

 reached v t in unit time [31] . f t is the average firing rate of these

eurons. I is the injected current which consist of the ICMS cur-

ent and the synaptic current. We should pay attention to a fact

hat each neuron in the network receives the same ICMS current. 

When the average firing rate f t is acquired, the (7) will be re-

laced as follow: 

d x i (t) 

d t 
= (1 − x i (t)) max { 	y i (t) − f t , 0 } 
i j 
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Table 1 

The dynamic indicators of improved model ( g 0 = 0 . 75 , T i = 0 . 7 ). 

No. ζ t r (ms) t p (ms) σ

1 0.0 460 650 0.75% 

2 0.5 460 680 0.59% 

3 1.0 470 740 0.46% 

4 1.5 480 790 0.44% 

5 2.0 490 830 0.42% 

6 2.5 500 850 0.41% 

7 3.0 510 860 0.38% 

8 3.5 520 880 0.35% 

9 4.0 540 890 0.28% 

10 4.5 550 910 0.19% 

11 5.0 570 1250 0.15% 

Fig. 6. The tracking results of static trajectory ( T i = 0 . 7 , g 0 = 0 . 75 , ζ = 1 ). 

Table 2 

The comparison of dynamic indicators. 

No. g 0 The origin model The improved model 

t r (ms) t p (ms) σ t r (ms) t p (ms) σ

1 0.35 910 1280 0.81% 920 1350 0.51% 

2 0.45 740 1080 0.88% 760 1120 0.62% 

3 0.55 610 940 0.87% 630 980 0.68% 

4 0.65 510 800 0.66% 530 870 0.63% 

5 0.75 460 650 0.75% 470 740 0.38% 

6 0.85 430 580 1.49% 440 600 0.67% 

7 0.95 410 550 2.27% 420 560 1.40% 
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3.4. Overrall algorithm 

The overall algorithm is given as follows: 

Algorithm 1 : Offline stage, for k = 0 , 

1. give the parameters of improved model, and calculate the de-

sired position trajectory p ∗
i 
(·) by (1), (3) –(16) ; 

2. give the parameters N p and N c of the model predictive con-

troller; 

3. give the parameters of the formulated BMI system and simula-

tion step k max . 

Online stage, for each k > 0, 

1. get the initial point I c (0) satisfied the constraint; 

2. calculate p i (k | k ) , p i (k + 1 | k ) , p i (k + m | k ) , . . . , p i (k + N p − 1 | k )
and the cost function J p (k ) for each input, use the “sqp”

algorithm to find the minimum value of J p (k ) and the

I c (k | k ) , I c (k + 1 | k ) , . . . , I c (k + N c − 1 | k ) ; 
3. generate the ICMS current according to the control input I c ( k | k )

and other related parameters; 

4. transmit the ICMS current to the network of spiking neurons to

get the average firing rate f t ; 

5. impose f t , and acquire the output of system, if k = k max , termi-

nate the program; else k = k + 1 , and go to step 1. 

4. Simulations 

We use the matlab R2015a for the following simulations. In this

section, 1) we test the improved model by comparing a series of

indicators of the improved model and the SJIT model in the fol-

lowing two cases, namely, T i is constant and T i is changing; 2) the

time consumption of the Izhikevich neuron network used in this

paper and the neuron network used in [2] during the converting

is calculated and compared through 10 0 0 trails. 3) the formulated

BMI system is tested by analyzing the performance of the system

in a special reaching task. 

4.1. The test of improved model 

In this test, the sampling time is chosen as 10ms. During

the first 50 ms, the system is in a initiating state, thus, the

value of g 0 during this time is 0. The initial value of variables

in the SJIT model and the improved model are set to 0 ex-

cept for x i (0) = x j (0) = 0 . 5 , y i (0) = y j (0) = 0 . 5 , p i (0) = p j (0) =
0 . 5 , u i (0) = u j (0) = B u and r i (0) = r j (0) = B r . The parameters in

the simulation are chosen as follows: K = 200 , V = 10 , ν = 0 . 15 ,

B r = 0 . 1 , B u = 0 . 01 , 	 = 0 . 5 , θ = 0 . 5 , φ = 1 , η = 0 . 7 , ρ = 0 . 04 ,

λ1 = 150 , λ2 = 10 , � = 0 . 001 , δ = 0 . 1 , C = 25 , ε = 0 . 05 , ψ = 4 ,

h = 0 . 01 and τ = 0 . 

Case 1: when T i is constant during the movement process, we

can find that the output of “TVV” is 0 from (14) . At the same time,

when ζ = 0 , the improved model is the same as the SJIT model.

Hence, ζ is an important non-zero unknown parameter in the im-

proved model. 

First of all, we determine the parameter ζ by studying dynamic

indicators of the system with different ζ . Table 1 shows dynamic

indicators of the system in the case of T i = 0 . 7 , g 0 = 0 . 75 with dif-

ferent ζ . In Table 1 , t r is the rise time, t p is the peak time, σ is

the overshoot of system. The qualitative relationship is easy to be

obtained, although the results in this table cannot provide a clear

quantitative relationship. With the increasement of ζ , the over-

shoot σ decreases gradually. For example, in the case of ζ = 5 , the

overshoot of improved model is 0.60% lower than that of the SJIT

model. 

Considering the above system performance indicators, set ζ =
1 . Under this circumstance, the tracking results of the improved
odel and the SJIT model are shown in Fig. 6 . It can be clearly

een from the figure that compared with the SJIT model, the over-

hoot of the improved model is greatly reduced. However, it should

e noted that these decrements are at the cost of increasing re-

ponse time. 

Next, the dynamic indicators of the improved model with dif-

erent GO signals ( g 0 ) are tested. Table 2 gives the comparison re-

ults. From Table 2 , it can be seen that σ of the improved model

s lower than SJIT model under all given cases, and the value of σ
s minimum when g 0 = 0 . 75 . Thus, g 0 is set to this value in sub-

equent simulations. Of course, the reduction of overshoot is also

chieved by sacrificing the response time of system. 

Case 2: when T i is changing during the movement process, 12

ynamic target trajectories shown Table 3 are chosen: the initial

osition of these trajectories are chosen as 0.7, 0.5 and 0.4, and

he initial velocity as ± 0.1/ s , ± 0.2/ s , ± 0.3/ s . In all trajec-

ories, the position remained unchanged after the first 1 s. The

ean absolute scaled error (MASE) [32] and sum of squared er-
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Fig. 7. The tracking results under different dynamic target trajectories: (a), (b), (c) and (d) show the results of No. 1, 4, 9 and 12 in Table 3 , respectively. 
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or (SSE) between the system output trajectories p i ( t ) and the dy-

amic target trajectories of T i are used to evaluate the tracking ef-

ect. The test results are also shown in Table 3 and Fig. 7 . It can be

een from Table 3 that, in all 12 target trajectories, the MASE and

SE of improved model are both smaller than that of SJIT model.

ig. 7 shows several tracking results under the target trajectories

ith No. 1, 4, 9 and 12 in Table 3 , respectively, and it is clear that

he tracking performance of improved model is better than that of

JIT model. 

.2. The comparison of neuron networks 

The sampling time is selected as same as that in Section 4.1 .

he constant parameters of the Izhikevich neurons network are

s follows: each excitatory neuron has (a n , b n ) = (0 . 02 , 0 . 2) and

(c n , d n ) = (−65 + 15 r 2 n , 8 − 6 r 2 n ) , where r n is a random variable be-

ong to [0, 1] and i is the neuron index. Similarly, each inhibitory

euron has (a n , b n ) = (0 . 02 + 0 . 08 r n , 0 . 25 − 0 . 05 r n ) and (c ni , d n ) =
(65 , 2) . As in [30] , the synaptic connection weights belong to [0,
.5]. We set the amplitude and the frequency of the ICMS as 70μA

nd 50 0 0Hz, respectively. 

We give the generated current to the Izhkevich neuron network

nd the neuron network in [2] , and calculate the time consumption

f converting the ICMS current into average firing rate, respectively.

n this paper, 10 0 0 experiments are carried out and the average

ime of the process is calculated. The experimental results show

hat,the average conversion time of the network of Izhikevich neu-

ons used in this paper is 0.056 s and that of the neurons network

sed in [2] is 34.696 s. It can be seen that the neurons network

dopted in this paper has better time efficiency. 

.3. The closed-loop BMI system performance 

In this simulation, the formulated closed-loop BMI system per-

ormance is tested. In this test, T i is selected as No.1 in Table 3 ,

he target trajectory p ∗
i 

is obtained by the improved model. The

arameters of MPC controller are chosen as: N p = 30 , N c = 5 . The

ampling time and the initial state are the same as that proposed
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Table 3 

The tracking results under different dynamic target trajectories. 

No. Dynamic trajectory MASE SSE 

initial position initial velocity SJIT model improved model SJIT model improved model 

1 0.7 -0.1 71.9878 68.4234 0.9108 0.9051 

2 0.7 -0.2 49.4848 46.9500 0.9956 0.9653 

3 0.7 -0.3 47.7465 45.6943 1.4928 1.4349 

4 0.5 -0.1 27.8731 25.8326 0.0504 0.0482 

5 0.5 -0.2 42.0443 41.3201 0.4831 0.4767 

6 0.5 -0.3 56.9049 56.3808 1.7779 1.7585 

7 0.5 + 0.3 21.0355 20.7739 0.3044 0.3014 

8 0.5 + 0.2 19.3387 18.4436 0.1022 0.0999 

9 0.5 + 0.1 18.0849 16.6629 0.0199 0.0184 

10 0.4 + 0.3 19.2574 18.6157 0.2993 0.2606 

11 0.4 + 0.2 23.6148 22.5107 0.2514 0.2270 

12 0.4 + 0.1 41.8949 40.1223 0.2433 0.2126 

Fig. 8. The comparisons of the average firing rates. 
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Fig. 9. The effect of joint motor function recovery. 
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n the Section 4.1 . The parameters of the Izhikevich neurons net-

ork are same as that in the Section 4.2 . 

Fig. 8 shows the comparisons of “x i ”,“y i ”,“a i ”,“u i ” in the closed-

oop BMI system and in the desired case (voluntary movement).

ig. 9 shows the position tracking results of the closed-loop BMI

ystem designed in this paper. From these figures, we can find that

he designed system can track the desired position trajectory well,

lthough there are some errors in the recovery of average firing

ates of neurons population in cerebral cortex, that is, the designed

MI system can recover the motor function of the joint well. 

.4. Further discussions 

(1) Discussion about the improved model. From the perspective

of system modelling, the improved SJIT model proposed in

this paper can reduce the system overshoot by introducing

“TVV”, “JVV” and “RVV” neurons. Considering the overshoot

does not really exist in human voluntary motion, hence, the

proposed model solves the mismatch problem in some ex-

tent. From the perspective of application, when we design

the BMI system based on the proposed model, the desired

joint trajectory would have a little oscillation, which can re-

duce the difficulty of tracking the desired trajectory. For ex-

ample, if the manipulator is controlled to track the desired

trajectory with large oscillation, the mechanical wear of ma-

nipulator will increase. 

(2) Discussion about the designed BMI system. In this paper,

an auxiliary controller is introduced to formulated closed-

loop BMI system. This strategy can improve the tracking ef-

fect greatly and give the guidance to the design of BMI sys-

tem with improved performance. The MPC control strategy

adopted in this paper not only has high control accuracy,

but also can take the physical constraints into account in the

control process, which can provide security for the BMI sys-

tem. However, each step of control requires solving an op-
timization problem, which increases the computational bur-

den of the system. In this paper, the calculation complexity

of the optimization problem is greatly reduced by fixing the

amplitude and width of ICMS current; in addition, the used

Izhikevich neuron network in the BMI system has high time

efficiency, which can also speed up the execution of BMI sys-

tem. 

(3) Discussion about the undershoot. In the process of joint

movement, the trajectories of “x i ”, “y i ”, “a i ” (see Fig. 8 ) in

the formulated closed-loop BMI system contain undershoots

near the time 0, which are caused by the auxiliary controller,

i.e., to track the target position trajectory quickly, the auxil-

iary controller must calculate the input with large amplitude

and implement the input to system. Of course, we can re-

duce the undershoot through shrink the input constraints,

but the tracking time will be lengthened. 

. Conclusions 

In this paper, an improved psychophysiological cortical circuit

odel for single-joint movement is proposed; then, based on the

mproved model, a closed-loop BMI system is formulated. In the

ystem, a Wiener filter-based decoder is used to compensate for

he absent spinal circuit, an artificial feedback to the brain is de-

igned based on the charge-balanced ICMS current and the Izhike-

ich neurons network, and an auxiliary controller is designed to

ssist the controlling of artificial arm through generating the feed-

ack information which can be brought by the ICMS current.

hrough the simulations, we find that 1) the improved model can

educe the large overshoot deficiency of SJIT model and it is closer

o the true single-joint movement; 2) the Izhikevich neurons net-

ork used in this paper is more time efficient than the existing

ne; 3) the closed-loop system designed in this paper is efficacious

o track the desired position trajectory. 
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