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a b s t r a c t 

The synchronized behavior of neurons depends on the structure and function of the synaptic connec- 

tions between them. One of the activity-dependent synaptic modifications is the burst-timing-dependent 

plasticity, which relies on the latencies of the presynaptic and postsynaptic bursts. In this paper, we, 

therefore, study the collective behavior of a neuronal network with burst-timing-dependent plasticity, 

in particular, focusing on the emergence of chimera states. We consider separately non-local and global 

couplings, which have substantial effects on the collective dynamics. We show that the considered burst- 

timing-dependent plasticity leads to different behavior from static networks. The histogram of the synap- 

tic strengths, in particular, reveals a different evolution of the chimera states in comparison to the devel- 

opment of synchronous and asynchronous states. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Plasticity, which is defined as the variations in the synaptic

trength and connections, or the excitability of the neurons, plays

n essential role in the nervous system [1 , 2] . It has been revealed

hat during different neural behaviors such as the transitions

etween sleep and wakeful activity, the synapses experience

hort- and long-term changes [1] . The activities of the pre- and

ost-synapses can lead to either strengthening (potentiation) or

eakening (depression) of the synaptic strength, lasting for short

imes, i.e., over minutes, or long times, i.e., over hours or more

3] . The potentiation and the depression are the result of various

rigins, including changes in the release of neurotransmitters or

he chemical concentration and heterogeneous spatial distribution

f the neurotransmission in the dendrites [4 , 5] . The short- and

ong-term alternations of synapses are the necessary mechanisms

or memory and learning processes [6–8] . A large number of
∗ Corresponding author. 
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esearches have been focused on the study of the synaptic changes

o reveal the underlying process of learning and memory [9–11] . 

The studies have shown that the timing of the firing of the pre-

nd post-synaptic neurons affect the synaptic strength. However,

lasticity can also be induced by the delivery of amines or neu-

opeptides [1] . Many theoretical and experimental studies have fo-

used on understanding how these adaptive modifications happen

n the synapses [2 , 12 , 13] . These studies have led to the presenta-

ion of some well-known synaptic plasticity, such as the Bienen-

tock Cooper and Munro model and spike-timing-dependent plas-

icity model. In 2007, Butts et al. [14] performed an in-vitro experi-

ent on the lateral geniculate nucleus neurons by patch recordings

nd found a new synaptic model, named burst-timing-dependent

lasticity. They found that the learning rule in the retinogeniculate

ynapses is dependent on the timing of the pre- and post-synaptic

ursts, such that short latencies lead to potentiation and longer

nes lead to depression. This plasticity model is irrespective of the

ring order of pre- and post-synaptic bursts and has a seconds-

ong temporal window. 

Recently, many studies have focused on the study of the dy-

amics of complex networks [15–19] . The properties of the com-

lex networks, including self-organization, lead to the emergence

https://doi.org/10.1016/j.neucom.2020.03.083
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.03.083&domain=pdf
mailto:dibakar@isical.ac.in
https://doi.org/10.1016/j.neucom.2020.03.083
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Fig. 1. The modification function of the burst-timing-dependent plasticity (BTDP). The synaptic weights are changed depending on the latency between the beginning times 

of the pre- and post-synaptic bursts. 

Fig. 2. Phase diagram of the network in ( P, g max ) plane with constant synaptic 

strength, showing different behaviors of the network. The blue, green, yellow and 

red colors show asynchronization, chimera state, synchronization, and instability re- 

gions, respectively. Here N = 100 is the number of neurons in the network. The 

strength of incoherence is used to distinguish different states. 
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of different dynamical behaviors such as spiral waves, stochastic

resonance, synchronization, etc. [20–23] . Synchronization is one of

the crucial behaviors in many complex networks, including neu-

ronal networks. Synchronization has been observed in different

parts of the nervous system. It has been shown that synchronous

activities of the neurons have essential importance in various neu-

ral processes, such as in cognitive tasks and information processing

[24] . A majority of the recent researches has been devoted to the

study of synchronization in neuronal networks [25–28] . In reality,

neuronal networks are adaptive, and the synapses vary in time due

to the neuromodulations and synaptic refinements [29] . Among

the studies, a few have considered adaptive and time-varying net-

works. Some of the studies have focused on the synchronization of

neuronal networks with time-varying structure [30 , 31] , while some

others have considered time-varying coupling strength [32] . For

example, Rakshit et al. [31] explored synchronization in neuronal

hypernetwork with electrical and chemical synapses, wherein the

intralayer links were assumed to switch stochastically over time.

Xie et al. [29] studied synchronization in a network of Hodgkin-

Huxley neurons with spike-timing-dependent plasticity and inves-
igated the effect of time delay. They found that the synchrony

aries by increasing the plasticity rate, and there is an optimal rate

t which the synchrony is the strongest. 

The previous studies have led to the finding of many types

f synchronization, including phase synchronization, lag synchro-

ization, explosive synchronization, etc. [33 , 34] . In 2002, Kuramoto

nd Battogtokh [35] discovered a particular case, in which syn-

hrony and asynchrony coexist in a network. This state, which

as named chimera state [36] , has attracted considerable atten-

ion in various scientific fields in recent years [37–40] . Since the

himera state is capable of describing the partial synchrony pat-

erns, it is expected to be relevant with many brain functions. It

as been suggested that chimera state has strong relations with

ni-hemispheric sleep in some animals, during which, one part

f the brain is sleep and synchronous, while the other part is

wake and is asynchronous [41] . Furthermore, Andrzejak et al.

42] showed the similarities between chimera state collapses and

pileptic seizures. Therefore, there have been many interests in the

tudy of chimera states in neuronal networks [43–49] . Very re-

ently, Bansal et al. [50] presented a cognitively informed frame-

ork with in-silico experiments and observed different patterns of

ynchronization, including chimeras. Calim et al. [51] investigated

he emergence of chimera state in a network of non-locally cou-

led Morris-Lecar neurons exhibiting type-I excitability to provide

 more realistic framework. Santos et al. [52] considered a network

f Hindmarsh-Rose neurons with a connectivity matrix based on

he cat cerebral cortex and demonstrated the existence of chimera-

ike states. Huo et al. [53] studied an adaptive neuronal network in

hich the coupling matrix was assumed to evolve with the dy-

amics of FitzHugh–Nagumo neurons and observed that the adap-

ive coupling could induce diverse chimera patterns. 

In this paper, we consider a network of bursting neurons

ith burst-timing-dependent plasticity and study the emergence

f chimera state. Firstly, we investigate the network with static

oupling by varying the coupling parameters and find the con-

itions for the appearing of the chimera state. Then the effect

f the burst-timing-dependent plasticity coupling on the collec-

ive behavior of the network is investigated. Since in this case,

he synaptic strength is not static and varies in time, we refer to

t as the adaptive coupling. Fig. 1 shows the modification func-

ion of the burst-timing-dependent plasticity. As Fig. 1 shows, this

odification rule depends on the latency between the beginning

imes of the pre- and post-synaptic bursts. For smaller latencies,

he synapse is potentiated, and for larger latencies, the synapse

s depressed. Therefore, we study how the dynamical behaviors

hange using this burst timing-dependent plasticity in globally and

ocally coupled neurons in comparison to the static coupling. We

hotpaper.net
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Fig. 3. Spatiotemporal patterns (first row) and the time snapshots (second row) of the static network for P = 3 and different coupling strengths, showing repetitive patterns. 

a) asynchronization for g max = 0 . 002 , b) synchronization for g max = 0 . 026 , c) chimera state for g max = 0 . 039 , d) asynchronization for g max = 0 . 048 . 

Fig. 4. The evolution of the globally coupled network with burst-timing-dependent plasticity rule for g max = 0 . 0 0 01 showing asynchronous oscillations. a) Spatiotemporal 

pattern and b) the time snapshot of the membrane potential of the neurons. c) coupling matrix and d) histogram of the coupling matrix at t = 40 0 0 . For small coupling 

strength values, the network is asynchronous and about 42% of the coupling weights are at the maximum. 
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Fig. 5. The evolution of the globally coupled network with burst-timing-dependent plasticity rule for g max = 0 . 002 showing chimera state. a) Spatiotemporal pattern and b) 

the time snapshot of the membrane potential of the neurons. c) Coupling matrix and d) histogram of the coupling matrix at t = 40 0 0 . In specific coupling strength values, 

the network shows chimera state and about 53% of the coupling weights are at the maximum, while 45% are at the minimum. 
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observe that the synchronization of neurons occurs in high cou-

pling strength for the burst-timing-dependent plasticity, while the

chimera state emerges for static coupling. The different dynamical

states are investigated by changing the synaptic strength and non-

local parameter of the neuronal network. Finally, all the obtained

states, namely asynchronous, synchronous, chimera and instability

(i.e. unbounded state) are confirmed by plotting the spatiotempo-

ral pattern, the snapshot of the membrane potential of the neu-

rons, the coupling matrix and the histogram of the corresponding

coupling matrix. 

2. Model and methods 

To study the behavior of the adaptively coupled neurons and

the effects of the burst-timing-dependent plasticity, we consider

the two-variable integrate-and-fire (IF) model of Izhikevich. The

mathematical form of each unit of the network is as follows, 

˙ v i = 0 . 04 v 2 i + 5 v i + 140 − u i + I + I syn 
i 

˙ u i = a ( b v i − u i ) , 

f v i > 30 m v , then 

{
v i ← c 

u i ← u i + d 
(1)

where i = 1 , 2 , . . . , N, and N is the number of neurons in

the network. The variables v and u represent the membrane po-

tential of the neuron and its membrane recovery variable, respec-
ively. The parameters a , b , c , and d are constants and determine the

ehavior of the neuron. I represents the external current, and I syn 

hows the synaptic current, which is obtained by the dynamics of

he synaptic variable s j : 

 

syn 
i 

= −
N ∑ 

1 ( j � = i ) 
g ji C ji s j ( v i − v syn ) , 

˙ 
 j = α

(
v j 

)(
1 − s j 

)
− s j /τ, (

v j 
)

= α0 / 
(
1 + e −v j / v shp 

)
, (2)

here C ij is the connectivity matrix with C i j = 1 if the ith neu-

on is connected with the jth neuron and C i j = 0 otherwise. Since

ll the synapses are considered excitatory, the reversal potential is

et at v syn = 0 . When the pre-synaptic neuron is in the silent state

 v j < 0), s j can be approximated by ˙ s j = −β s j . In other cases, s j 
umps quickly to 1 and acts on the post-synaptic neurons. There-

ore, the synaptic recovery function α( v ) can be considered as the

eaviside function. Here, v shp defines the threshold above which

he post-synaptic neuron is affected by the pre-synaptic one and

s set to v shp = 0 . 05 . The parameters are chosen as a = 0 . 02 , b =
 . 2 , c = −50 , d = 2 , I = 10 , α0 = 2 , β = 1 . The synaptic conduc-

ance g ji from the jth to the ith neuron is updated through burst-

iming-dependent plasticity modification function, which is as

hotpaper.net
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Fig. 6. The evolution of the globally coupled network with burst-timing-dependent plasticity rule for g max = 0 . 001 showing synchronous state oscillations. a) Spatiotemporal 

pattern and b) the time snapshot of the membrane potential of the neurons. c) Coupling matrix and d) histogram of the coupling matrix at t = 40 0 0 . For higher coupling 

strength values, the network becomes synchronous and about 78% of the coupling weights are at the maximum. 
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ollows: 

 ( �t ) = 

{
18 . 2 − 25 . 8 | �t | i f | �t | < 1 , 

−7 . 6 i f | �t | ≥ 1 , 
(
% s −1 

) (3) 

here �t = t j − t i , and t j and t i are the beginning times of the

ursts of the postsynaptic and presynaptic neurons. With this

odification function, the synaptic weights are updated and kept

n [0, g max ], with g max being the upper limit. 

For the numerical simulations, a ring network of the coupled

eurons is considered with periodic boundary condition. The net-

ork is numerically solved by using the 4th order Runge–Kutta al-

orithm with selecting random initial conditions and the integra-

ion time-step of 0.01. In the following section, we will pursue the

ifferent dynamical behaviors using the burst-timing-dependent

lasticity in the non-locally coupled neuronal network (1) together

ith (2) . Our main emphasis here is to identify the parameter

egion by simultaneously changing the synaptic weights and the

umber of neighboring nodes P . Finally, we will compare the re-

ults of static and adaptive networks. 

. Results 

At first, it is assumed that the coupling weights are not adap-

ive. The network is investigated by considering different cou-

ling matrices from local to global connection and various synap-

ic strengths. The coupling matrix is constructed by the nearest
eighbor method, i.e. , C i j = 1 for i − P ≤ j ≤ i + P and C i j = 0 oth-

rwise, where P is the number of neighboring nodes connected on

oth sides of the ring network. For each parameter values, the spa-

iotemporal patterns are obtained, and the behavior of the network

s considered. Fig. 2 shows the phase diagram of the static net-

ork in ( P, g max ) plane, displaying the asynchronous state by blue,

himera state by green, synchronous state by yellow and instabil-

ty (unbounded state) by red. To identify different states, we have

sed the strength of incoherence [54] as a measurement (for de-

ails, see Appendix ). As the figure shows, for local coupling and

on-local coupling with small P , the network transits between dif-

erent states by increasing the synaptic strength. For 19 < P < 35,

he network exhibits chimera state in small coupling weights

nd raising the synaptic strength synchronizes the network. For

igher P values, the network becomes unstable for large synaptic

trengths. 

Interestingly, the network exhibits repetitive patterns for low P

alues. Fig. 3 demonstrates the different behaviors of the network

or P = 3 . In this figure, the first row shows the spatiotemporal pat-

erns, and the second row illustrates the time snapshots. Fig. 3 a

hows the asynchronous behavior of the neurons for g max = 0 . 002 ,

nd Fig. 3 b illustrates the synchronous motion of the neurons for

 max = 0 . 026 . By further increasing the coupling strength, the syn-

hronous behavior is disturbed, and the chimera state is observed,

s shown in Fig. 3 c. But this pattern is not stable, and raising

he coupling strength leads to asynchronization of the neurons, as

hotpaper.net
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Fig. 7. The evolution of the non-locally coupled network ( P = 25 ) with burst-timing-dependent plasticity rule for g max = 0 . 0018 showing synchronization. a) Spatiotemporal 

pattern and b) the time snapshot of the membrane potential of the neurons. c) coupling matrix and d) histogram of the coupling matrix at t = 40 0 0 . Similar to the global 

coupling, about 75% of the adaptive couplings have reached the maximum. 
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shown in Fig. 3 d. Fig. 2 depicts that such transitions between states

also occur by increasing the coupling strength. 

Next, the adaptive coupling is considered by using the burst-

timing-dependent plasticity rule for the synaptic weights. The re-

sults show that by changing the coupling to the adaptive plas-

ticity, the network behavior varies. Firstly, we examine the net-

work in the case of global coupling. In this case, when the

coupling strength is very small, the network is asynchronous

until g max = 0 . 0 0 08 . As g max grows, some of the neurons of

the network intend to be synchronous, and thus, the network

shows chimera state. By more increasing of g max , all the os-

cillators become synchronous, such that the network is com-

pletely synchronous for 0.001 < g max < 0.002. Further increasing

of the coupling upper limit ( g max ), returns the network state to

chimera state. Subsequently, the network exhibits chimera state for

0.0 0 08 < g max < 0.001 and 0.002 < g max < 0.05. 

The development of the network in different states is shown in

Figs. 4–6 . In these figures, subfigure-a is the spatiotemporal pattern

of the network in which the membrane potential of the neurons is

illustrated by color. Subfigure-b shows the time-snapshots of the

membrane potential of the neurons. The time series of one neuron

of the network is presented in the inset of subfigure-b. As it is ob-

served from the time series, the dynamics consists of two stages of

higher chaotic firing (the bursts) and the rest. To observe the state

of the neurons, the time snapshot of the bursting stage is shown by
lue, and the time snapshot of the resting stage is shown by red.

ubfigure-c demonstrates the evolution of the synaptic strengths,

n which the weight of the synapse connecting neuron i to j is de-

icted by color. Finally, subfigure-d depicts the histogram of the

ynaptic strength at t = 40 0 0 time-units. Fig. 4 shows the network

ehavior in g max = 0 . 0 0 01 , at which the neurons are asynchronous.

ubfigures-a, b of this figure show the disordered state of the net-

ork. From subfigure-b, it is inferred that in both stages, the neu-

ons are asynchronous, but the amplitude variations in the rest

tate are lower. The inset of subfigure-b shows that the behavior

f all neurons in the asynchronous state is the square wave burst-

ng. As time passes, the synapses of the network are modified, and

nally, almost 42% of the weights are near the upper limit ( g max ). 

Fig. 5 shows the network state for g max = 0 . 002 . The spatiotem-

oral pattern and the time snapshot of the network depict that the

etwork is in chimera state for this coupling strength. The synap-

ic weights have been modified in a way that a group of neu-

ons reaches a common motion. The blue and red time snapshots

n subfigure-b show that the chimera state exists in both burst

nd rest stages. Furthermore, the behavior of the neurons is the

quare wave bursting, and the bursts in the synchronized groups

re completely synchronized. Comparing the coupling matrix ( Fig.

 c and d) with the previous asynchronous state ( Fig. 4 c and d)

hows that in this case, approximately the coefficients have been

ivided into two groups of lower limit ( g i j = 0 ) and upper limit

hotpaper.net
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Fig. 8. The evolution of the non-locally coupled network ( P = 25 ) with burst-timing-dependent plasticity rule for g max = 0 . 006 showing chimera state. a) Spatiotemporal 

pattern and b) the time snapshot of the membrane potential of the neurons. c) coupling matrix and d) histogram of the coupling matrix at t = 40 0 0 . In the case of chimera 

state in non-local connection, a considerable number of coupling weights are between minimum and maximum. 
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 g i j = g max ). It is worth mentioning that according to Fig. 2 , this

etting of the parameter values leads to the synchronized behav-

or of the static network. While in the adaptive coupling, the net-

ork is synchronous for 0.001 < g max < 0.002. The spatiotempo-

al pattern and the time snapshots of the synchronous network for

 max = 0 . 001 are shown in Fig. 6 a and b. Subfigure-b depicts that

he neurons in the rest state are fully synchronized, while there

re small alternations in the burst stage. However, the bursts are

tarted simultaneously, and therefore, the pattern is burst synchro-

ization. The histogram of the coupling matrix in the synchronous

tate, which is demonstrated in Fig. 6 d, shows that in this case,

lose to 80% of the synaptic weights have the upper limit value. 

In the next step, we investigate the effect of burst-timing-

ependent plasticity rule on the dynamics of a non-locally cou-

led network. In this case, each neuron is coupled to its 2 P nearest

eighbors. Thus, the Laplacian matrix L for the nonlocal coupling

s as follows: 

 i j = 

{ 

1 , 

−2 P 
0 

, 

0 < | i − j | ≤ P 
i = j 

otherwise 
(4) 

We have selected a moderate value of P = 25 for non-local

oupling in our simulations. Generally, the obtained numerical

esults indicate different patterns in comparison to global cou-

ling. Fig. 7 shows the network development for g max = 0 . 0018 , at

hich the network is synchronous. Since the coupling is non-local
ith P = 25 , just half of the synaptic weights have been updated

hrough burst-timing-dependent plasticity, and half of the weights

re zero (see Fig. 7 c). Similar to the global coupling, near to 75% of

he adaptive weights have reached the maximum possible weight

 g max ), and the remained 25% are distributed in other values below

 max . Here, the resting states of all the neurons are in synchrony.

oreover, the dynamics of the neurons is not changed by varying

he coupling and is still the square wave bursting. 

The pattern of the network for higher value of g max = 0 . 006

s demonstrated in Fig. 8 . The spatiotemporal pattern and the

ime snapshot figure show the existence of the chimera state. In

ig. 8 (b), the snapshots of burst (blue dotted line) and resting

tates (red dotted line) show the emergence of chimera behav-

ors. Here the behaviors of each neuron are in chaotic square-wave

ursting. In this case, 56% of the adaptive weights have a value near

 max = 0 . 006 , and 42% are near 0.0055, and the low remaining per-

entage is spread in the range [0.0 03 0.0 06]. 

To provide a comparative perspective between the emergent

tates in the static synaptic weight and the adaptive one with

urst-timing-dependent plasticity rule, Fig. 9 is presented. In this

hart, the dynamical behavior of the network in two cases of

lobal and non-local coupling is represented for different g max 

alues. According to this figure, in the case of global coupling,

hen the synaptic weights are static, the chimera state exists

or 0.004 < g max < 0.026, and for g max > 0.026, the network

ecomes synchronous. But if the synapses are updated through

hotpaper.net
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Fig. 9. The dynamical behavior of the network in different cases of global cou- 

pling with static or adaptive synapses (burst-timing-dependent plasticity (BTDP)) 

and non-local coupling with static or adaptive synapses (burst-timing-dependent 

plasticity), for g max value in [0, 0.05]. The blue color shows where the network is 

asynchronous, the green shows chimera state and the yellow shows synchroniza- 

tion. 
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burst-timing-dependent plasticity, the synchronous state does not

emerge by increasing g max , and the chimera state appears for

0.002 < g max < 0.05. In the case of non-local coupling, the net-

work behavior is inverse. Actually, in P = 25 , when the synapses

are static, the chimera states are observed for g max > 0.0 0 08. While

the burst-timing-dependent plasticity is applied, the network ex-

hibits synchronized behavior for g max in the range [0.0 018, 0.0 04]

and [0.03, 0.05]. It should be noted that in the analysis of the

adaptive network, we have investigated the network behavior until

g max = 0 . 05 since it was observed that by adjusting g max > 0.05,

the neurons’ firing patterns were converted from burst firing to

spiking. 

3. Discussion 

The studies have shown that during different processes in the

brain, the synapses are refined by either strengthening or weak-

ening, which is called plasticity. In the studies, different plastic-

ity rules have been proposed. Previous studies reveal that plas-

ticity can affect the collective behavior of the neurons, such as

synchronization. The burst-timing-dependent plasticity is a plas-

ticity model, discovered in lateral geniculate nucleus neurons. In

this paper, the emergence of the chimera state is investigated in

an adaptive network of bursting neurons with the burst-timing-

dependent plasticity model. At first, the network behavior is stud-

ied in the case of static coupling by varying the coupling strength

and coupling range (the number of neighbors in coupling). Then

the burst-timing-dependent plasticity is applied, and the network

is investigated in two cases of non-local coupling and global cou-

pling. When the neurons are globally coupled, in the case of syn-

chronization and asynchronization, the synaptic weights are mod-

ified such that the majority of the synapses had reached the up-

per limit of the coupling strength. While when the chimera state

emerged, nearly half of the weights has the upper limit value,

and roughly half are set to zero. When the neurons are coupled

non-locally, the synaptic weights are modified the same as the

global coupling in the case of synchronization and asynchroniza-

tion. But in the case of chimera states, the majority of the modifi-

able weights are strengthened near the upper limit. Overall, burst

timing-dependent plasticity changed the dynamical behavior of the

network such that in the global static coupling, the network is

synchronous for high coupling strengths, but in the global adap-
ive coupling, the network could not become synchronous. For the

on-local coupling, the network behavior is inverse. It is observed

hat burst-timing-dependent plasticity led to the synchronization

f neurons in high coupling strengths, while in the static coupling,

he chimera state emerged. Investigating the dynamics of the neu-

ons showed that in all cases, the neurons exhibit square wave

ursting, and this behavior is not varied by changing the coupling.
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ppendix: Strength of incoherence 

To characterize different dynamical behaviors of the network, a

tatistical measure is used. The strength of incoherence uses the

ime series of the network and computes the local standard devia-

ion [54] . To calculate the strength of incoherence, firstly, the state

ariables are transformed into new variables w i = v i − v i +1 . Then

he neurons are divided to into M bins of equal length n = 

N 
M 

, and

he standard deviation of each bin is calculated as follows: 

( m ) = 

√ 

1 

n 

nm ∑ 

j= n ( m −1 ) +1 

[
w j − w 

]2 

t 

(5)

here w = 

1 
N 

N ∑ 

i =1 

w i , and m = 1 , . . . , N. Then, the strength of inco-

erence (SI) is obtained by: 

I = 1 −
∑ M 

m =1 s m 

M 

, s m 

= ϑ ( δ − σ ( m ) ) (6)

ith ϑ(.) being the Heaviside step function, and δ a predefined

hreshold. Consequently, the value of SI defines the level of net-

ork synchrony, such that the asynchronous, synchronous, and

himera states are characterized by SI = 1, SI = 0, and 0 < SI <

, respectively. 
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