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A B S T R A C T

The mammalian brain has enormously complex neuronal diversity and a highly modular structure.

The propagation of information in the modular brain network can be modeled by a feedforward net-

work (FFN). Although studies in this area have yielded many important results, neuronal diversity

has rarely been considered. In the current work, we investigate the complex interactions between the

intrinsic properties of neurons and the FFN structure in the propagation of spiking activity. Here,

four typical types of cortical neurons reproduced by the Izhikevich neuron model are introduced. A

homogeneous FFN composed of a single type of excitatory neuron (regular spiking, mixed model,

or tonic bursting) can propagate spiking activity. However, an FFN with fast spiking neurons does

not propagate spiking activity. By modifying the network structure and synaptic weights, the spiking

propagation of the homogeneous FFNs can vary from synchronous transmission (with a high firing

rate) to asynchronous transmission (with a low firing rate). Among the homogeneous FFNs, both the

firing rate and the synchrony of the FFN with tonic bursting neurons are the highest, but those of

the FFN with regular spiking neurons is lowest, even when implementing the same FFN structure.

For the FFN with mixed neuronal types, interestingly, the spiking propagation is very sensitive to

the composition of the four types of neurons. By introducing fast spiking neurons into the homoge-

neous FFN composed of excitatory neurons, spiking propagation can be modified from synchronous

to asynchronous. Similarly, changing the proportion of any of the types of neuron affects the spiking

propagation, even for very small changes. The underlying mechanism of these observed results has

also been discussed.

1. Introduction

Neurons convert a stimulus from the external environ-

ment or signals from upstream neurons into a train of action

potentials (spikes), which are believed to be the fundamen-

tal process in the realization of brain function. The brain is

the most complex organ in the human body, consisting of

approximately 100 billion neurons. In the brain, neurons ex-

hibit great diversity in their shapes and functions [1, 2]. Trig-

gered with an external stimulus, different neurons respond

with different firing patterns. Based on the firing patterns

observed by intracellular recordings, neurons in the mam-

malian brain can be divided into various types [3, 4]. Regu-

lar spiking, tonic bursting and fast spiking neurons are typ-

ical neurons that were discovered in in vivo physiology and

laminar network anatomy experiments [3, 5]. In the subicu-

lum, different pyramidal neurons can generate regular spik-

ing and bursting spiking patterns [6]. Neuronal diversity

contributes to the emergent properties of neural networks

and, consequently, plays an important role in information

processing in the nervous system [7, 8, 9]. Therefore, studies

about the activities of the neuronal network of a brain region

should take into account intrinsic behavioral diversity both

within and between neuron types.

Moreover, the nervous system is a highly modular struc-

ture [10]. Information processing in the nervous system is

related to different functional groups of neurons, by which
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the information is transferred from one group to its down-

stream connected groups [11]. Thus, conditions under which

spiking activity can be propagated among the neuronal groups

are a crucial issue for information processing in the modular

brain. In the last decade, a multilayer feedforward network

(FFN) has been introduced to exploit the issue.

Multilayer FFNs, which provide important insights into

the mechanisms of cortical computation, can mimic the prop-

erties of the propagation of spiking activity. Each layer of

the network is related to a functional group of neurons, in

which neurons in one group receive inputs from many neu-

rons in the previous group, and thus the information is trans-

mitted from one group to the next [11]. Recently, several

computational studies have identified two dynamic activity

modes that support the propagation of rate coding and tem-

poral coding in the FFN [12, 13, 14]. When neurons in the

first layer are subject to white noise, firing rate can be prop-

agated in an FFN by the synchronized firings of Hodgkin-

Huxley (HH) neurons [15, 16]. When weak signals are input

to the neurons in layer 1, successive layers are able to prop-

agate and amplify the signals while the neurons are subject

to intrinsic or external noise above a certain level [17, 18].

Current computational studies also reveal that the propaga-

tion of spiking activities in an FFN depends on the interlayer

connection probability, synaptic intensity, noise, and input

signals [15, 16, 19, 20, 21]. Nevertheless, the diversity of

neurons is rarely considered in studies of FFNs. Thus, it is

not yet clear that the behaviors of spiking activity propagat-

ing within an FFN consider the intrinsic electrical properties

of different neuronal types.
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Figure 1: Four typical cortical neuron spiking patterns repro-
duced by the Izhikevich neuron model. Blue lines show the
membrane potential and red lines represent the step of DC
stimulus. The spiking patterns of excitatory neurons are re-
lated to (a) regular spiking [a=0.04; b=0.2; c=-65; d=10],
(b) mixed model [a=0.02; b=0.2; c=-55; d=4.5] and (c) tonic
bursting [a=0.02; b=0.2; c=-50; d=2]. The spiking pattern of
inhibitory neuron is related to (d) fast spiking [a=0.15; b=0.17;
c=-65; d=2].

As mentioned earlier, neuronal diversity plays a crucial

role in information processing in the nervous system. In

the mammalian brain, the diversity of neuronal and nonneu-

ronal cell types guarantees the execution of high-order cog-

nitive, sensory, and motor behaviors [22]. Networks with

diverse neuronal types offer superior decoding ability com-

pared with homogeneous networks [23]. In a hybrid coupled

neural network, it was shown that different types of pop-

ulation spiking patterns can emerge [24] and strongly syn-

chronized population spiking events lead to complete activ-

ity cessation [25], by changing the types of connections in

the network. It has also been found that increasing the diver-

sity of intrinsic neuronal types can enhance the encoding per-

formance of neuronal populations [26]. Andrew Bogaard et

al. found that the response of a neuronal network is strongly

affected by intrinsic neuronal properties and that the intro-

duction of a small number of cells with different excitability

properties can profoundly influence the spatiotemporal ac-

tivity of the neural network [27].

Considering the importance of neuronal diversity in the

nervous system, the effect of the intrinsic electrical proper-

ties of different neuronal types on the propagation of spiking

activity in an FFN is addressed in the current work. This pa-

per is organized as follows. In Sec. 2, the neuronal model,

the FFN connections and the simulation methods are intro-

duced. Simulation results are shown in Sec. 3. The conclu-

sions and discussion are presented in Sec. 4.

2. Model and method

Incorporating the biological dynamics of Hodgkin-Huxley

neuron and the computational efficiency of integration and

firing neuron, Eugene M. Izhikevich developed a simple spik-

ing neuron model and its dynamical equations are given as [28],

dv

dt
= 0.04v2 + 5v + 140 − u + Iext), (1)

du

dt
= a(bv − u). (2)

with the auxiliary after spike resetting:

if v ≥ 30mV , tℎen

⎧⎪⎨⎪⎩

v ← c,

u ← u + d.

(3)

here, v is the membrane potential and u is a membrane

recovery variable representing ionic currents of inactivation

Na+ and activation K+. The variable Iext is external stimu-

lus. This model is computationally efficient enough to sim-

ulate behaviors of thousands of neurons and the patterns of

all known types of cortical neurons with the choice of pa-

rameters a, b, c,and d. The most typical spiking patterns of

the cortical neurons reproduced by the Izhikevich model are

given in Fig. 1. Injected with a step of DC current, most

cortical neurons, namely the regular spiking neurons, fire

spikes with short interspike period and then the period in-

creases, as in Fig. 1 (a). Fig. 1 (b) shows the firing pattern of

a stereotypical burst of spikes followed by repetitive single

spikes, which can be observed in intrinsic bursting neurons

of mammalian neocortex [3]. Some neurons, eg. the pyrami-

dal neurons in layer II/III [29], generate repetitive high fre-

quency bursts of spikes referred to tonic bursting, as in Fig. 1

(c). Fast spiking neurons, as shown in Fig. 1 (d), are always

inhibitory in mammalian neocortex and fire periodic action

potentials with high frequency. It is noted that those four

typical spiking patterns of the cortical neurons are chosen in

the following studies. The fast spiking neuron is inhibitory,

but others are all excitatory. The values of parameters a, b,

c,and d are give in the caption of Fig. 1.

In the current study, a 10-layer feed-forward network is

constructed and each layer contains 200 Izhikevich neurons.

There are no connections among the neurons in the same

layer. Each neuron receives synaptic inputs randomly from

neurons in the previous layer. The interlayer connection prob-

ability Players is set as a free parameter. The dynamics of the

multilayer network can be described by,

dvl,i

dt
= 0.04v2

l,i
+ 5vl,i + 140 − ul,i

+Iext
l,i

+ I
syn

l,i
+ �l,i(t), (4)

dul,i

dt
= a(bvl,i − ul,i). (5)

where, vl,i and ul,i are the membrane potential and the recov-

ery variable of the ith neuron in layer l, respectively. Iext
l,i

is

treated as a sub-threshold base current only subjected to the

neuron in first layer (Iext
1,i

=0.6 and Iext
2∼10,i

=0). The Gaussian

white noise �l,i(t) is delivered only to layer 1 and satisfies

⟨�l,i(t)⟩ = 0 and ⟨�l,im (t1)�l,in (t2)⟩ = 2Dl�m,n�(t1− t2). Dl is

the noise intensity of layer l (D1=4 and D2∼10=0). It noted
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Figure 2: Raster plots showing the spiking propagation in the homogeneous FFN composed of a single type of excitatory neuron
(regular spiking neuron, mixed model neuron, tonic bursting neuron, and fast spiking neuron). The parameter values are as
follows: gsyn=0.2, Players=0.05.

that the sub-threshold base current Iext can be set as zero,

which is only used to make action potential generation easier

with the noise in the first layer. Thus, noise is present only to

make the neurons in the first layer to produce random action

potentials.

The synaptic current I
syn

l,i
(t) between neurons in the neigh-

bor layers is described as follow,

I
syn

l,i
(t) =

−1

M

M∑
j=1

gsyn�(t − tl−1,j)(Vi,j − Vsyn), (6)

with

�(t) = (t∕�)exp(−t∕�). (7)

where, M is the number of neurons in layer (l−1) connected

to the (l, i)th neuron. gsyn is synaptic weight. �=2 ms is the

rising time of synaptic input, also known as synaptic time

constant. tl−1,j represent the firing of jth pre-synaptic neu-

ron in layer (l−1) coupled with (l, i)th neuron. Vsyn is synap-

tic reversal potential determining the type of synapse (if the

synapse is excitatory synapses, Vsyn=0.0; if it is inhibitory,

Vsyn = −80.0).

It is noted that the base current and noise are only in-

jected into the neurons in the first layer. The layer 10 is

considered as the output layer. The noise intensity of the

first layer is set as D1=4 and that of other layers is set as

zeros. The connection of neurons between two adjacent lay-

ers is random with the probability Players. Differential equa-

tions above are solved by the Euler method and the Gaussian

white noise is generated by the algorithm introduced by Fox

et al. [30].

Here, two important aspects of the feedforward neural

network were considered: (i) the firing rate rl of each layer,

which is an average of all fires of all neurons in layer l. (ii)

synchronization index of each layer Kl, which is an average

cross-correlation of firing time of neurons. The synchro-

nization index Kl is defined as averaging a pair coherence

Kl,i,j(
) between neuron i and j over all neural pair in lth

layer,

Kl =
1

M(M − 1)

M∑
i=1

M∑
j=1,j≠i

Kl,i,j(
), (8)

where,

Kl,i,j(
) =

∑k

m=1
X(m)Y (m)√∑k

m=1
X(m)

∑k

m=1
Y (m)

. (9)

Kl,i,j(
) is measured by the cross correlation of spike trains

at zero time lag within a time bin gamma. The simulation

time span Tspan is divided into k bins of 
=1ms. The spike

train of neurons i and j are given by X(m) = 0 or 1 and Y(m)

= 0 or 1 (m = 1,⋯, k), where 1 denotes a spike occurring in

the bin and 0 otherwise.

3. Simulation results

Since the basic neuronal dynamics and the FFN struc-

ture have been introduced, we first study the spiking activi-

ties propagating in the FFN with a single type of neuron and

then investigate the propagation in the FFN with a mixture

of neuronal types.

3.1. Spiking activity propagation in an FFN with a

single neuronal type
In the current section, we explore the effects of different

neurons and network topology on activity patterns in homo-

geneous networks composed of only one neuronal type. The

raster plots shown in Fig. 2, reveal that the spiking activi-

ties can be propagated in an FFN with appropriate synap-

tic weights gsyn and interlayer connection probability Players.

Since Gaussian white noise is input to layer 1 neurons, each

neuron fires spikes randomly. For an FFN constructed with

regular spiking neurons, mixed model neurons and tonic burst-

ing neurons, the spikes that fire in layer 2 and layer 3 always

do so randomly, but the number of spikes is greater than

in layer 1, which implies that the firing rate also increases

in those layers. We can observe a tendency of synchrony

and the formation of blurry spike columns in layer 3. These

properties are clearer for tonic bursting neurons than for the

other two types of neurons. As the spikes continue to propa-

gate, such as to layer 5 in Fig. 2, several distinct columns of

spikes start to form. As spiking activity further propagates,

synchronous firing is established in the deepest layer. The

raster plots also indicate that the widths of the synchronous
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Figure 3: Firing rate [(a),(c)] and synchronization index
[(b),(d)] versus layer l for different interlayer connection prob-
abilities Players. The blue dashed lines indicate the results from
FFNs with regular spiking neurons; the solid red lines indicate
the results from FFNs with mixed model neurons; and the
green dash-dot lines indicate the results from FFNs with tonic
bursting neurons. Players=0.01 are marked with □; Players=0.09
are marked with ○; Players=0.17 are marked with △. Synaptic
weight: gsyn=0.1 for (a) and (b); gsyn=0.3 for (c) and (d). The
inset plot in (a) is an enlarged plot of the firing rate of the first
layer.

firing columns for the tonic bursting neurons are the largest

among the different neural types.

However, for the FFN constructed by fast spiking neu-

rons [right-hand-most column, Fig. 2], fewer spikes are pro-

duced in layer 2 than in layer 1, and the neurons do not fire

spikes at all in layer 3. That is, the spiking activities can-

not be propagated through the FFN when it consists only of

fast spiking neurons. Such results can be attributed to the

inhibitory synaptic connections among the spiking neurons.

For the three types of excitatory neurons (regular spiking

neurons, mixed model neurons and tonic bursting neurons),

the propagation of the spiking activity could be modeled in

the FFN with proper parameters. It would be interesting to

understand how the network structure and connections affect

the spiking activity of the FFN for the three types of excita-

tory neurons. Thus, the firing rate rl and synchronization

index Kl for different synaptic weights gsyn and interlayer

connection probabilities Players were calculated. Stronger

synaptic weights and higher interlayer connection probabili-

ties were shown to better facilitate synchronous spiking prop-

agation and enhance the firing rate. When the synaptic weights

are weak, spikes cannot be propagated by FFNs with low

interlayer connection probabilities. As shown in Fig. 3 (a)

(gsyn=0.1), the FFNs with interlayer connection probabil-

ity Players=0.01 do not propagate the randomly generated

spikes that were induced in layer 1 [as indicated by the un-

connected square markers in the inset plot]. The synchro-

nization is meaningless for a zero firing rate, so no lines of

synchronization for Players=0.01 can be plotted in Fig. 3 (b).

Increasing the interlayer connection probability Players

to 0.09, the spike activities can be propagated within the
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Figure 4: Color maps show the firing rate rl and the synchro-
nization index Kl in layer 10 versus synaptic weight gsyn and
interlayer connection probability Players. The results are plot-
ted for regular spiking neurons in (a) and (b), mixed model
neurons in (c) and (d) and tonic bursting neurons in (e) and
(f).

FFN with a very low firing rate. However, the correspond-

ing synchronization index Kl increases layer by layer and

finally saturates, as shown in Fig. 3 (b). This reveals the im-

portance of network connections, in that the firing activities

synchronously propagate within FFNs with even very low

firing rates. The firing rates of bursting neurons increase

rapidly and to much larger levels than those of the other

two types of neurons. By further increasing the interlayer

connection probability (Players=0.17), the propagated firing

rates and the corresponding synchronization indexes are in-

creased for all types of excitatory neurons. When the synap-

tic weights are strong, as shown in Fig. 3 (c) and (d), the

spiking activities can be propagated within FFNs with low

interlayer connection probabilities (Players=0.01), although

with very low firing rates. The corresponding synchronicity

is also very poor throughout the entire network. These re-

sults reveal that the spiking activities asynchronously prop-

agate in networks with low firing rates. Increasing the in-

terlayer connection probability enhances the firing rate and

synchronicity propagation. The firing rate and synchroniza-

tion of FFNs consisting of tonic bursting neurons are obvi-

ously larger than those of FFNs consisting of the other two

types of excitatory neurons.

To systematically show the influence of network proper-

ties in the propagation of neural activity in FFNs with differ-

ent types of neurons, color maps of firing rate and synchro-

nization index are shown in Fig. 4. As the synaptic weight

gsyn and interlayer connection probability Players change, the
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Figure 5: Firing rate rl [(a),(c)] and synchronization index Kl

[(b),(d)] versus layer l after introducing inhibitory fast spiking
neurons to homogeneous excitatory FFNs. The different line
styles indicate the results from FFNs with different types of
neurons: regular spiking neurons (blue dashed lines), mixed
model neurons (red solid lines) and tonic bursting neurons
(green dashed-dotted lines). Different markers indicate differ-
ent proportions of fast spiking neurons introduced: 0% (□),
10% (○) and 50% (♢). The interlayer connection probability
is set to 0.01 (upper panels) and 0.09 (bottom panels). The
synaptic weight is 0.3 for all panels.

FFNs exhibit different behaviors of spiking activity prop-

agation. In the region with low synaptic weight gsyn and

interlayer connection probability Players [the blank areas of

the color maps of Fig. 4], the firing rate of layer 10 is zero,

which means that the spiking activity cannot be propagated

for these parameters. Consequently, the corresponding syn-

chronization indexes of those areas cannot be calculated be-

cause there is no spike propagation in this layer. For FFNs

with large synaptic weights gsyn and interlayer connection

probabilities Players, both the firing rate and synchronization

index are very high. This reveals that FFNs with such param-

eters can propagate the spiking activity synchronously and at

a high firing rate. When the interlayer connection probabil-

ity is low, FFNs with strong synaptic weight can propagate

spiking activity at a low firing rate. The corresponding syn-

chronization index is also very low. That is, FFNs can desyn-

chronize the propagation of neural activity in this case. It

is also interesting that the spiking activities synchronously

propagate on FFNs with low firing rates when the synap-

tic weights are relatively small but the interlayer connection

probability is relatively large. For FFNs constructed with

any of the three types of excitatory neurons, these results are

similar to each other. However, the ranges of the firing rates

are different: the propagated firing rates of tonic bursting

neuron FFNs are largest (r10 greater than 600 Hz), but those

of regular spiking neuron FFNs are smallest (r10 less than

350 Hz). Moreover, as the FFN neuronal type changes from

regular spiking to mixed model and finally to tonic bursting,

the area of low synchronization index is reduced.

3.2. Spiking activity propagation in FFNs with

multiple neuronal types
To further understand the effect of different neuronal types

on the propagation of spiking activity in an FFN, we first

introduce fast spiking neurons to homogeneous excitatory

FFNs and then mix the four kinds of typical spiking neurons

into a single FFN.

3.2.1. Introduction of fast spiking neurons to

homogeneous excitatory FFNs

In this section, the synaptic weighting is chosen as gsyn=0.3,

and the neural network is allowed to transmit spiking activ-

ity synchronously and asynchronously by changing the inter-

layer connection probability Players for homogeneous FFNs

composed of the three excitatory neuron types. The fast spik-

ing inhibitory neurons are randomly introduced into each

layer with probability Pinℎ.

Fig. 5 gives the firing rates and synchronization indexes

of homogeneous FFNs with different proportions of fast spik-

ing inhibitory neurons. When the interlayer connection prob-

ability is low [such as Players=0.01 in Fig. 5 (a) and (b)],

the spiking activity asynchronously propagates within FFNs

with a low firing rate. Once fast spiking inhibitory neuron is

introduced, the firing rate is decreased. When the proportion

of fast spiking neurons is sufficiently large, the propagation

of spiking activity within the FFN is blocked. Homogeneous

FFNs composed of regular firing neurons are more likely to

be blocked by introducing fast firing neurons.

When the interlayer connection probability is high, the

spiking activity synchronously propagates within the FFNs

at high firing rates in the absence of fast spiking neurons

[see lines Pinℎ = 0% in Fig. 5 (c) and (d)]. As the number

of introduced fast spiking inhibitory neurons increases, both

the firing rate and the synchronization index decrease. That

is, the firing rate propagated within the FFN can be effec-

tively regulated by changing the proportion of fast spiking

inhibitory neurons. For example, the firing rate of the output

layer (layer 10) is approximately 422 Hz without fast spiking

neurons but can be greatly reduced by changing the neurons

to the fast spiking variety, as shown in Fig. 5 (c). Moreover,

the propagation within the FFN will also be adjusted from

synchronous transmission to asynchronous transmission by

the introduction of fast spiking neurons, as shown in Fig. 5

(d).

The color maps in Fig. 6 illustrate the firing rates and

synchronization indexes of layer 10 as a function of both the

proportion Pinℎ of introduced fast spiking inhibitory neurons

and the interlayer connection probability Players of the FFN.

When the interlayer connection probability is very small [the

blank areas of the color maps in Fig. 6], the spiking activity

cannot be propagated to the deep layers of the FFN. Thus,

there is no firing rate or synchronization index for the param-

eters in the blank areas. By increasing the interlayer connec-

tion probability, the spiking activity can propagate within the

FFN. Both the firing rate and the synchronization index in-

crease with the interlayer connection probability. However,

the firing rate and the synchronization index decrease when
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Figure 6: Color maps show the firing rate rl and the synchro-
nization index Kl of layer 10 versus both the proportion Pinℎ

of introduced fast spiking inhibitory neurons and the interlayer
connection probability Players. The results are plotted for regu-
lar spiking neurons in (a) and (b), mixed model neurons in (c)
and (d) and tonic bursting neurons in (e) and (f).

the proportion of introduced fast spiking inhibitory neurons

increases. Obviously, to achieve synchronous propagation of

the spiking activity, a higher interlayer connection probabil-

ity and a smaller proportion of introduced fast-spiking neu-

rons are required. To achieve asynchronous transmission, a

smaller interlayer connection probability and a larger pro-

portion of introduced fast-spiking neurons are required. The

FFNs with tonic bursting neurons exhibit higher firing rates

than those with mixed model neurons and regular spiking

neurons after introducing the same proportion of fast firing

neurons.

3.2.2. Mixture of the four types of typical spiking

neurons in a FFN

In this section, we mixed the four types of typical spik-

ing neurons in an FFN. Here, all four types of neurons are

randomly distributed in each layer of the FFN. The proba-

bility of fast spiking neurons Pf is set to a constant 10% in

each layer. The proportion of mixed model neurons Pm in

each layer varies: 0%, 10%, 30%, and 50%. The proportion

of tonic spiking neurons Pt is related with the proportion of

regular spiking neurons Pr as follows: Pr=1-Pm-Pt-Pf .

Given the above hybrid scheme of neuronal types, Fig. 7

shows the firing rate (upper panels) and synchronization in-

dex (lower panels) versus the layer index. It is clear that the

propagation of spiking activity is sensitive to the composi-

tion of the four types of neurons in the FFN. In Fig. 7 (a)

and (e), the probability of mixed model neurons Pm is set

to zero, which means that the FFN is composed of fast fir-

ing neurons, tonic bursting neurons, and regular firing neu-

rons. Since the amount of fast spiking is set to a constant

10%, there is a greater proportion of tonic bursting neurons

than regular firing neurons. As the proportion of tonic spik-

ing neurons increases, the firing rates propagated within the

FFN increase, even for a small percentage of tonic spiking

neurons. Similarly, the firing rate of the FFN decreases as

the proportion of regular spiking neurons increases. On the

whole, regardless of the proportion of tonic bursting neurons

or regular spiking neurons in the FFN network, the propaga-

tion of the firing rate within the FFN is between that of the

FFN solely composed of tonic spiking and fast spiking neu-

rons and that of the FFN solely composed of regular spik-

ing and fast spiking neurons. Although the behaviors of the

propagation of synchrony are not greatly affected by the in-

crease in tonic spiking neurons, the synchrony of the early

layers is enhanced, while that of the deep layers is weak-

ened. Moreover, increasing the proportion of tonic bursting

neurons in the mixed-neuron FFN does not yield a synchro-

nization index higher than that of the FFN solely composed

of tonic spiking and fast spiking neurons.

From the left column to the right column of Fig. 7, the

proportion of mixed model neurons in the FFN is increased.

Increasing the proportion of mixed model neurons has no

notable effect on the behavior of the propagation of spiking

activity within the FFN as the proportion of tonic spiking

neurons increases. However, the range and magnitude of the

firing rates substantially decrease as the proportion of mixed

model neurons increases. It should be noted that an increase

in the proportion of fast spiking neurons could decrease the

firing rates and synchrony of the spiking activity propagation

and regulate the spiking propagation from synchronous to

asynchronous (these data are not explicitly shown here, but

can be observed in Figs. 5 and 6.).

4. Conclusion and Discussion

The mammalian nervous system is a laminar structure

containing many areas and neuronal types that form a com-

plex neuronal network [31]. Information propagates within

and across the many networks, which could be easily sim-

ulated through an FFN [11]. There are many anatomical

pieces of evidence for the rationality of FFN, such as the se-

quential brainstem nuclei in sensory pathways or the cortical

layers through which thalamic inputs from layer IV propa-

gate [32]. In the last decade, several computational stud-

ies have addressed the issue of spiking activity propagation

in FFNs and have identified the propagation of either asyn-

chronous (rate code) or synchronous (temporal code) spik-

ing [11, 14, 15]. Moreover, the brain has a great variety of

neurons, which differ from each other dramatically in their

patterns of action potentials. In cortex layers 2, 3 and 5 of

adult rats, three types of neurons (regular spiking, burst spik-

ing, and fast spiking) have been identified in the different lay-

ers [33]. However, the physiological fact of neuronal variety

has not been considered in the research of information prop-
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Figure 7: Firing rate rl [(a),(b),(c),(d)] and synchronization index Kl [(e),(f),(g),(h)] versus layer l for heterogeneous FFNs with
different mixtures of the four types of typical spiking neurons. In the FFNs with mixed neuronal types, the proportion of fast
spiking neurons Pf in each layer is set to a constant 10%; the probability of mixed model neurons Pm in each layer is set to 0%
[(a) and (e)], 10% [(b) and (f)], 30% [(c) and (g)], and 50% [(d) and (h)]; and the probability of regular spiking neurons Pr and
the probability of tonic spiking neurons Pt are interrelated (Pt=1-Pm-Pr-Pf ). The synaptic weight is 0.3.

agation within the FFN. The spiking activities transmitted

through FFNs constructed with different types of neurons is

still under debate. In the current work, we have addressed

such issues and obtained some general results.

Four typical cortical neuron spiking patterns reproduced

by the Izhikevich neuron model were introduced in an FFN.

The homogeneous FFNs constructed by each of three types

of excitatory neurons (regular spiking neuron, mixed model

neuron, and tonic bursting neuron) can propagate spiking ac-

tivities. However, the FFN constructed solely of fast spiking

neurons cannot propagate spiking activity to the deep lay-

ers due to the inhibitory connections between the neurons.

By changing the network structure and connection strengths,

the spiking propagation of homogeneous FFNs (for all three

types of excitatory neurons) varies from synchronous trans-

mission with a high firing rate to asynchronous transmission

with a low firing rate. In the same FFN, the firing rates of

tonic bursting neurons are largest and those of regular spik-

ing neurons are smallest. Moreover, as the network structure

and connection strengths change, the resulting range of fir-

ing rates of tonic spiking neurons is the widest. In the FFN

with mixed neuronal types, the propagation of spiking activ-

ity is sensitive to the proportions of the four types of neurons

in the network. After fast spiking neurons are introduced to

the homogeneous excitatory neuron FFNs, the spiking could

be regulated from synchronous to asynchronous. Similarly,

changing the proportion of any of the types of neuron affects

spiking propagation could be affected, even for very small

changes.

The underlying mechanism of the observed results can

be understood as follows. To activate the firing of action

potentials in the FFN, a fast-rising synaptic stimulation is

needed to depolarize the membrane potential to reach the

threshold potentialVtℎresℎold (for Izhikevich neurons, the thresh-

old potential Vtℎresℎold=30 mV). When the synaptic input

signals from different presynaptic neurons arrive at the same

time, the postsynaptic membrane potential can easily reach

the threshold potential to generate action potentials. The

neurons in the network operate as evidence detectors and are

sensitive to the exact timing of synaptic inputs from multi-

ple presynaptic neurons [15]. As the layer index increases,

the temporal correlation of the multiple synaptic inputs re-

ceived by the neurons increases. The neurons begin firing

more action potentials, increasing the firing rate. Since all

neurons in the same layer received presynaptic pulses with

high temporal correlations, the neurons fire synchronously.

When the connection probability between the layers is small,

it is difficult for the neurons in the subsequent layers to re-

ceive strongly correlated synaptic inputs. Therefore, in the

FFNs with small connection probabilities, the firing rate in-

creases little as the layer index increases. In this case, the ac-

tivities asynchronously propagate within the FFN with a low

firing rate. The different intrinsic dynamics of the different

types of neurons result in different action potential response

behaviors and different synaptic outputs, even when injected

with the same stimulus. For example, a fast spiking neuron

responds to extremely high-frequency action potentials and

outputs inhibitory synaptic signals, which prevent the depo-

larizing process and inhibit the formation of an action po-

tential in the postsynaptic neuron. In this way, the FFN with

different types of neurons shows different patterns of activity

propagation. Changing the proportion of any of the neuron

types in the network alters both the node dynamics and the

synaptic signals within the FFN. Thus, spiking propagation

is sensitive to the composition of neuronal types.

It is also interesting that there is a time lag between the

synchronized firings of two neighboring layers, as shown in

Fig. 2. These time lags are largely related to the time of depo-

larization of the membrane potential and the time of synap-

tic signal formation and transmission (such as the synaptic
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time constant �). If stable synchrony is well established, the

time lag between the synchronous firings of two neighboring

layers is almost unchanged during propagation. The propa-

gation of the firing rate within the FFN is intrinsically re-

lated to the transmission of information received by the neu-

rons. For information transmitted from upstream neurons

or the external environment, such as multiple noisy oscil-

latory signals [34] or subthreshold signals with background

noise [35, 36], neurons respond with action potentials at dif-

ferent firing rates and code the input signals in either rate

mode (synchronous) or temporal mode (asynchronous) [11].

Either the asynchronous or synchronous spiking propagates

through different layers with a time lag due to the properties

of synaptic transition and neuronal response [14, 37].

In the current work, it was found that the firing rates that

propagated within the FFN can be modulated by the con-

nection properties of the network and the intrinsic dynamics

of the different neuronal types. Moreover, we also observed

that the firing rates that propagated within the FFN could

vary from 2 Hz up to 700 Hz by changing these network and

neuron parameters. In in vivo and in vitro experiments, a

wide frequency range has been recorded at the cellular and

network levels; the firing rates of different types of neurons

in the brain were shown to range from 0 to 400 Hz [38, 39,

40], and extracellularly recorded local field potentials of the

brain show that their oscillations could vary from <4 Hz to

600 Hz [41, 42, 43]. High-frequency firing neurons have the

advantage of short conduction delays in the central nervous

system [44]. Moreover, the excess Na+ influx in myelinated

axons and some fast synaptic transmission could optimize

the high firing rate propagation [45, 46]. The broad fre-

quency range is also beneficial to the coding process [44].

Although the role of high-frequency firing rates or neural

oscillations in the nervous system is not well understood,

the results in the current work reveal clues indicating that

the high firing rate is related to the intrinsic dynamics of the

neurons and the network structure.

Overall, characterizing and understanding the underly-

ing mechanisms of neural information encoding and trans-

mission across modular brain structures is one of the cen-

tral problems in neuroscience. The current simulation re-

sults also reveal that neuronal diversity is also an important

factor that affects neural coding and information transmis-

sion. Gjorgjieva et al. have reported similar results, showing

that the presence of diverse ion channels and their dynam-

ics endow single neurons the ability to switch the mode of

information transmission in a neural network [47]. Thus,

we believe that the results of the current work highlight the

importance of the combined interactions of diverse intrinsic

neuronal types in information transmission.
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