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A B S T R A C T

The pharmacological properties of Hedychium coronarium Koen. is due to the presence of its active constituent
Coronarin D. Coronarin D has been found to possess a myriad of therapeutic activities ranging from anti-
microbial to anticancer. Coronarin D content in H. coronarium greatly differs in different habitat. In this study, an
artificial neural network (ANN) based model was developed to investigate the influence of abiotic factors (cli-
mate and soil) and predict a suitable region for cultivation of H. coronarium with high content of coronarin D.
The experimental dataset of 50 was generated by collecting H. coronarium rhizomes from 50 different geo-
graphical locations distributed in five different states of India. For each location, 18 input parameters were
considered including soil nutrients (micronutrients and macronutrients) and climatic factors. Datasets were
randomly partitioned with 72 %, 14 % and 14 % for training, validation and testing dataset, respectively. HPTLC
analysis revealed coronarin D content to vary from 0.136 to 0.687 mg/100 mg dry wt among 50 H. coronarium
rhizomes. Results showed that the multilayer perceptron (MLP) neural network with single hidden layer con-
taining 5 neurons namely 18-5-1 structure could predict the coronarin D content accurately with a correlation
coefficient (R2) of 0.891 and root mean square error (RMSE) of 0.06. Sensitivity analysis revealed the effect of
altitude, manganese and zinc on predicted coronarin D content to be slightly higher compared to other factors.
The developed ANN model will assume a great significance in the prediction of the proper regions/site for
optimum coronarin D yield in H. coronarium.

1. Introduction

Hedychium coronarium Koen. (Zingiberaceae), commonly known as
white ginger lily, is a highly valued rhizomatous herb known for its
medicinal and cosmetic use. It is mostly distributed in tropical countries
such as India, Bangladesh, Brazil, China, Japan and South Asia
(Morikawa et al., 2002; Ray et al., 2017). In India, it is distributed in
Assam, Manipur, Sikkim, Peninsular and Central regions of India
(Pachurekar and Dixit, 2017). The medicinal use of Hedychium cor-
onarium is well documented in Indian system of traditional medicine.
The rhizome is used as an excitant and carminative and for treatment of
fever, diabetes, diphtheria, headache, rheumatism and inflammation
(Chan and Wong, 2015; Parida et al., 2015; Ray et al., 2018). The
rhizomes are also used to treat irregular menstruation, piles bleeding
and urinary tract stones (Donipati and Sreeramulu, 2015). The

medicinal value of H. coronarium is mostly due to the pharmaceutical
properties of naturally occurring diterpenes in it. The rhizomes of H.
coronarium have been used for isolation of several diterpenes having
several biological efficacies such as anti-inflammatory, anti-tumor, anti-
allergic, anti-malarial, leishmanicidal, analgesic and cytotoxic activities
(Matsuda et al., 2002; Oh et al., 2006; Céline et al., 2009; Chimnoi
et al., 2009). The pharmacologically bioactive compound of H. cor-
onarium is coronarin D, a labdane diterpenoid which exhibits several
biological properties such as antimicrobial, anti-inflammatory and an-
ticancer activity (Van Kiem et al., 2011; Chen et al., 2013; Reuk-ngam
et al., 2014; Lin et al., 2018; Chen et al., 2017). It inhibits nuclear factor
kappa β pathway thereby inducing apoptosis and suppressing osteo-
clastogenesis (Kunnumakkara et al., 2008). Coronarin D exhibits ex-
cellent antifungal activity against Candida albicans in vitro
(Kaomongkolgit et al., 2012).
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Unavailability of high yielding coronarin D containing accessions
and significant variation in the coronarin D content at different geo-
graphical regions are the main barrier for commercial production of H.
coronarium. It is not possible to identify elite accessions of H. coronarium
by simple chemotyping as the production of secondary metabolite are
prone to vary at different habitat and environmental conditions. Study
have shown environmental factors to influence the biosynthetic pro-
duction of secondary metabolites (Gairola et al., 2010). Hence, it would
be necessary to correlate the effect of environmental data (climatic
factors and soil nutrients) of different geographical regions of Eastern
India with respect to coronarin D content.

Artificial neural network (ANN) models are efficient prediction tools
and yield better than conventional models (Alam and Naik, 2009). The
most common type of ANN model that is being used nowadays is
multilayer perceptron (MLP) (Emamgholizadeh et al., 2015). MLP is an
ANN model of the feed forward type, which consists of the input layer,
the hidden layer and the output layer. The MLP has many layers con-
nected to each other, and each node is a neuron with a non-linear ac-
tivation function. Perceptron calculates a single result from multiple
inputs, creating a linear combination according to its inputs, and then
determines the result using the non-linear transfer function (Singh
et al., 2012). ANN model have also been successfully used for prediction
of crop yield by using different architecture such as generalized feed
forward (GFF) (Kazem and Yousif, 2017), Jordan/Elman (JE) (Michelon
et al., 2018), principal component analysis (PCA) (Mohammadi and
Siosemarde, 2016), and radial basis function (RBF) (Wang, 2018). ANN
model have been widely used for yield prediction of some important
crops such as wheat, corn, soybean, maize, potato and safflower
(Abdipour et al., 2019; Ahmadi et al., 2014; Alvarez, 2009; Fieuzal
et al., 2017; Matsumura et al., 2015; Moradi et al., 2013). Secondary
metabolite production is influenced by a number of abiotic factors and
it is very difficult to relate their associations by conventional mathe-
matical models. ANN model has been used to predict the secondary
metabolite content of plant in response to environment and soil factors.
ANN prediction model have been carried out to study the effect of soil
nutrients and environmental parameters on podophyllotoxin content in
P. hexandrum (Alam and Naik, 2009), curcumin content in C. longa
(Akbar et al., 2016) and essential oil yield in C. longa (Akbar et al.,
2018). Therefore the present study was carried out to evaluate the
predictive performance of ANN model in forecasting coronarin D con-
tent in H. coronarium using input environmental and soil parameters as
well as to carry out sensitivity analysis of the input parameters in order
to determine the most influential parameter on coronarin D content.

2. Materials and methods

2.1. Plant material and sampling locations

Hedychium coronarium accessions were sampled from fifty different
geographical locations comprising five differences provinces (Assam,
Andhra Pradesh, Jharkhand, Odisha and West Bengal) of Eastern India
in the month of July–December 2016 at their flowering stage. From
each location, three replicates plant samples were collected. To avoid
collection of clonal material, samples between the replicates that were
at least 15 m apart from each other were considered. The plant mate-
rials were authenticated by taxonomist Dr. P.C. Panda, Regional Plant
Resource Centre, Bhubaneswar, Odisha and were deposited in the
herbarium of the same institute (Table 1). The fresh rhizomes of H.
coronarium were cut from the uprooted plants and washed in water to
remove the dirt. The sampling location of 50 collected sites was de-
termined using a GPS device (Garmin 276 C, Garmin, Olathe, KS) by
measuring its latitude, longitude and altitude. Meteorological data such
as precipitation, relative humidity, minimum temperature, maximum
temperature and average temperature were recorded as mean/average
summaries of last 5 years provided by Indian Meteorological Depart-
ment (IMD) derived from facilities located close to each sampling site

were recorded.

2.2. HPTLC analysis of coronarin D content

2.2.1. Preparation of extract
H. coronarium rhizomes was dried and pulverized into fine powder.

Rhizome powder (10 g) was extracted with 250 ml of methanol in a
Soxhlet apparatus by refluxing for 8 h. The extract was filtered, and the
solvent was removed in a rotary evaporator at 50 °C and were stored at
4 °C.

2.2.2. Chromatographic conditions
HPTLC analysis of H. coronarium extracts were carried out in a

Camag HPTLC system equipped with a Linomat V applicator, twin
trough development chamber, TLC Scanner 4 equipped with the
WinCATS Software 4.03. H. coronarium methanol extracts along with
standard coronarin D were applied to the silica gel TLC aluminum
60F254 plates (Merck, India) as 6 mm band length and 1 mm apart using
N2 flow with an application rate of 0.2 μl/sec. The plates were run to a
distance of 85 mm in a 20 × 10 cm CAMAG® twin-trough chamber
previously pre-saturated for 15 min. with mobile phase (20 ml) n-
hexane: ethyl acetate (8:2). Then, it was dried under air for 5 min.
Densitometry scanning was done in the absorbance-reflectance mode
using deuterium lamp at 231 nm using TLC Scanner 4 (slit dimension 5
× 0.45 mm, scanning speed 20 mm/s).

2.2.3. Calibration and quantification of coronarin D
Quantification of coronarin D (Wuhan Chemfaces Biochemical Co.

Ltd, Wuhan, Hubei) in H. coronarium extracts was carried out by ex-
ternal standard addition method. Stock solution of coronarin D (0.2
mg/ml) was prepared by dissolving 2 mg of coronarin D in 10 ml of
chloroform. Five-point calibration curve of coronarin D was made by
applying 1–5 μl of coronarin D stock solution onto TLC plate. The
concentration of coronarinD in H. coronarium extracts was determined
by plotting concentration of coronarin D in the X-axis against peak area
in Y-axis.

2.3. Analysis of soil nutrients

The soils were collected at a depth of 10−30 cm below the surface
from each location. Then the soil was dried, grounded and sieved (2
mm mesh) for the following analysis. The fine soil was used for further
studies. Soil pH was measured by making a suspension of 1:2 of soil:
water after stirring continuously for 30 min using a pH meter
(Systronics Model no: 802). Total organic carbon content present in soil
was calculated by oxidation of organic carbon with potassium dichro-
mate (1.5 N) in an acidic environment with sulphuric acid and ana-
lyzing using spectrophotometer wet digestion (Nelson and Sommers,
1982). Total nitrogen content was calculated using the Kjeldahl method
(Bremner and Mulvaney, 1982). The total potassium content was ana-
lyzed by adding 25 ml of 1 N ammonium acetate to 5 g of soil in a
conical flask and shaking it for 5 min, and then the residue was filtered
and tested using a photoelectric flame photometer (Systronics model
no: 126). Available phosphorus in soil was measured using Bray 2 ex-
tractant method (Bray and Kurtz, 1945) method. The concentration of
phosphorus was determined by plotting different concentration of
standard phosphorus using a spectrophotometer (Thermo scientific
evolution 201, Thermo fisher Scientific) at 660 nm. Micronutrients like
Zn, Cu, Mn and Fe present in soils were measured by digesting soil:
solution in the ratio of 1:2 for 2 h. The solution is a mixture of 5 mM
diethylene triamine pentaacetic acid (DTPA), 0.01 M CaCl2, and 100
mM triethanolamine (TEA) with pH adjusted to 7.3 (Lindsay and
Norvell, 1978). Then they were measured using an atomic absorption
spectrophotometer (AAS) (Perkin Elmer Analyst 100, Perkin Elmer,
USA) with absorbance wavelength set at 214, 325, 280 and 248 nm for
Zn, Cu, Mn and Fe, respectively. The sulphur present in soil was
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digested using Mg(NO3)2 and HNO3 and measured by barium sulfate
turbidimetric method (Page et al., 1982).

2.4. Artificial neural network model development

In the current research, artificial neural-network (ANN) model was
implemented with Statistica 7 package (Stat Soft Inc.) using feed for-
ward back propagation (BP) method and trained using the climatic and
edaphic factors as the input and coronarin D content as the output
variables. The topology of ANN structure is composed of 18 in-
dependent variables as input and one dependent variable as output to
generate 18:1 pattern. Eighteen independent variables, i.e., altitude,
precipitation, maximum temperature, minimum temperature, average
annual temperature, average relative humidity, pH, electrical con-
ductivity, organic carbon, nitrogen, phosphorus, potassium, manga-
nese, zinc, iron, boron, copper and sulphur content. Coronarin D con-
tent was selected as output for modeling of ANN.

In this study, a total of 50 samples were randomly divided into 3
datasets namely, training, validation, and testing. Data were randomly
partitioned with 72 % (36 samples) for training, 14 % (7 samples) for
validation and 14 % (7 samples) for the testing dataset. Following
training, the ANN was validated and tested with the validation and
testing data set to evaluate the prediction performance of the final ANN
models. In the current research, neurons in the range of 2–17 were
taken for analysis based on hit and trial. The neurons were optimized to
get the best prediction performance. The flow of data occurs from the
input layer to the hidden layer and is then distributed to the output
layer. Throughout the training process, the connection weights and
biases were adjusted to minimize the difference between the experi-
mental and predicted values. The neurons there in the hidden or output
layer acts as summing junction which joins and adjust the inputs from
the preceding layer using the formula:

Table 1
Geographic locations and habitats characteristics of Hedychium coronarium populations.

S.No Acc. Place District State Latitude Longitude Altitude Voucher No

1 HC1 Rabda Palamu Jharkhand 23° 54′ 29.175′' N 84° 13′ 49.852′' E 325 RPRC/10626
2 HC2 Panchupandab Nayagarh Odisha 20° 00′ 15.415′' N 84° 53′ 26.392′' E 267 RPRC/10624
3 HC3 Chowberia North 24 Parganas West Bengal 22° 58′ 45.610′' N 88° 40′ 30.835′' E 11 RPRC/9566
4 HC4 Rampurhat Birbhum West Bengal 24° 10′ 52.961′' N 87° 46′ 52.507′' E 37 RPRC/9567
5 HC5 Rajini Khordha Odisha 19° 52′ 52.415′' N 84° 59′ 10.592′' E 535 RPRC/10625
6 HC6 Bolpur Birbhum West Bengal 23° 40′ 30.546′' N 87° 40′ 37.837′' E 58 RPRC/9569
7 HC7 Ushabali Kandhamal Odisha 19° 56′ 31.315′' N 83° 39′ 22.312′' E 745 RPRC/10626
8 HC8 Surampalem Kakinada Andhra Pradesh 17° 29′ 52.959′' N 82° 13′ 37.822′' E 341 RPRC/10798
9 HC9 Pedachama Prakasam Andhra Pradesh 16° 00′ 50.891′' N 78° 58′ 11.822′' E 672 RPRC/10799
10 HC10 Haroa North 24 Parganas West Bengal 22° 36′ 26.508′' N 88° 40′ 37.559′' E 10 RPRC/9570
11 HC11 Guma Kandhamal Odisha 19° 56′ 22.515′' N 83° 39′ 17.592′' E 747 RPRC/10628
12 HC12 Panitola Tinsukia Assam 27° 35′ 36.605′' N 95° 18′ 18.701′' E 112 RPRC/9760
13 HC13 Sargachi Murshidabad West Bengal 24° 10′ 52.961′' N 87° 46′ 52.507′' E 38 RPRC/9571
14 HC14 Purbagool Hailakandi Assam 24° 40′ 9.309′' N 92° 38′ 27.205′' E 24 RPRC/9761
15 HC15 Narendrapur South 24 Parganas West Bengal 22° 26′ 20.803′' N 88° 23′ 48.314′' E 58 RPRC/9565
16 HC16 Seetharampuram Nellore Andhra Pradesh 15° 01′ 46.879′' N 79° 05′ 06.322′' E 515 RPRC/10797
17 HC17 Raiganj North Dinachpur West Bengal 25° 37′ 06.706′' N 88° 07′ 32.101′' E 37 RPRC/9573
18 HC18 Judia Keonjhar Odisha 21° 36′ 80.621′' N 85° 33′ 26.423′' E 412 RPRC/10627
19 HC19 Lalbagh Murshidabad West Bengal 24° 10′ 16.746′' N 88° 16′ 35.435′' E 23 RPRC/9574
20 HC20 Chitmiti West Singhbum Jharkhand 22° 35′ 53.389′' N 85° 41′ 41.037′' E 737 RPRC/10642
21 HC21 Kounsi Hazaribag Jharkhand 23° 47′ 34.384′' N 85° 22′ 41.117′' E 508 RPRC/10631
22 HC22 Krishnanagar Nadia West Bengal 23° 24′ 03.148′' N 88° 30′ 05.026′' E 19 RPRC/10630
23 HC23 Simlipal Mayurbhanj Odisha 21° 35′ 35.214′' N 86° 48′ 20.157′' E 816 RPRC/10629
24 HC24 Deogada Kandhamal Odisha 19° 55′ 08.918′' N 83° 37′ 65.603′' E 681 RPRC/10637
25 HC25 Ghonza North 24 Parganas West Bengal 22° 37′ 00516′' N 88° 24′ 10.422′' E 7 RPRC/9575
24 HC24 Deogada Kandhamal Odisha 19° 55′ 08.918′' N 83° 37′ 65.603′' E 681 RPRC/10638
25 HC25 Ghonza North 24 Parganas West Bengal 22° 37′ 00516′' N 88° 24′ 10.422′' E 7 RPRC/9576
26 HC26 Sokra Palamu Jharkhand 23° 57′ 17.008′' N 84° 04′ 06.597′' E 322 RPRC/10635
27 HC27 Tidipadar Kandhamal Odisha 19° 54′ 33.682′' N 83° 38′ 48.526′' E 901 RPRC/10639
28 HC28 Baramunda Khurdha Odisha 20° 16′ 16.223′' N 85° 47′ 39.627′' E 44 RPRC/10640
29 HC29 Nayapalli Khurdha Odisha 20° 17′ 53.807′' N 85° 48′ 11.618′' E 59 RPRC/10641
30 HC30 Gimli Visakhapatnam Andhra Pradesh 18° 00′ 03.764′' N 82° 29′ 13.339′' E 350 RPRC/10800
31 HC31 G. Madagulla Visakhapatnam Andhra Pradesh 17° 55′ 54.287′' N 82° 32′ 03.416′' E 981 RPRC/10801
32 HC32 Barpathar Golaghat Assam 26° 27′ 3.463′' N 93° 56′ 54.912′' E 103 RPRC/9758
33 HC33 Konnagar Hooghly West Bengal 22° 42′ 33.593′' N 88° 18′ 42.415′' E 7 RPRC/9577
34 HC34 Jirighat Cachar Assam 24° 48′ 28.102′' N 93° 06′ 28.091′' E 36 RPRC/9759
35 HC35 Lalpani Cachar Assam 24° 47′ 09.752′' N 93° 05′ 28.091′' E 31 RPRC/9763
36 HC36 Palpara Nadia West Bengal 23° 04′ 02.249′' N 88° 31′ 17.326′' E 10 RPRC/9578
37 HC37 Tarapith Birbhum West Bengal 24° 06′ 50.558′' N 87° 47′ 56.687′' E 33 RPRC/9579
38 HC38 Bolpur Birbhum West Bengal 23° 40′ 07.281′' N 87° 40′ 57.963′' E 51 RPRC/9580
39 HC39 Diphu Karbi anglong Assam 25° 50′ 47.884′' N 93° 25′ 47.506′' E 192 RPRC/9762
40 HC40 Muchisha South 24 Parganas West Bengal 22° 23′ 48.342′' N 88° 11′ 37.535′' E 9 RPRC/9581
41 HC41 Talakona Chittor Andhra Pradesh 13° 48′ 42.342′' N 79° 10′ 37.503′' E 777 RPRC/10803
42 HC42 Bangaria Nadia West Bengal 23° 35′ 13.614′' N 88° 26′ 03.395′' E 24 RPRC/9582
43 HC43 Kadu Kalahandi Odisha 20° 20′ 38.331′' N 83° 53′ 40.885′' E 598 RPRC/10637
44 HC44 Rachapalli East Godavari Andhra Pradesh 14° 27′ 54.962′' N 79° 10′ 6.667′' E 452 RPRC/10804
45 HC45 Jargo Ranchi Jharkhand 22° 56′ 16.236′' N 85° 45′ 42.667′' E 418 RPRC/10632
46 HC46 Morabadi Ranchi Jharkhand 23° 24′ 02.864′' N 85° 20′ 16.486′' E 668 RPRC/10633
47 HC47 Karimpur Nadia West Bengal 23° 58′ 27.472′' N 88° 37′ 35.571′' E 22 RPRC/9583
48 HC48 R. Udayagiri Gajapati Odisha 19° 09′ 33.972′' N 84° 09′ 38.571′' E 631 RPRC/10634
49 HC49 Padmapur Gajapati Odisha 19° 14′ 16.472′' N 83° 49′ 11.552′' E 130 RPRC/10636
50 HC50 Lataguri Jalpaiguri West Bengal 26° 43′ 15.889′' N 88° 46′ 15.251′' E 122 RPRC/9584
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where ys is the input to node t in hidden or output layer, s is the number
of nodes, vs is the output of the preceding layer, ust is the weight in-
terconnection in between the s and t node and xt is the bias connected
with node t.

The developed neural-network model utilizes a sigmoidal transfer
function to measure the nonlinear relationship. The transfer function is
computed by the following formula:

=
+
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Where, Wt is the output of node t. Considering, the fact that sigmoid
transfer function lies between 0 and 1, in order to avoid over-fitting,
input and output variables were also scaled to the range of 0–1 by the
following formula:

= −B (B-B )/(B B )norm min max min

Where, Bnorm is the normalized value, B is the actual value, Bmin is the
minimum value and Bmax is the maximum value. In order to get the
actual value, the output values are again denormalized.

The prediction performance of the developed model was measured
by computing correlation coefficient (R2), root mean square error
(RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) values as follows.
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Fig. 1. Architecture of the multilayer perceptron feed forward network used in
the study.

Table 2
Actual and predicted coronarin D content of training dataset.

Acc No Predicted
coronarin D
content

Actual coronarin
D content

Absolute
error

Absolute
percentage error

HC1 0.321 0.349 0.028 2.80
HC3 0.307 0.264 0.043 4.30
HC4 0.208 0.216 0.008 0.80
HC5 0.562 0.438 0.124 12.4
HC6 0.172 0.223 0.051 5.10
HC7 0.526 0.460 0.066 6.60
HC8 0.304 0.270 0.034 3.40
HC9 0.581 0.485 0.096 9.60
HC10 0.164 0.265 0.101 10.1
HC11 0.513 0.515 0.002 0.20
HC12 0.497 0.537 0.040 4.00
HC13 0.225 0.219 0.006 0.60
HC15 0.286 0.350 0.064 6.40
HC18 0.281 0.318 0.037 3.70
HC20 0.519 0.498 0.021 2.10
HC21 0.371 0.443 0.072 7.20
HC22 0.265 0.190 0.075 7.50
HC24 0.497 0.566 0.069 6.90
HC25 0.154 0.257 0.103 10.30
HC26 0.187 0.227 0.040 4.00
HC27 0.567 0.554 0.013 1.30
HC28 0.231 0.255 0.024 2.40
HC31 0.341 0.445 0.104 10.40
HC32 0.687 0.635 0.052 5.20
HC33 0.562 0.511 0.051 5.10
HC34 0.631 0.653 0.022 2.20
HC35 0.589 0.655 0.066 6.60
HC36 0.231 0.215 0.016 1.60
HC37 0.211 0.215 0.004 0.40
HC38 0.237 0.227 0.010 1.00
HC39 0.687 0.623 0.064 6.40
HC41 0.541 0.446 0.095 9.50
HC43 0.481 0.497 0.016 1.60
HC44 0.223 0.285 0.062 6.20
HC47 0.215 0.220 0.005 0.50
HC48 0.621 0.549 0.072 7.20
Mean 0.048 4.87

Table 3
Actual and predicted coronarin D content of testing dataset.

Acc No Predicted
coronarin D
content

Actual coronarin
D content

Absolute
error

Absolute
percentage error

HC2 0.262 0.286 0.024 2.40
HC16 0.388 0.434 0.046 4.60
HC17 0.216 0.261 0.045 4.50
HC29 0.167 0.337 0.170 17.00
HC45 0.592 0.479 0.113 11.30
HC49 0.187 0.315 0.128 12.80
HC50 0.311 0.326 0.015 1.50
Mean 0.077 7.73

Table 4
Actual and predicted coronarin D content of validation dataset.

Acc No Predicted
coronarin D
content

Actual coronarin
D content

Absolute
error

Absolute
percentage error

HC14 0.811 0.683 0.128 12.8
HC19 0.033 0.054 0.021 2.10
HC23 0.989 0.881 0.108 10.8
HC30 0.884 0.823 0.061 6.10
HC40 0.111 0.142 0.031 3.10
HC42 0.076 0.136 0.060 6.00
HC46 0.546 0.537 0.009 0.90
Mean 0.059 5.97
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Fig. 2. Scatter plot showing experimental and predicted value of coronarin D content of (A) training; (B) testing and (C) validation data.

Fig. 3. HPTLC analysis of coronarin D in H. coronarium. (A) TLC plate at 254 nm. (Samples 1-50: H. coronarium accessions; S = Reference coronarin D); (B) Standard
coronarin D and (C) Overlay UV spectra of standard coronarin D and extract.
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Where, xi is predicted value, xik is the experimental value, xz is the
mean of experimental value and n is the number of observations.

2.5. Sensitivity analysis

Sensitivity analysis was carried out to identify the individual eff
;ects of each of the input variables on predicted coronarin D content.
The sensitivity test was performed for ANN model without a specific
input variable, and the eff ;ects of the input variables to predict cor-
onarin D content in ANN model was ranked from the highest to lowest.
The variable with higher error ratios indicate more important para-
meters (Miller et al., 2019).

3. Results

3.1. Development of ANN model for optimization of coronarin D content

The architecture of neural network model comprises of 18 input
neurons and one output neuron (Fig. 1). The feed forward network uses
back propagation algorithm by updating the weights thereby mini-
mizing the squared error between the experimental output values and
the predicted output values. Selecting appropriate network size is es-
sential for getting a good ANN model. Less number of neurons present
in the hidden layer may have an effect on the performance of ANN
model. An increased number of hidden layer neurons will lead to
overfitting issues, namely the conditions in which the error would be
small for the training dataset but very large for the test dataset. This is
due to the fact that higher the number of neurons, the more complex
the fitted functions. Therefore in the present study network were tested
with neurons in the range of 3–16. The best number of hidden layers
and number of neurons in hidden layers are determined by trial and
error and based on the highest correlation coefficient and lowest ob-
tained error. The network with single hidden layer and 5 neurons in the
hidden layer was selected as the best fit ANN model as it displayed the
lowest error and highest correlation coefficient. The analysis showed
that multilayer perceptron (MLP) network have outstanding nonlinear
relationship between input and output. Normal, the best performance
model is selected as the model having least root mean square (RMSE)
values and high coefficient of determination between experimental and
predicted values. Theoretically an ideal model RMSE values should be
near to 0 and coefficient of determination (R2) should be 1. The
training, testing and validation RMSE values for 18-5-1 network
structure were 0.06, 0.09 and 0.20 thereby indicating that the build
model is appropriate. The result comparison of actual and predicted
values of training, testing and validation dataset is provided in Tables

2–4, respectively. The linear plot generated in training process for ex-
perimental and predicted values showed a coefficient of determination
(R2) value of 0.891, thereby implying that the training process is ac-
curate (Fig. 2A). The linear plot generated in testing process for ex-
perimental and predicted values of coronarin D content showed a
coefficient of determination (R2) value of 0.894, thereby implying that
the testing process is highly precise (Fig. 2B). The validation dataset
comparison of experimental and predicted values displayed a coeffi-
cient of determination (R2) value of 0.942, thereby indicating the ac-
curacy of the validation process (Fig. 2C).

Table 5
Recovery study of coronarin D.

Acc No Coronarin D +
extract (μg)

Coronarin D
(μg)

Coronarin D in
extract (μg)

% Recovery

HC1 0.55 0 0.55 100
HC1 + 0.2 0.75 0.2 0.74 98.66
HC1 + 0.4 0.95 0.4 0.97 102.1
HC1 + 0.6 1.15 0.6 1.14 99.13
Average 99.96

Table 6
Repeatability study of coronarin D.

Acc No Peak area Avg. area SD %RSD

1 2 3 4 5 6

HC1 2431 2429 2440 2427 2436 2422 2430.8 6.4 0.26
HC2 1789 1793 1781 1789 1772 1796 1786.7 8.8 0.49
HC3 2170 2186 2193 2182 2179 2171 2180.2 8.8 0.40

Table 7
Climatic data for 50 H. coronarium accessions from different geographical re-
gions of Eastern India.

SI No Acc. Precipitation
(mm)

Max.
Temp.
(oC)

Min.
Temp.
(oC)

Avg.
Temp.
(oC)

Avg.
Rel.
Hum.
(%)

Altitude (m)

1 HC1 1091 38.2 9 25.4 57 325
2 HC2 1346 35.4 15.2 27 69 267
3 HC3 1569 36.4 12.4 26.4 75 11
4 HC4 1400 36.9 11.4 26.2 77 37
5 HC5 1266 33.2 16.3 28.1 76 535
6 HC6 1287 35.9 12 26.3 75 58
7 HC7 1340 37.5 12.1 25.06 62 745
8 HC8 1109 37.1 18.9 27.8 75 341
9 HC9 825 38.2 19.6 28.5 56 672
10 HC10 1527 35.6 12.3 26.3 75 10
11 HC11 1328 37 11.8 24 62 747
12 HC12 2679 31.1 9.7 23.1 82 112
13 HC13 1344 37.4 11.7 26.2 77 38
14 HC14 3075 31.9 11.7 24.9 78 24
15 HC15 1735 35.9 12.6 26.2 74 58
16 HC16 753 40.1 19 29.2 70 515
17 HC17 1570 35 9.9 24.9 76 37
18 HC18 1295 37.7 11.2 24.8 71 412
19 HC19 1343 37.3 11.7 26.2 77 23
20 HC20 1279 40.4 11.7 26.3 64 737
21 HC21 1274 37.9 9.5 23.7 63 508
22 HC22 1353 37.7 11.2 26.4 75 19
23 HC23 1596 38 13.4 26.8 71 816
24 HC24 1335 37.4 12.3 24.1 61 681
25 HC25 1568 35.3 12.3 26.3 74 7
26 HC26 1146 41.2 9.2 25.4 58 322
27 HC27 1345 36.8 12 24.71 63 901
28 HC28 1505 36.1 15.7 27.4 76 44
29 HC29 1520 36.3 15.8 27.2 77 59
30 HC30 1270 32.8 13 23.1 75 350
31 HC31 1290 32.4 12.8 22.8 76 981
32 HC32 1960 32.4 9.8 24 82 103
33 HC33 1175 37.5 12.8 26.5 75 7
34 HC34 3144 32.2 11.6 24.9 77 36
35 HC35 2996 32.2 11.4 24.9 78 31
36 HC36 1320 38 11.6 26.3 76 10
37 HC37 1389 38.1 11.5 26.3 64 33
38 HC38 1287 38 12 26.3 65 51
39 HC39 1453 32.4 9.1 24 78 192
40 HC40 1592 33.5 14.3 26.2 75 9
41 HC41 862 37.8 17.7 27.4 71 777
42 HC42 1299 37.8 11.5 26.4 74 24
43 HC43 1253 39.4 13.6 26.7 69 598
44 HC44 1115 37.8 18.5 27.9 69 452
45 HC45 1397 35.9 9.9 23.7 60 418
46 HC46 1432 36 10.1 23.8 61 668
47 HC47 1434 37 11.5 26.1 75 22
48 HC48 1272 34.4 16.6 23.2 75 631
49 HC49 1285 34.3 16.5 26.7 76 130
50 HC50 3242 30.9 10.6 24 64 122

Max. Temp.: Maximum temperature, Min. Temp.: Minimum temperature, Avg.
Temp.: Average temperature, Avg. Rel. Hum. : Average relative humidity.
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3.2. Analysis of parameters

3.2.1. Coronarin D content
A total of fifty H. coronarium accessions were sampled from various

geographical locations of Eastern India. The processing of all the ex-
tracts was carried out in a similar fashion and analysis of coronarin D
was done using HPTLC. Various mobile phases were tested using dif-
ferent solvents in different ratio. The mobile phase consisting of n-
hexane: ethyl acetate was used in the ratio 8:2 as it gave a compact
band for coronarin D with a Rf (Retardation factor) of 0.20±0.02 with
a good resolution. The TLC photo documentation of H. coronarium ex-
tract and coronarin D at 254 nm is shown in Fig. 3A. The HPTLC
chromatogram of reference coronarin D is shown in Fig. 3B. The
spectrum analysis corresponding to this peak was also found to overlay
exactly, indicating the compound at Rf value of 0.20 in standard and the
sample. Both the extract and standard showed absorbance maxima at
231 nm (Fig. 3C). Calibration curve of coronarin D was generated, and
the method was validated in terms of repeatability, recovery, robust-
ness, limit of detection (LOD), and limit of quantification (LOQ)

parameters. Calibration curve of coronarin D was generated, and the
method was validation was carried out by measuring repeatability,
recovery, robustness, LOD, and LOQ parameters. The calibration curve
showed linearity in between 200−1000 ng/spot for coronarin D. It was
represented by the regression equation y = 21.218 + 0.232x, where y
= peak area and x = concentration of coronarin D. The correlation
coefficient (R2) is 0.9987 thereby representing strong linear relation-
ship between concentration of analyte and peak area. Recovery studies
were carried out by the adding standard coronarin D (0.2, 0.4 and 0.6
μg) to the already analyzed H. coronarium extract. The average recovery
percentage of coronarin D at three different concentrations was found
to be 99.96 % (Table 5). Method robustness was assessed by slightly
varying the solvents proportion in the mobile phase and by changing
the developing distance. Mobile phases with slightly varying composi-
tions viz., 20 ml of n-hexane: ethyl acetate (7.5:2:5; 8:2; 8.5:1.5), were
used and the migration distances were also varied between 70, 75 and
80 mm. No variation in the peak areas was seen. Repeatability was
measured by repeated application of sample solution onto the TLC plate
and scanning the spot six times and measuring its peak area. The re-
lative standard deviation (RSD) of the peak area was found to be less
than 1 % (Table 6).

Method sensitivity was assessed by measuring its LOD and LOQ
where

= ×LOD 3.3 (SD/S)

and

= ×LOQ 10 (SD/S)

SD= standard deviation and S = slope of the calibration curve. The
LOD and LOQ for coronarin D were found to be 35 and 115 ng/spot,
respectively.

Coronarin D content in H. coronarium varied from a minimum of

Fig. 4. Scatter plot matrix showing correlation of different environmental parameters with coronarin D content. (A) Altitude; (B) Average annual temperature; (C)
Maximum temperature; (D) Precipitation; (E) Average relative humidity and (F) Minimum temperature.

Table 8
p and r value of different factors.

Factors r-value p-value Factors r-value p-value

Precipitation 0.131 0.216 Nitrogen 0.292 0.039
Max temp 0.279 0.050 Phosphorus 0.144 0.319
Min temp 0.012 0.936 Potassium 0.435 0.002
Average annual temperature 0.355 0.011 Sulphur 0.334 0.018
Average relative humidity 0.087 0.549 Boron 0.119 0.409
Altitude 0.500 0.0002 Iron 0.502 0.0002
pH 0.261 0.067 Zinc 0.182 0.205
Electrical Conductivity 0.221 0.123 Manganese 0.533 0.0001
Organic Carbon 0.043 0.764 Copper 0.476 0.0004
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0.136 mg/100 mg dry wt (HC42) to a maximum of 0.687 mg/100 mg,
dry wt (HC32). The average coronarin D content of these 50 accessions
were 0.377±0.178 mg/100 mg, dry wt.

3.2.2. Influence of altitude
The elevation of 50 sampling accessions of H. coronarium ranged

from 7 m (HC33) to 981 m (HC31) above sea level (Table 7). The
content of coronarin D increased with increase in elevation as shown in
scatter plot (Fig. 4A). The correlation coefficient (r) was 0.50 at sig-
nificance level p< 0.01 (Table 8), which showed that coronarin D in-
creased with increase in altitude.

3.2.3. Influence of environmental factors
The environmental factors showed a higher degree of variation

among 50 collected accessions used in the present study. The wide
variation in environmental factors might be due to the fact that samples
were collected from diverse geographical locations. The environmental

variables used in the present study were precipitation, maximum tem-
perature, minimum temperature, average annual temperature and
average relative humidity and its relationship with coronarin D content
is shown as scatter plot in Fig. 4B–F. The precipitation ranged from 753
to 3242 mm in a year, maximum temperature recorded varied from
30.9 to 41.2 °C, minimum temperature recorded varied from 9 to 19.6
°C. The average annual temperature range from 22.8 to 29.2 °C,
whereas average relative humidity varied from 56 to 82 %. The cor-
onarin D content showed positive significant relationship with average
annual temperature (r = 0.355), maximum temperature (r = 0.279) at
five percent level of significance. However, precipitation, average re-
lative humidity and minimum temperature exhibited positive correla-
tion with coronarin D content without any significance (Table 8).

3.2.4. Influence of soil factors
Soil parameters such as pH, electrical conductivity, organic carbon,

macronutrients and micronutrients showed a large extent of variation

Table 9
Physicochemical properties of soil samples collected from different geographical locations of Eastern India.

S.No Acc. pH E.C O.C. N2 P2O5 K2O S B Fe Zn Mn Cu
(dS/m) (%) (kg/ha) (kg/ha) (kg/ha) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

1 HC1 6.6 0.47 0.76 285 13.2 187 23.2 1.3 10.5 1.34 17.23 1.31
2 HC2 4.6 1.33 0.51 230 9.5 135 16.8 0.75 5.7 1.89 2.68 1.22
3 HC3 7.4 0.86 0.79 214 31.5 143 12.3 0.94 39.2 0.96 10.24 1.61
4 HC4 6.2 0.77 0.83 205 28.6 162 9.42 0.89 31.7 1.1 18.57 1.56
5 HC5 4.8 1.61 0.39 241 12.3 112 15.37 0.81 7.8 0.58 5.12 1.19
6 HC6 6.1 0.71 0.75 195 33.2 139 8.97 0.82 29.1 0.87 17.91 1.68
7 HC7 4.6 0.97 0.48 226 10.7 394 18.21 0.86 8.1 1.65 3.46 1.28
8 HC8 6.2 0.65 0.42 135 32.3 306 16.56 0.48 11.4 2.23 6.14 0.46
9 HC9 6.8 0.52 0.47 157 30.8 297 19.13 0.53 8.9 0.47 5.67 0.52
10 HC10 7.8 0.92 0.8 223 26.4 124 11.14 0.76 30.1 1.05 12.19 1.48
11 HC11 4.8 0.82 0.53 212 11.8 387 17.33 0.79 6.9 1.36 2.48 1.17
12 HC12 7.2 0.58 0.49 268 20.2 313 19.64 1.19 15.4 0.72 6.57 0.62
13 HC13 7.6 0.81 0.71 227 27.1 167 7.99 0.69 38.1 1.02 19.35 1.49
14 HC14 7.1 0.63 0.8 286 23.8 134 16.49 0.57 17.9 0.89 4.49 0.57
15 HC15 4.8 0.69 0.44 295 13.4 198 19.64 0.87 28.4 1.42 8.82 1.42
16 HC16 6.9 0.59 0.36 162 29.7 271 18.71 0.59 12.1 0.41 3.36 0.83
17 HC17 7.3 0.87 0.69 233 34.3 121 7.21 1.09 40.9 1.38 11.14 1.32
18 HC18 6.3 1.4 0.55 204 8.6 106 6.98 0.62 9.7 0.49 2.38 1.23
19 HC19 7.6 0.82 0.6 211 30.8 202 8.36 0.69 43.6 1.13 18.52 1.37
20 HC20 4.6 0.91 0.78 312 8.9 189 6.11 0.89 14.1 0.97 13.38 1.18
21 HC21 5 0.41 0.86 297 9.7 202 5.98 1.45 11.2 1.41 9.67 1.19
22 HC22 7.7 0.82 0.63 178 29.8 126 7.76 0.61 38.5 1.16 17.29 1.51
23 HC23 5.4 0.68 0.6 196 13.4 151 6.54 0.59 2.3 0.63 3.11 1.25
24 HC24 5.3 0.81 0.58 216 12.9 412 13.38 0.79 6.7 0.71 2.54 1.19
25 HC25 7.8 0.86 0.77 205 27.9 117 12.29 0.87 28.6 1.12 12.21 1.43
26 HC26 6.7 0.47 0.8 291 12.6 169 22.34 1.37 9.8 1.39 16.33 1.28
27 HC27 4.7 0.74 0.65 237 10.6 441 15.31 0.66 4.8 1.48 3.67 1.21
28 HC28 5.1 1.52 0.32 223 12.9 137 15.86 0.83 7.9 0.76 1.97 1.12
29 HC29 5.3 1.41 0.37 217 11.5 145 16.27 0.49 11.4 0.82 2.66 1.18
30 HC30 4.8 0.63 0.81 137 34.6 302 16.92 0.41 9.1 1.92 6.86 0.87
31 HC31 5 0.71 0.77 148 27.9 287 17.34 0.49 9.8 2.06 7.31 0.96
32 HC32 6.9 0.49 0.58 312 26.7 307 15.69 0.62 16.5 0.77 4.59 0.62
33 HC33 6.1 0.92 0.87 219 28.25 193 8.81 1.22 42.8 1.57 13.25 1.31
34 HC34 7 0.58 0.77 337 30.4 292 16.82 0.67 18.3 0.65 5.67 0.57
35 HC35 6.6 0.64 0.83 351 31.4 326 16.27 0.71 15.2 0.83 4.28 0.69
36 HC36 7.8 0.61 0.66 187 26.5 167 7.46 0.73 34.7 0.93 16.38 1.52
37 HC37 6.3 0.83 0.78 202 29.4 181 8.39 0.81 41.4 0.81 16.97 1.39
38 HC38 6 0.74 0.81 210 26.3 206 5.12 0.69 27.2 0.79 18.51 1.43
39 HC39 6.8 0.41 0.52 325 19.8 378 17.73 0.74 17.7 0.61 6.11 1.58
40 HC40 4.4 0.88 0.38 293 11.6 218 14.67 0.82 35.7 1.37 10.24 1.62
41 HC41 6.9 0.59 0.44 152 25.8 94 19.37 0.59 11.2 0.55 5.73 0.36
42 HC42 7.7 0.79 0.54 202 26.2 134 6.47 0.78 29.2 0.87 19.16 1.67
43 HC43 5.3 1.26 0.63 231 13.5 124 15.88 0.84 6.3 0.57 3.28 0.21
44 HC44 6.2 0.72 0.49 163 27.15 315 18.16 0.55 10.7 2.51 4.61 0.43
45 HC45 5.4 0.43 0.92 315 13.7 117 19.25 0.74 9.1 1.48 8.35 1.22
46 HC46 5.2 0.4 0.89 305 11.95 133 17.74 0.61 10.7 1.67 13.22 1.13
47 HC47 7.7 0.56 0.59 196 28.2 182 11.53 0.69 33.1 1.07 19.37 1.46
48 HC48 6 1.34 0.57 205 14.4 162 14.62 1.16 5.9 1.31 2.66 1.24
49 HC49 6.1 1.69 0.6 227 12.7 143 13.38 1.04 7.2 1.62 2.19 1.09
50 HC50 6.3 0.52 0.81 187 27.1 166 6.49 0.83 36.9 0.79 17.05 1.69

E.C., Electrical conductivity, O.C., Organic carbon.
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among sampling sites from where plant samples were collected
(Table 9). The differences in soil characteristics might be due to the fact
that samples were collected from different geographical areas having
different terrain and climatic conditions. The linear relationship be-
tween different soil factors with coronarin D content is shown as scatter
plot in Fig. 5 and 6. Soil pH varied from 4.4 (medium acidic) to 7.8
(slightly basic) among collected soil samples. The electrical con-
ductivity measured for soils varied from 0.4 to 1.69 dS/m. Soil Organic
carbon content ranged from 0.32 to 0.92 %. Macronutrients such as
nitrogen, phosphorus and potassium varied from 135 to 351, 8.6 to 34.6
and 94 to 441 kg/ha, respectively. Micronutrients such as sulphur,
boron, iron, zinc, manganese and copper in soil ranged from 5.12 to
23.2, 0.41 to 1.45, 2.3 to 43.6, 0.41 to 2.51, 1.97 to 19.37 and 0.21 to
1.69 mg/kg, respectively. The coronarin D content showed positive and
significant correlation with manganese (r = 0.533), iron (r = 0.502),
copper (r = 0.476), potassium (r = 0.432), sulphur (r = 0.334), ni-
trogen (r = 0.292) at five percent level of significance. However
electrical conductivity, pH, zinc, boron, phosphorus and organic carbon
exhibited positive correlation with coronarin D content without any
significant difference.

3.3. Response surface plots

The response surface plot of moderate and highly sensitive para-
meters were plotted to understand the impact of the different para-
meters and find out the optimal level of each parameter for obtaining
high coronarin D content. The interaction between altitude and various
soil parameters such pH, nitrogen, zinc, iron and manganese have been
illustrated as response surface plots. Higher coronarin D content was
observed in places with low iron content (< 10 mg/kg) and high alti-
tude (> 500 m) (Fig. 7A). The decrease in coronarin D content was
more significant when the iron content exceeded 35 mg/kg. Similarly

the content of coronarin D increased when the nitrogen content in the
soil exceeded 340 mg/kg and altitude exceeded above 500 m (Fig. 7B).
The coronarin D content was quite low (< 0.175) at lower altitude
(< 50 m) and soil having low to moderate nitrogen content (< 220
mg/kg). The effect of manganese and altitude on content of coronarin D
is shown in Fig. 7C. Coronarin D content was high at lower manganese
content (< 12 mg/kg) in the soil and at higher altitudes (> 400 m).
The effect of pH and altitude on coronarin D content was also observed
in Fig. 7D. Acidic to neutral soil and elevation above 200 m favored
coronarin D content. There was a slight decrease in content of coronarin
D in alkaline rich soils. The influence of zinc and altitude on coronarin
D content is shown in Fig. 8A. There was not much remarkable effect of
zinc on coronarin D content, though higher elevation favored coronarin
D content. The response surface plot of manganese and iron on content
of coronarin D was shown in Fig. 8B. There was a decrease in content of
coronarin D with increase in content of manganese and iron in the soil.
High coronarin D content was observed in the range of 0−16 mg/kg of
manganese and 0−20 mg/kg of iron. The response surface plot for
manganese and zinc on coronarin D content is exhibited in Fig. 8C.
Good content of coronarin D was observed in soil having low content of
manganese and zinc. There was a gradual decrease in coronarin D
content with increase in zinc content in the soil. The response of
manganese and nitrogen on coronarin D is shown in Fig. 8D. At high
nitrogen level (> 280 mg/kg) and with low to moderate amount of
manganese (0−12 mg/kg), the content of coronarin D was high. Si-
milarly, the effect of manganese and pH on coronarin D content was
shown in Fig. 9A. There was not much variation in content of coronarin
D with respect to pH, whereas there was a gradual decrease in content
of coronarin D with increase in manganese levels in soil. The response
surface plot of zinc and iron on coronarin D content is shown in Fig. 9B.
There was a gradual decrease in the content of coronarin D with in-
crease in iron and zinc content in the soil. Similar trend was observed

Fig. 5. Scatter plot matrix showing correlation of different soil nutrients with coronarin D content. (A) Manganese; (B) Iron; (C) Copper; (D) Potassium; (E) Sulphur
and (F) Nitrogen.
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when nitrogen and zinc was considered together (Fig. 9C). The cor-
onarin D content was high when the level of nitrogen is high (320–360
kg/ha) and zinc contents are low (< 0.6 mg/kg) in the soil. The in-
fluence of pH and zinc on coronarin D content was observed from
Fig. 9D. The content of coronarin D was high in soils that are acidic in
nature (pH<6) and contains moderate to high amount of zinc (> 1
mg/kg). The effect of iron and nitrogen on coronarin D content is ex-
plained in Fig. 10A. High coronarin D content was observed in soils
having nitrogen content in the range of 320−360 kg/ha. For the said
nitrogen content, coronarin D content gradually declined from 0 to 1 5
mg/kg of iron, thereafter did not showed any change till 40 mg/kg and
then start increasing. The response surface plot of coronarin D content
against iron and pH is shown in Fig. 10B. The content of coronarin D
decreased with increase in iron content, whereas pH had hardly any
effect on coronarin D content. The influence of nitrogen and pH on
coronarin D content was shown in Fig. 10C. The content of coronarin D
was high in acidic soils (pH<5) having low nitrogen levels (< 160 kg/
ha) and at slightly acidic to alkaline soils (pH 6–8) rich in nitrogen
(> 320 kg/ha).

3.4. Sensitivity analysis

The detailed description of sensitivity analysis is illustrated in
Table 10. Sensitivity analysis is carried out to analyze the variables that
are affecting the neural network model output by varying the value of
model parameters and changing it structure. The eff ;ects of the input
variables to predict coronarin D content in ANN model was ranked from
the highest to lowest in Table 10. From the Table 10, it can be observed
that altitude had the highest influence on coronarinD content with an
error ratio of 3.648. The next sensitive parameters were manganese,
zinc, iron, nitrogen and pH with an error ratio of 3.284, 2.541, 2.166,
2.140 and 2.135, respectively. Maximum average temperature,

potassium, sulphur and copper had reasonable influence on coronarinD
content having error ratio of 2.076, 1.911, 1.616 and 1.549. Increased
error ratios indicate more influential parameters. The least influential
factors were organic carbon, phosphorus, electrical conductivity,
minimum average temperature, average relative humidity, boron,
precipitation and average temperature.

3.5. Optimization of coronarin D content

As per the finding of the current study, content of coronarin D in
Hedychium coronarium can be increased by managing soil nutrients at a
specific site. An example of optimization of coronarin D content has
been illustrated in Fig. 11, where parameters like altitude, zinc and
manganese were changed to study the effect on coronarin D content.
Altitude was changed from 0.211 to 0.222, zinc was changed from
0.922 to 0.961, and manganese was changed from 0.255 to 0.283. By
modifying these three parameters, the coronarin D content increased to
0.732 from 0.667 mg/100 mg dry wt developed by neural network
model.

3.6. Application of ANN model for prediction of coronarin D content at a
new location

ANN model can be applied for predicting the coronarin D content at
an unknown/new site. The developed model could exhibit accuracy
near to 90 % to the experimental value when applied at a new site. The
developed model without training was tested at Rajini (Khurdha) and it
predicted the coronarin D value to be 0.667 mg/100 mg dry wt. which
is close to the experimental value of 0.602 mg/100 mg dry wt. Thus the
study demonstrated that ANN model can give satisfactory prediction
performance of coronarin D content using climatic and edaphic data.

Fig. 6. Scatter plot matrix showing correlation of different soil parameters with coronarin D content. (A) Electrical conductivity; (B) pH; (C) Zinc; (D) Boron; (E)
Phosphorus and (F) Organic carbon.
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4. Discussion

Nowadays researchers are using artificial neural network (ANN) as
predictive tools in an extensive range of disciplines, including agri-
culture and soil science (Park and Vlek, 2002; Somaratne et al., 2005).
The superiority of ANN over other statistical modeling technique is that
it does not infer a prior data structure, and can discern nonlinear re-
lationships and complex interactions, thereby revealing an unknown
relationship between input parameters (Alvarez, 2009). The flow of
information occurs from the output layer to the input layer through the
hidden layer by iterative tuning of weights. The learning process that is
being carried out in multilayer perceptron (MLP) network is usually by
back propagation algorithm method. The complexity of ANN model is
determined by the number of hidden nodes. Presence of too many
neurons will lead to data overfitting (Kumar and Porkodi, 2009). MLP
model with sigmoid axon transfer function has been used by many re-
searchers to predict the performance of diff ;erent crops (Abdipour
et al., 2018; Emamgholizadeh et al., 2015). Four statistical quality
parameters, including root mean square error (RMSE), coefficient of
determination (R2), mean absolute error (MAE) and mean absolute
percentage error (MAPE) were used to evaluate the ANN model per-
formance. To find the appropriate number of hidden layers and neurons
(best topology), the diff ;erent number of hidden layers (1–4) and
neurons in each hidden layer (2–17) were tested through trial and error.
The MLP model with sigmoid transfer function and five neurons in the
hidden layer had the best performance due to the least MAE and RMSE

and the highest R2 values in both training and testing stages. A low
MAPE value was obtained for the ANN model based on the MLP net-
work of the 18:5:1 structure, which was 4.87 % for training dataset.
Sigmoid transfer function has been used by many researchers to predict
the performance of diff ;erent crops (Abdipour et al., 2018;
Emamgholizadeh et al., 2015). Rahman and Bala (2010) showed the
ANN model consists of four layer network with two hidden layers as the
best model for jute prediction. Sinha et al. (2012) designed an ANN
model with three hidden layers for optimum dye extraction from po-
megranate rind. Similarly, Abdipour et al. (2019) selected ANN to-
pology with 5-5-4-1 architecture as the best model to predict seed yield
of safflower.

In the present research, the ANN model developed showed good
predictive capability for coronarin D as evaluated by its statistical
parameters such as correlation coefficient (R2) and root mean square
error (RMSE) values. The developed model gave a higher R2 value of
0.891 and a lower RMSE value of 0.06 for training data set which imply
that there is less deviation between the experimental and predicted
values. The closer the R2 value to 1 and lesser the RMSE value, the
stronger the ANN model. As a result, it may be concluded that the
model predicted for coronarin D content in H. coronarium is quite ac-
curate. A similar study showing high predictive analysis of ANN model
has been earlier reported wherein the error values of ANN model was
less as compared to response surface methodology (RSM) model
(Sodeifian et al., 2016).

A response surface plot is a graph that helps us to understand the

Fig. 7. Response surface plots for coronarin D content as a function of (A) Altitude v/s Iron; (B) Altitude v/s Nitrogen; (C) Altitude v/s Manganese and (D) Altitude v/
s pH.
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relationship between two dependent variables on the response of the
independent variable. It creates a mathematical model that represents
the biochemical activity (Baş and Boyacı, 2007). Several reports have
applied response surface methodology (RSM) to predict optimum ex-
traction conditions for maximum recovery of various phytoconstituents
such as saponin from ginseng roots (Kwon et al., 2003), sugar from
spent coffee (Mussatto et al., 2011), polyphenols from fruit of Feronia
limonia (Ilaiyaraja et al., 2015).

Sensitivity analysis approach is used in the ANN model to identify
the effect of input parameters on the output of the model. It will help us
to find out the input parameters that causes the most disturbances in
the performance of the ANN model. This type of analysis will help us to
investigate the highly sensitive input environmental and soil factors on
predicting the content of coronarin D. The most influential parameter
was altitude with an error ratio of 3.648. Higher error ratios correspond
to increased predictive error for all compounds upon removal of this
parameter from the dataset. Error ratios greater than 1 indicate more
important parameter. Previous study have also showed that descriptor
like altitude is influential for modelling secondary metabolite content
(Akbar et al., 2016). ANN model was used to determine the effect of soil
moisture and salinity on sunflower growth, seed and oil yield (Dai et al.,
2011). The sensitivity analysis showed that for low to medium salinity
soils, sensitivity of sunflower yield was highest at crop squaring stage,
whereas for higher salinity soils sensitivity was highest at seedling
stage. Similarly in another study sensitivity analysis have shown
number of capsules per plant to be the most influential factor de-
termining safflower yield (Abdipour et al., 2019). Desai et al. (2008)
studied the effect of fermentation media concentrations on the yield of

biopolymer scleroglucan using ANN model. Sensitivity analysis re-
vealed that glucose has the highest influence on yield of scleroglucan,
whereas other media components such as yeast extract, magnesium
sulphate and dipotassium hydrogen phosphate had the least influence.

This is the first study representing the effect of environmental and
soil nutrient factors on content of coronarin D in H. coronarium sampled
from five provinces of India. The study revealed that a combination of
two or more factor has more influence on coronarin D content than a
single factor. The present study showed that variation in coronarin D
content can be attributed to environmental variables, soil macro-
nutrients and micronutrients. Difference in secondary metabolite con-
tent in plants are related to edaphic factors, geographic and physiolo-
gical variations, genetic variability, seasonal variation, plant age and
other biological factors (Figueiredo et al., 2008). Our result is in close
agreement with Liu et al. (2016), who have studied the role of en-
vironmental parameters on the active content of Potentilla fruticosa L.
from different parts of China and found that contents of certain sub-
stances were significantly higher under specific environments. Alam
and Naik (2009) have shown that podophyllotoxin content in the root
of P. hexandrum increases above 6.62 % when pH, organic carbon and
nitrogen content in soil were higher than 4.82, 3.23 and 2.7 % re-
spectively. Similarly, Akbar et al. (2016) have also demonstrated that
curcumin content in the rhizome of C. longa is high when nitrogen
content and pH in the soil are high. Out of 50 H. coronarium accessions
screened in the present research, six genotypes (HC23, HC30, HC32,
HC34, HC39, HC48) exhibited coronarin D content greater than 0.5
mg/100 mg dry wt. These high yielding coronarin D accessions of H.
coronarium can be bring under cultivations for commercial production

Fig. 8. Response surface plots for coronarin D content as a function of (A) Altitude v/s Zinc; (B) Manganese v/s Iron; (C) Manganese v/s Zinc and (D) Manganese v/s
Nitrogen.
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and further multilocational trials can be conducted in order to validate
their high yield.

Micronutrients play a central role in plant metabolism and are es-
sential for their growth. Micronutrients are a group of elements that
usually occur in minute quantities in the soil. Compositional changes in
micronutrient in soil may also bring about qualitative changes in the
plant. Micronutrients interact with organic compounds forming metal-
ligand complexes. Application of micronutrients enhances photo-
synthetic and other metabolic activity, thereby leading to an increase in
various plant metabolites. The present study showed that increase
content of potassium also favored the coronarin D content. Potassium is
a crucial micronutrient that activates certain enzymes that are crucial in
maintaining water balance in plants (Wang et al., 2013). Potassium
performs various plant enzyme functions and is needed for metabolite
pattern of higher plants (Marschner, 2011). Generally, crop yields are
greatly reduced in potassium deficient soils. Study has shown that in-
creased application of potassium showed an increase in free amino
acids content in tea leaves (Ruan et al., 1998). Another soil factor sig-
nificantly affecting the coronarin D content is iron. Iron act as a key
enzymes of electron transport chain and is needed to maintain chlor-
oplast structure (Rout and Sahoo, 2015).

Medicinal plants have greater medicinal efficacy in their natural
habitat. Change in the natural habitat adversely affects the production
of bioactive compounds. Soil properties and environmental factors must
be quite similar to natural habitat. Selection of cultivated land chosen
for the growth of H. coronarium should have similar soil properties and

environment as natural habitat in order to mimic the natural condition
that is ideal for H. coronarium to produce high coronarin D content. This
can be achieved by soil management programme and by adding nu-
trient factors to the soil.

The current study revealed that coronarin D content can be opti-
mized in the ANN model by changing altitude, manganese, zinc and
iron content in the soil. Additionally, production of secondary meta-
bolites in plants is an intricate physiological process. Several factors like
plant age, seasons, genetic and environmental factors affect its meta-
bolite content. Nonetheless, it is understood that the differences in
coronarin D content in H. coronarium are affected by above said factors,
which needs to be explored further. The ANN model was used for
predicting coronarin D content in H. coronarium at a new location. The
coronarin D content predicted value was found to be 0.667 mg/100 mg
dry wt. at a location Rajini, Odisha which is close to the experimental
value (0.602 mg/100 mg dry wt.).

5. Conclusions

In the current study, optimal ANN model determined for prediction
and optimization of coronarin D content showed multilayer perceptron
(MLP) neural network with five neurons in hidden layer to have su-
perior performance with regression value of 0.891. ANN model re-
vealed that the coronarin D content of H. coronarium could be enhanced
from 0.667 % to 0.732 % by varying sensitive parameters (Altitude,
zinc and manganese content) of the model. The results showed the

Fig. 9. Response surface plots for coronarin D content as a function of (A) Manganese v/s pH; (B) Zinc v/s Iron; (C) Zinc v/s Nitrogen and (D) Zinc v/s pH.
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possibility to predict coronarin D content using a combination of to-
pographic, soil and environmental data which was unstudied so far.
However it is assumed that variation in coronarin D content is depen-
dent on altitude, manganese, zinc, iron and nitrogen, which needs
further research. The developed model could provide suitable

information regarding the site selection and optimization of soil and
environmental factors to increase the content of coronarin D that can be
used for planning any conservation aspects.
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Fig. 10. Response surface plots for coronarin D content as a function of (A) Iron v/s Nitrogen; (B) pH v/s Iron and (C) Nitrogen v/s pH.

Table 10
Sensitivity analysis of neural network.

Parameters Error quotient Rank

Altitude 3.648 1
Manganese 3.284 2
Zinc 2.541 3
Iron 2.166 4
Nitrogen 2.140 5
pH 2.135 6
Maximum average temperature 2.076 7
Potassium 1.911 8
Sulphur 1.616 9
Copper 1.549 10
Precipitation 1.440 11
Electrical conductivity 1.386 12
Average annual temperature 1.369 13
Phosphorus 1.313 14
Minimum average temperature 1.180 15
Organic carbon 1.175 16
Boron 1.107 17
Average relative humidity 1.034 18
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.indcrop.2020.112186.
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