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A B S T R A C T

Continuous Manufacturing (CM) of pharmaceutical drug products is a new approach within the pharmaceutical
industry. In the presented paper, a GMP continuous wet granulation line for production of solid dosage forms
was investigated. The line was composed of the subsequent continuous unit: operations feeding – twin-screw
wet-granulation – fluid-bed drying – sieving and tableting. The formulation of a commercial entity was selected
for this study. Several critical process parameters were evaluated in order to probe the process and to char-
acterize the impact on quality attributes. Seven critical process parameters have been selected after a risk
analysis: API and excipient mass flows of the two feeders, liquid feed rate and rotation speed of the extruder and
rotation speed, temperature and airflow of the dryer. Eight quality attributes were controlled in real time by
Process Analytical Technologies (PAT): API content after blender, after dryer, in tablet press feed frame and of
tablet, LOD after dryer and PSD after dryer (three PSD parameters: x10 x50 x90). The process parameter values
were changed during production in order to detect the impact on the quality of the final product. The deep
learning techniques have been used in order to predict the quality attribute (output) with the process parameters
(input). The use of deep learning reduces the noise and simplify the data interpretation for a better process
understanding. After optimization, three hidden layers neural network were selected with 6 hidden neurons. The
activation function ReLU (Rectified Linear Unit) and the ADAM optimizer were used with 2500 epochs (number
of learning cycle). API contents, PSD values and LOD values were estimated with an error of calibration lower
than 10%. The level of error allow an adequate process monitoring by DNN and we have proven that the main
critical process parameters can be identified at a higher levelof process understanding. The synergy between PAT
and process data science creates a superior monitoring framework of the continuous manufacturing line and
increase the knowledge of this innovative production line and the products that it makes.

1. Introduction [1,2]

Continuous Manufacturing (CM) of pharmaceutical drug products is
a new approach within the pharmaceutical industry, opposing tradi-
tional batch manufacturing processes based on its potential to increase
manufacturing flexibility and efficiency [1]. In CM, all process units are
directly connected to each other. Starting material is continuously
charged into the first process unit at the beginning of the line, while
final product is simultaneously discharged at the end [1,2]. Process
control strategy of the CM lines is designed comprising suitable PAT-
tools (PAT = process analytical technologies) that deliver real-time

information about the process state and the product quality [3,4].
Near Infrared Spectroscopy (NIRS) has become a popular PAT-tool

in the pharmaceutical industry, as it is a safe, fast, and non-destructive
method, which does not require sample preparation. Nowadays, NIRS is
frequently applied for the identification of raw materials, in-line mon-
itoring by compound quantification of process steps like blending,
granulation, and drying, as well as for process troubleshooting [5].

Deep learning, especially deep neural network (DNN) is a computer
technique inspired from nature [6,7] and have been applied in a large
number of fields like computer vision or image analysis [7]. Due to
increase of computer power, the complex architecture of the artificial
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neural network can be trained rapidly. In our study, the possibility to
predict quality attributes by DNN is evaluated in order to monitor a
pharmaceutical process and to improve the process understanding.
Process parameters are used as inputs of the neural networks and the
quality parameter are predicted as output of the DNN.

The main objective of this paper is to use DNN for offline process
monitoring and to increase the process understanding of the CM pro-
duction line with online PAT tools and deep learning models. One
commercial product was selected and continuous process variations
were performed in order to evaluate the impact on the quality attributes
(API content, LOD content and PSD) of the continuous process.

2. Materials and methods

2.1. Formulation

Diclofenac Sodium (Acros Organics, Geel, Belgium) was used as
Active Pharmaceutical Ingredient (API). The standard formulation
contained 25% Diclofenac Sodium, 5% Sodium Starch-Glycolate, 5%
Sodium Stearyl Fumarate, 4% Hypromellose (Cellulose-HP-M 603),
12.2% Calcium Hydrogen-Phosphate Anhydrous and 48.8%
Microcrystalline Cellulose PH102 (all excipients supplied by Novartis
Pharma AG, Stein, Switzerland). To generate granules at varying API
content, formulations containing 70–130% of the original drug content
were prepared, by adapting the amounts of Hypromellose and Calcium
Hydrogen-Phosphate Anhydrous accordingly, while keeping their ratio
constant at 80:20. Purified water was used as granulation liquid at a
Liquid/Solid-ratio of 0.3. The targeted tablet weight was 240 mg with a
targeted label claim (LC) of 60 mg API/tablet (LC = 100%).

2.2. Process

The main process units of the continuous wet granulation line are
shown in Fig. 1. The five main process steps are blending, extrusion,
drying, tableting and coating.

2.2.1. Preparation of powder blends
Placebo has been pre-blend before the continuous process. One

feeder is used for excipients/placebo and a second one for the active
ingredient (API). 60 kg of placebo blend was prepared in batch mode by
weighing all ingredients into a 100 L container and blending for 10 min
at 11 rpm with a Pharma Telescope Blender PTM 300 (LB Bohle GmbH,
Ennigerloh, Germany). API and placebo are mixed during the con-
tinuous process in a Modulomix continuous modular paddle blender
(Hosokawa Micron BV, Doetinchem, The Netherlands).

2.2.2. Twin-screw wet granulation
Continuous wet-granulation was performed on a Thermo Fisher

Pharma 16 Twin Screw Granulator (TSG) (Thermo Fisher Scientific,
Karlsruhe, Germany) with screw diameter (D) of 16 mm and screw
length of 53 ¼ × D. The powder blend was fed into the barrel through
the first feeding port by a loss-in-weight powder feeder (K-Tron T20,
Coperion K-Tron GmbH, Niederlenz, Switzerland). Granulation liquid
at room temperature was fed through a 2.5 mm wide nozzle in the third
port by a custom made dispensing pump system (based on Watson
Marlow, Zollikon, Switzerland). Five different Liquid to Solid (LS) ratio
were tested by varying the liquid feed rate while the solid feed rate was
kept constant.

2.2.3. Continuous fluid-bed drying
Continuous fluid-bed drying of wet granules was performed on a

Glatt GPCG 2 CM fluid-bed dryer (Glatt GmbH, Binzen, Germany), di-
rectly connected to the twin-screw granulator. Drying settings were as
follows: 85 °C drying temperature, 90 m3/h air flow rate, dryer rotation
speed 17 rph. Before starting the first trial of the day, or in case the
process was stopped in-between, the empty dryer was pre-heated for
120 min at the intended drying temperature and airflow settings.

2.2.4. Sieving and tableting
Dried granules were sieved through a 1.25 mm sieve (Oscillowitt-

Lab type MF-lab, Frewitt, Granges-Paccot, Switzerland) directly before
compaction in a rotary tablet press (1200i, FETTE Compacting,
Schwarzenbek, Germany), with round punches of 12 mm.

2.3. Process target values and variations

Seven critical process parameters (CPPs) were selected for process
monitoring, as listed in Table 1. Selection was done based on a pre-
viously conducted risk evaluation [8]. Each CPP was monitored by
considering the parameters actual process values over time (every 1 s).
During the 85 conditions, 148,000 timestamps were recorded at fre-
quency of 1 s. The total time of production was approximately 41 h.

The process factors were investigated by means of systematic uni-
variate variation (step tests) to evaluate their impact on product
quality. The trials were performed on 3 consecutive days, each para-
meter setting was tested for approximately 30 min, which is in line with
the system dynamics of the line. Table 1 summarizes the design matrix.

The experiment aimed to investigate the influence of the process
factors on drug product’s critical quality attributes (CQAs) and other
quality characteristics. In detail, intermediate CQAs of the dried gran-
ules are API contents (after dryer, in tablet feed frame and of tablets),
particle size distribution (PSD) and moisture content (loss-on-drying,

Fig. 1. Continuous wet granulation process and position of the PAT probes.
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LOD).

2.4. Process monitoring

2.4.1. PAT
Four NIRS probes of two different types were installed in-line to

analyze dried granules and tablets. A SentroPAT FO instrument
(Sentronic®, Dresden, Germany) configured with three immersion
probes (SentroProbe DR LS NIR) was used for the monitoring of the
blend after the continuous blender, for the monitoring of granules after
the fluid-bed dryer (FBD) and of sieved granules in the tablet press feed

frame. Spectra were measured in reflection mode using 60 scans of
0.011 s, a 2 nm resolution, and a spectral range of 1150–2200 nm. A
VisioNIR LS instrument (VisioTec GmbH, Laupheim, Germany) was
used for 100% in-line control of tablet content uniformity. Spectra of
tablets were measured in reflection mode in the tablet press using one
scan of 0.004 s, an 8 cm−1 resolution, and a spectral range of
1100–2100 nm. With both instruments, a background spectrum was
acquired before the run for in-line acquisition.

2.4.2. NIR method development and validation
Offline spectra were taken with the probe directly submerged into a

Table 1
Process parameters and ranges.

Process unit CPP Unit Target value Steps in % of the target

Feeder API powder feed rate kg/h 1.02 +/−10%, +/−5%
Excipient powder feed rate kg/h 2.98 +/−10%, +/−5%

Twin screw granulator liquid feed rate kg/h 1.05 +/−10%, +/−5%
granulator screw speed rpm 450 +/−10%, +/−5%

Dryer inlet air temperature °C 85 +/−8.5 °C, +/−4.25 °C
inlet airflow tower m3/h 90 +/−10%, +/−5%
dryer rotation speed rph (rotation per hours) 17 +/−20%, +/−10%

Fig. 2. Critical process parameters and the process variations, Axis: x: process time (s) - y: Process values (normalized values – arbitrary unit– moving average 120 s),
Legend: in blue calibration set and in green validation set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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granule sample at three different positions and five spectra per position,
in-line spectra were continuously collected directly in the tablet feed
frame during processing. The whole dataset containing 441 offline- and
1809 in-line spectra, was split into two independent calibration and
validation sets (221 offline- and 905 in-line spectra for calibration and
220 offline and 904 in-line spectra for validation). The granulation
calibration was used after the fluid bed dryer and for the blend uni-
formity after the blender.

Offline spectra were taken in static mode from 10 tablets per label
claim, in-line spectra were taken directly in the tablet press at tableting
speeds between 17.000 and 70.000 tablets/hour. The full dataset con-
taining 4500 offline and 6750 in-line spectra, was split into two in-
dependent calibration and validation sets, each containing 50% of the
overall data. During calibration development it was ensured that cali-
bration and validation spectra were acquired on different days with
different batches of powder blends. Partial least squares (PLS) regres-
sion was carried out on the preprocessed NIRS spectra with a full cross-
validation. The results of the calibration is out of scope of this pub-
lication and can be seen in previous publications [9–11].

2.4.3. De-noising and deep learning

• De-noising

Classical methods like moving average [12], Savitzky Golay [13]
filter and Discrete Wavelet transform (DTW) [14] were applied on the
process data. The moving average was computed on a 120 s time
window. The Savitzky Golay filter was applied with a window length of
121, a polynomial order of 3 without derivative. The wavelet filtration
has been done with Daubechies function (db) order 1. The re-
construction of the signal is performed with a threshold of 0.01.

• Deep Neural Networks

The DNN were used to predict the quality attributes as output (PSD,
LOD, API content) with the seven process parameters as inputs. The
following parameters have been applied:

- Activation function: rectified Linear unit (reLU)
- Iteration (Epochs): 2500
- Inputs: 7 process parameters after normalization
- Output: Critical quality attribute – one at a time

All inputs are normalized. One output was used for each neural
network. Therefore, the output variables were not normalized. Number
of hidden layer, number of hidden neurons by layer and choice of the
optimizer is part of the optimization process. In this study, four opti-
mizers were tested : Adaptive Moment Estimation Algorithm ADAM
[15,16], Stochastic Gradient Descent SGD [17,18], Adaptive -
Gradient Algorithm Adagrad [19,20,21] and Nesterov accelerated
Adaptive Moment Estimation Algorithm Nadam [22,23]. Additionally,
an internal test set is used (split of 20% of the calibration set) during the
training of the model.

2.4.4. Software for computation
SentroSuite package version 2 (Sentronic®, Dresden, Germany) was

used for spectra acquisition in the tablet feed frame and after the fluid-
bed dryer. The calibration for the Sentronic spectrometer was devel-
oped with SIMCA software (version 13.3, Umetrics/Sartorius, Umea,
Sweden).

Spectra acquisition of tablets in the tablet press was done with the
NovaPAC/NovaMath package (Prozess Technologie Inc. ®, St. Louis,
Missouri, USA). Unscrambler® version 10.5 (CAMOs Software AS, Oslo,
Norway) was used for the preprocessing and for the PLS computation.

Fig. 3. Computed parameters (based on process
values), Axis: x: process time (s) - y: Values (nor-
malized values – arbitrary unit - moving average
120 s), Legend: in blue calibration set and in green
validation set. (For interpretation of the references
to colour in this figure legend, the reader is referred
to the web version of this article.)
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Hierarchical Calibration development module (version 1.5 - CAMOs
Software AS, Oslo, Norway) was used to create the in-line calibration.

Process Data Analytics were computed with Python 3.6.5
(Anaconda Package version 4.6.14, Continuum Analytics) using the
Spyder (The Scientific Python Development EnviRonment) 3.2.8 in-
terface. The data structures and analysis tools were provided by Pandas
0.23.0 while the fundamental package for scientific computing with
Python was included in Numpy 1.14.3. The Scikit-learn 0.19.1 toolbox

enabled the computation of Savitzky Golay filter. The graphics were
displayed with Matplotlib 2.2.2 and Seaborn 0.8.1 and the derivative
pretreatments with Scipy 0.19.0. Wavelet were available in the pyWT
toolbox 0.5.2 and Deep learning was performed with Keras 2.2.4 using
Tensorflow backend.

Fig. 4. PAT measured values, Axis: x: process time (s) - y: PAT values (API content in %, LOD in %, PSD in μm –moving average 120 s), Legend: in blue calibration set
and in green validation set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Statistics of the PAT values (8 critical quality attributes – std = standard deviation).

Parameters mean std min 25% 50% 75% max

NIR: API blender BU (%) 121.5 1.5 109.0 120.9 121.7 122.4 129.7
NIR: API feed frame BU (%) 100.3 1.7 90.4 99.6 100.5 101.3 108.4
NIR: API tablet CU (%) 100.1 2.1 88.3 98.8 100.2 101.5 108.4
NIR: API dryer BU (%) 99.1 1.4 86.4 98.5 99.2 99.9 108.7
NIR: LOD (%) 3.9 0.4 1.8 3.6 3.8 4.0 7.8
NIR: PSD X10 (nm) 113.4 5.6 61.5 109.5 112.9 116.7 153.7
NIR: PSD X50 (nm) 477.4 34.0 313.1 454.4 474.5 497.5 743.4
NIR: PSD X90 (nm) 1508.2 64.5 1132.0 1465.5 1506.8 1547.7 1942.4

Y. Roggo, et al. European Journal of Pharmaceutics and Biopharmaceutics 153 (2020) 95–105

99

hotpaper.nethotpaper.net

hotpaper.net


3. Results and discussion

3.1. Interpretation of the process values, computed values and PAT
monitoring

The Fig. 2 presents the variation of the process parameters and the
Fig. 3 shows three computed parameters (Total throughput (kg/h) of
the line, liquid/solid ratio (kg/h) and the label claim (% of the target).
Concerning the feeder, we can observe small periodic variations (for
example 3 spikes between 0 and 40,000 s), this variations are due to the
re-fill of the feeder. Nevertheless, these variations are not critical for the
product quality. The three computed parameters help the process un-
derstanding by translating process values into interpretable variables:
throughput, liquid/solid ratio and drug potency (label claim). As re-
mark, we can detect a change in the label claim at the time 120 000 to
130 000 s. Normally no variations were planned. This experiment
should be only a change of the total throughput (e.g. a repetition for the
validation of the experiment at 40 000 s to 60 0000 – Fig. 3). A com-
puting error (during the setting of the process parameter) leads to these
variations. However, data can be used for the DNN calibration.

The variations of the API and excipient mass flow and of the liquid
feed rate have been applied in order to observe different total
throughput of the line, to modify the label claim (API %) and to change
Liquid/Solid ratio of the line. These parameters are quality relevant
indicators: API content has a direct impact on patient safety and drug
efficacy. LOD and PSD have an influence on the quality of product (e.g.
stability and dissolution).

An additional parameter was selected for the extruder (screw speed)
to see if this parameter can influence the particle size. Concerning the
drying process, the three main parameters (Airflow, temperature and
rotation speed) have been evaluated in order to estimate the drying
effectiveness. At a given time, only one parameter changed from the
target condition. The objective was to identify the most relevant process
parameters and their impacts on the API content, water content and
PSD.

During the continuous process, the main critical attributes were
measured by the PAT sensors. Fig. 4 presents the evaluation of the API
content, LOD and PSD values during the production runs and Table 2
gives a statistical overview of the process values. At a first glance, an
impact of the feeder API mass flow on the API content measured by
NIRS (time stamps 80,000–90,000 s) can be detected. This change has
also an impact on the particle size (less API will produce higher particle
size) and on the LOD (less API, more water and higher LOD). A simple
correlation between variables do not allow a better process under-
standing (Fig. 5). Feeder mass flows of excipient and of API have a
positive correlation, LOD and PSD are correlated as well. Dryer tem-
perature has negative correlation with the LOD and is correlated with
PSD (due to a change of LOD value).

Concerning the BU after the blender, The observed average is
121.58%. A systematic error (bias) was detected. The BU prediction of
the blend was performed with a calibration developed with granules
and not with the blends, which can explain the bias. Nevertheless, the
calibration is adequate to detect trending as shown in Fig. 4. Therefore,
the values of NIRS after the blender are used in this study without any
bias correction.

3.2. Problem statement and use of deep learning

A visual inspection of the values provided by the PAT sensors ex-
hibits a high noise level. The noise is influencing the data interpretation
and a simple correlation map cannot be clearly interpreted (Fig. 5). The
hypothesis is that the data interpretation can be simplified when the
noise is reduced. Classical de-noising methods have been applied:
rolling mean, Savitzky Golay filter and Discrete Wavelet transform.
However, those methods did not improve the readability and the in-
terpretation of the data in order to detect the most import process
parameters (Fig. 6). Therefore, the strategy was to use deep learning in
order to improve the understanding of the process. The process vari-
ables have been used as X variables (input) and the NIR prediction as Y
variable (output). Moreover, after training, the DNN can be used for

Fig. 5. Correlation map (process variables and PAT values).
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process monitoring as a redundant information.

3.3. Deep learning optimization

The LOD has been selected for the optimization of the architecture.
The input data were centered and reduced and, therefore, the range
after normalization can be between [-square root(N), square root (N].
This in fact does not really undermine the results, since the ranges are
similar. However, for future applications, other normalization methods
should be used in order to have exactly the same range for all the inputs
(e.g. Min-Max normalization or normalization on the range [0, 1]).

Fig. 6. De-noising of PAT values in the calibration set: moving average (window 120 s), Savitzky Golay and discrete wavelet transform (x: process time in s, y: LOD
value in %).

Fig. 7. General schematics of the architecture of the Deep Neural Network (7
inputs, 3 hidden layers with 6 neurons, 1 output) - (remark: only the links of the
first neuron are displayed to simplify this figure – All the neurons are fully
connected to next layer).

Fig. 8. Qualitative visual comparison - LOD DNN predictions and rolling mean
of PAT data (x axis: process time in s, y: LOD value in %).
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Only one output has been used for one DNN while the seven process
variables are the inputs of the DNN. The DNN architecture was opti-
mized in two steps: the first one was the selection of the number of
hidden layers and the numbers of hidden neurons. The second one was
the selection of the optimizer.

The process data have been split into two sets: 0–98 888 s is the
calibration set and 98 889–140,000 s is the validation set. The valida-
tion is a repetition of the calibration experiments one day later. The
process variations are mostly identical in the two data sets. Due to
technical issues, the full validation set was not completely recorded: for
example, the dryer airflow steps and the last variations of the API mass
flow were not repeated in the validation set. Nevertheless, this technical
issue has no impact on the quality of the data and on the training of the
DNN.

The increase of the number of hidden layers and of neurons increase
the speed of the learning (Supplementary material - Fig. 1). The DNN
with only one hidden layer have higher RMSE (Root Mean Square
Error). Therefore, a deep learning architecture was selected. The com-
plexity of the model was kept low in order to avoid overfitting. In our
case, two layers of nine neurons or three layers of six neurons provided
the prediction with a reasonably low RMSE. The architecture with three
layers of six neurons were selected (Supplementary material - Fig. 2).
By further increasing the complexity of the DNN, the RMSE in the in-
ternal test set is not improved. The final ANN architecture is presented
in Fig. 7 in order to better understand the approach. The optimization
of the architecture was done with the LOD. Several architectures for API
and LOD have been also tested. However, no significant improvement

has been detected. Therefore, the same architecture was applied for all
output parameters in order to simplify the strategy in this publication.

Several optimizers have been compared (Supplementary material -
Fig. 3). A clear difference in the learning speed can be detected. The
convergence for example of the SGD was quick compare to others. If the
number of epochs is large, the optimizers achieved similar RMSE. In our
case, the computation speed was not critical due to a small data set. The
SGD algorithms fail sometime to converge to an optimal solution.
Therefore, The ADAM optimizer was chosen as a more robust alter-
native with still manageable training time and same precision.

3.4. Deep learning results

The results of the selected DNN for the water content prediction is
presented in Fig. 8. The similarity between DNN and NIR data can be
observed for the LOD predictions. Moreover, the DNN predictions have
less noise and therefore the interpretation of trends can easily and vi-
sually performed. The response to the process variations can be seen in
the results of DNN. The two main objectives have been achieved: on one
hand LOD prediction by DNN have a lower noise intensity and on the
other hand, DNN prediction seems adequate for process monitoring.
The calibration errors (RMSE – Table 3) are relatively low. Moreover,
the trends observed during the validation have a significant noise level
and the process variation can be clearly detected. The results of the
DNN respond typically much faster to the changes in process setpoints
than the PAT system. At the same time the noise level is reduced, so
there is opportunity to identify the system characteristics with a

Table 3
Summary of root mean square errors (RMSE) – 8 parameters – calibration and internal test set).

Parameter RMSE calibration RMSE relative calibration RMSE Test set RMSE relative Test set

Content after blender 2.8 2.3% 5.0 4.1%
Content after dryer 2.3 2.4% 3.5 3.5%
Content in feedframe 3.3 3.2% 6.1 6.0%
Content of tablets 3.3 3.3% 5.0 5.0%
PSD x10 7.0 6.1% 10.2 8.9%
PSD x50 30.9 6.4% 37.1 7.7%
PSD x90 61.1 4.0% 84.9 5.6%
LOD 0.2 7.0% 0.3 8.9%

Fig. 9. PSD DNN prediction vs process time (x: process time (s) – y: predicted values PSD value in μm).
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significantly sharper view than the individual real measured data can
make accessible. By its faster response it holds promise to help to keep
the process under better control as is shortens cycle times in feedback
cycles, which will be investigated further.

Therefore, the DNN calibration can be used with significant promise
for online process monitoring. The current comparison of DNN and PAT
predictions is only visual. For a fully quantitative comparison of both
outputs (DNN and PAT), a validation of the DNN output should be
performed. Nevertheless, this DNN validation is not in scope of this
publication.

Similarly, DNNs have been created for the prediction contents after
blender, after dryer, in tablet freed frame and of tablets (Supplementary
material - Fig. 4) and for the 3 PSD values (x10, x50 and x90 –
Supplementary material - Fig. 5). For all the networks, the same ar-
chitecture (3 Hidden layers and 6 hidden neurons by layers) was se-
lected with the ReLU activation functions and ADAM optimizers. An
internal test set is used (split of 20% of the calibration set). Relatively
low calibration errors have been calculated for the API content and the
PSD parameters. The trends obtained with the DNN have a higher signal
to noise ratio compared to the PAT values and the process variations
can be visually detected earlier. The DNN can be used online for process
monitoring in order to predict the API content, the LOD values or the
PSD parameters from the process values.

3.5. Critical process parameters

The DNN predictions during the process runs are displayed in Figs. 9
and 10 for the PSD and the API content respectively. Like the LOD re-
sults in Fig. 8, the DNN predictions present a significant noise reduction

and adequate monitoring is demonstrated. The impact of the process
variation can be detected in the DNN predictions and allow the iden-
tification of the critical process parameters. A new correlation plot has
been computed with the DNN predictions improving the correlation
map from PAT data (Fig. 11).

The critical parameters have been divided into two groups: main
critical parameters when all the variations have an impact on the
quality attribute (Y) and secondary critical parameters when only some
variations have impacts.

Solid mass flow and liquid feed rate/mass flow are the main critical
parameters for the LOD content. Dryer temperature, airflow and FBD
rotation speed are the secondary critical parameters for the LOD con-
tent. Concerning the API, the API mass flow and the parameters influ-
encing the LOD (Dryer speed and liquid feed rate) are the primary CPP.
The main critical parameters for the PSD are API mass flow and liquid
feed rate. A detailed summary is provided in Table 4.

4. Conclusion

A deep learning strategy has been used in order to improve the
process understanding and to propose an innovative monitoring
strategy of a continuous manufacturing line. During this study, the
impact of the process parameters on the three main quality attributes
(amount of water, API content and PSD) have been evaluated. The
process monitoring by DNN has been demonstrated in-silico. The DNN
calibration will be installed later on the production line.

Deep neural networks can learn from noisy PAT values and the ANN
predictions can be used to gain sharper views on process understanding
and for the more discrimination in the identification of critical process

Fig. 10. Content DNN predictions vs process time (x: process time (s) – y: predicted values API content in %).
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parameters. In this sense they can be useful to effectively “de-noise”
PAT data, even though they are not filtering noise out of the raw data
but regenerate (simulate) PAT-equivalent data that reconstruct the
system response in a sharper and faster way than the direct measure-
ment that we have seen so far. Moreover, DNN can be used for online
monitoring as a redundant information. If one of the PAT sensors is
broken, the DNN provides information for process monitoring.

The synergy between PAT, deep learning and process data science
creates an adequate monitoring framework of the continuous manu-
facturing line. An outlook of this study will be an extension to support
the real time release: online prediction of the final quality of the drug
product with deep learning techniques. The challenge with such a kind
of purely pattern based learning techniques lies closely next to the
opportunities: as there is no mechanistic understanding providing a
plausibility check of the predicted values, they can help to distinguish
information from random noise more powerful than many other tech-
niques, but at the same time they can produce very uncertain predic-
tions that need comprehensive validation. We found the DNN technique
striking and will investigate its robustness in the future.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ejpb.2020.06.002.
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