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A B S T R A C T   

In the event of a BLEVE, the overpressure wave can cause important effects over a certain area. Several ther
modynamic assumptions have been proposed as the basis for developing methodologies to predict both the 
mechanical energy associated to such a wave and the peak overpressure. According to a recent comparative 
analysis, methods based on real gas behavior and adiabatic irreversible expansion assumptions can give a good 
estimation of this energy. In this communication, the Artificial Neural Network (ANN) approach has been 
implemented to predict the BLEVE mechanical energy for the case of propane and butane. Temperature and 
vessel filling degree at failure have been considered as input parameters (plus vessel volume), and the BLEVE 
blast energy has been estimated as output data by the ANN model. A Bayesian Regularization algorithm was 
chosen as the three-layer backpropagation training algorithm. Based on the neurons optimization process, the 
number of neurons at the hidden layer was five in the case of propane and four in the case of butane. The transfer 
function applied in this layer was a sigmoid, because it had an easy and straightforward differentiation for using 
in the backpropagation algorithm. For the output layer, the number of neurons had to be one in both cases, and 
the transfer function was purelin (linear). The model performance has been compared with experimental values, 
proving that the mechanical energy of a BLEVE explosion can be adequately predicted with the Artificial Neural 
Network approach.   

1. Introduction 

BLEVEs are strong explosions associated to the catastrophic failure of 
a vessel containing a liquid plus vapor at a temperature significantly 
higher than its boiling temperature at atmospheric pressure; the 
instantaneous increase in volume of both liquid and vapor generates an 
overpressure wave which can be very strong. This wave can be attrib
uted to the liquid vaporization or to the expansion of the pre-existent 
vapor, and this can lead to different values. Another possibility is to 
assume the added effect of both phenomena, this later approach being 
the most conservative. 

In order to calculate this overpressure and its effects and conse
quences, the mechanical energy associated to it must be known. 

Several methods to calculate BLEVE mechanical energy have been 
proposed, which are based on different thermodynamic assumptions:  

- constant volume energy addition (Brode, 1959)  
- ideal gas behavior and isentropic expansion (Prugh, 1991)  
- thermodynamic availability (Crowl, 1991, 1992)  
- isothermal expansion (Smith et al., 1996)  
- real gas behavior and adiabatic irreversible expansion (Planas-Cuchi 

et al., 2004)  
- real gas behavior and isentropic expansion (CCPS, 2010). 

These methods take into account the contribution of both the liquid 
vaporization and the pre-existing vapor expansion. Furthermore, 
another approach has been proposed (Casal and Salla, 2006, based on 
the superheating energy SE) which takes into account only the vapor
ization of the liquid. According to a comparative analysis (Hemmatian 
et al., 2017a), the methods based on the assumptions of ideal gas 
behavior and isentropic expansion give rather conservative results, 
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while the methods based on real gas behavior and adiabatic irreversible 
expansion give more realistic values. Following a relatively different 
approach (Hemmatian et al., 2017b), the mechanical energy can be 
estimated as a function of the vessel filling degree and temperature at 
the rupture moment. In practice, however, it should be taken into ac
count that only part of the mechanical energy is invested in creating the 
overpressure. The other part is used for breaking the vessel and frag
mentation. In the case of ductile failure, approximately 40% of the 
mechanical energy is converted to blast. However, this number could 
vary between 40% and 50% depending on the circumstances. 

From the point of view of the emergency management, a BLEVE can 
occur at any moment depending on the circumstances when a vessel is 
under the effects of fire (Hemmatian et al., 2015). For example, the first 
BLEVE in San Juanico accident (1984) happened after 69 s of the first 
explosion (which probably originated several jet fires). However, the 
time to failure can be more prolonged: for example, it has been reported 
that an LPG tanker BLEVEd after 70 min of being exposed to fire (Planas 
et al., 2015). Anyway, the prediction of BLEVE mechanical energy is 
quite important to define the possible effects and the safe distances. 

Some of the existing methods require complex thermodynamic in
formation and calculations. A different approach that can help in solving 
this problem could be that based on the Artificial Neural Network 
(ANN), used nowadays as a handy toolkit for the simulation, prediction 
and modeling of various engineering and scientific problems. 

In this study, the ANN approach has been implemented to produce a 
function for calculating the BLEVE mechanical energy, specifically for 
propane and butane as the most common substances involved in BLEVE 
accidents (Hemmatian et al., 2019). The function thus obtained only 
depends on the rupture temperature and vessel filling level. The values 
thus obtained have been compared with some experimental data taken 
from the literature. 

2. Theory and methods 

2.1. Dataset preparation 

Two datasets for propane and butane were prepared for the ANN 
approach by using a method based on real gas behavior and adiabatic 
irreversible expansion (Planas-Cuchi et al., 2004). The required ther
modynamic data were obtained from NIST Reference Fluid Thermody
namic and Transport Properties Database (REFPROP) version 9.1. 
(Lemmon et al., 2007). Temperature (K), filling level (%) and mechan
ical energy (MJ/m3) were registered in the datasets. The database in
terval was designed for filling level ranging between 1% and 90% in the 
case of propane, and between 1% and 99% for butane. The initial tem
peratures were 300 K and 283 K for both propane and butane. The ANN 
was trained in those aforementioned intervals. Propane and butane 
datasets had 121 and 201 data points, respectively. Those datasets were 
used in the ANN for generating the related functions. Finally, the 
resulting functions were applied to two sets of experimental data to 
analyze the goodness of the method. 

2.2. BLEVE experimental data 

Two sets of experimental data were used to check the models’ per
formances. In Johnson experiments (Johnson et al., 1990; Laboureur 
et al., 2014), there are 7 BLEVE data obtained by using butane and 
propane (Table 1). The contained liquid was heated with electric im
mersion. The vessels were ruptured by the detonation of a linear 
explosive. The overpressure was measured at 25, 50, 100 and 150 meters 
away. 

9 fired propane BLEVE experiments were reported by Birk et al. (Birk 
and VanderSteen, 2006; Birk et al., 2007). The overpressure was 
measured at 10, 20, 30 and 40 meters away (Table 2). 

2.3. Artificial neural network (ANN) 

Neurons are the basic elements of the biological neural network in 
the human brain. A neuron receives data from neighboring neural cells 
through dendrites and makes some process in the soma (body), trans
ferring a signal to the next neuron through the axon; data transfer is 
performed by synapses through electrochemical signals (Yadav et al., 
2014). 

The Artificial Neural Networks can be applied to analyze and 
calculate data for different problems and solve them with the same 
pattern as that of a biological neural network. The first attempts in this 
field were due to Hebb in the 1940s (Hebb, 1949). After that, some re
searchers such as Hopfield, Rumelhart, Grossberg and Widrow devel
oped this method in the 1980s (Hopfield, 1982; Rumelhart et al., 1986; 
Grossberg, 1982; Widrow et al., 1987). 

With ANN, complicated problems could be solved through parallel 
and distributed processing. It solves problems without requiring too 
complicated formulation; because of this, it could save time significantly 
in comparison with closed-form solving methods. Moreover, this 
methodology enables to approximate any non-linear function to a 
compact set of data with a specified accuracy (Siddique and Adeli, 
2013). 

Every neuron model consists of a segment that signals (i.e., input 
variables) import through it and acts like a synapse. At first, each one of 
the inputs (xi) is multiplied by its corresponding weight value “w”. After 
the summation of these values, a bias value "b" can be added to the 
result. A summary of this process for n inputs is shown in Eq. (1): 

net¼
�Xn

i¼1
ωixi

�
þ b (1) 

At the end of this process, the result enters in a transfer function (i.e., 
f) and gives output values (i.e., y), Eq. (2): 

y¼ f ðnetÞ (2) 

The usual forms of the transfer function are linear, step, ramp or 
sigmoid. Fig. 1 shows the structure of an ANN. 

Some neurons connect, forming a layer of neurons. A network in
cludes one or more of these layers. According to the configuration and 
the way of connection between neurons, there can be different types of 
neural networks. Generally, they can be separated into two categories: 
1) feedforward neural networks, and 2) feedback neural networks. 

In a feedforward neural network, the signals travel in a forward way, 

Table 1 
Johnson experiments (Johnson et al., 1990; Laboureur et al., 2014).  

Johnson Fluid m(kg) V(m3) Prupt (kPa) Filling Level (%) 

1 Butane 2000 5.659 1460 75 
2 Butane 2000 5.659 1510 76 
3 Butane 1000 5.659 1520 38 
4 Butane 2000 5.659 770 68 
5 Butane 2000 10.796 1510 40 
6 Propane 2000 5.659 1520 77 
7 Butane 2000 5.659 1520 76  

Table 2 
Birk experiments (Birk and VanderSteen, 2006; Birk et al., 2007).  

Birk Fluid m (kg) V(m3) P rup(kPa) Filling Level (%) 

1 Propane 150 2 1863 17 
2 Propane 309.3 2 1846 35 
3 Propane 117 2 1699 13 
4 Propane 184.6 2 1894 21 
5 Propane 116.9 2 1573 12 
6 Propane 453.1 2 1803 51 
7 Propane 475.1 2 1563 52 
8 Propane 470.3 2 1813 53 
9 Propane 538.4 2 1858 61  

B. Hemmatian et al.                                                                                                                                                                                                                            

hotpaper.nethotpaper.net

hotpaper.net


Journal of Loss Prevention in the Process Industries 63 (2020) 104021

3

they cannot come back, and there is no feedback. This type of neural 
network (e.g., Fig. 2) can be represented in vector form by Eq. (3): 

Y ¼ f ðW ⋅ xþ bÞ (3) 

Here, Y is the output vector, W is the weight matrix, b is a bias vector 
and f is a transfer function. 

The primary task of the neural network is to define the weights and 
biases in a way that adapts the output to the inputs with a minimum 
error. A training process does the modification of weights and biases. 
The training method used for solving the network in this work has been 
the Bayesian Regulation one, which can be applied to feedforward 
neural networks training. It is based on a statistical approach and as
sumes that the values of weights and biases are related to a distribution 
function with unknown variance. The primary task is to estimate the 
parameters using statistical techniques (Siddique and Adeli, 2013; 
Foresee and Hagan, 1997; Nguyen, 1998). 

3. Results and discussion 

3.1. Backpropagation training algorithm 

Three different backpropagation (BP) algorithms, i.e., Levenberg – 
Marquardt (Hagan and Menhaj, 1994), Bayesian Regularization 
(MacKay, 1992; Ticknor, 2013) and Scaled Conjugate Gradient (Møller, 
1993), were studied to find the best one for the ANN. Five neurons were 
considered for the comparative study and, finally, the algorithm with 
the lowest mean square error (MSE) was chosen as the BP algorithm. As 
it is shown in Table 3 and Table 4, the Bayesian Regularization algo
rithm has the lowest MSE for propane and butane. Therefore, it was the 
one selected in this study. The MSE values for these two substances were 
2.29⋅10� 4 and 4.63⋅10� 5, respectively. 

3.2. Optimizing neurons number 

The determination of the neurons’ number is essential. Considering 
few neurons causes underfitting and, contrarily, overfitting can occur if 
the number of neurons is higher than a specific value. In this study, an 
ANN was trained based on Bayesian Regularization BP algorithm for 
propane and butane. The number of neurons was varied from 1 to 20, 
and an optimum number of neurons was chosen based on the minimum 
value of MSE of the training. According to Fig. 3, the optimum number of 
neurons for propane and butane were five and four, respectively. The 
minimum values of MSE for propane and butane were 0.00025 and 
0.000129, respectively, which were lower than 0.001, taken as a suffi
cient threshold value for the mean square error. 

3.3. ANN setup and results 

For solving the problem, a multilayer feed forward neural network 
was used. A general picture of this method has been depicted in Fig. 4. 
The multilayer feed forward network consists of three layers. The first 
one is the input layer through which the data (i.e., filling level and 
temperature just before the explosion as input parameters) are imported 
into the network, and the last layer is the output one, i.e., mechanical 
energy per cubic meter of the vessel as output data, which gives the 
target data (with this mechanical energy per cubic meter and the vessel 
volume, the mechanical energy released by the explosion can be 
calculated). Between these two mentioned layers, there is another hid
den one. The number of hidden layers depends on the accuracy that is 
required for a particular problem. In this analysis, the number of hidden 
layers was set to one, which provided reasonable accuracy. Based on the 
neurons optimization process, the number of neurons at the hidden layer 
was five in the case of propane and four in the case of butane. The 
transfer function applied in this layer was a sigmoid, because it had an 
easy and straightforward differentiation for using in the back
propagation algorithm. For the output layer, the number of neurons had 
to be one in both cases, and the transfer function was purelin (linear). 

The process was performed with the MATLAB Neural Network 
toolbox version R20015a (8.5.0.197613 – License Number: 107001). 
The number of input data for the training process was 121 and 201 for 
propane and butane, respectively. It reached a convergence level after 
348 iterations in the case of propane and 191 iterations with butane. The 
validation process was done with 15% of the data to check the network 
generalization. The resulting network was tested with 15% of the data to 
provide an independent measure of the network performance during 
and after training. In the training process, a part of the available data 
was used to train the network and find out the suitable weights and 
biases. These quantities were checked in the validation process. Based 
on the obtained results, it would be preferred to choose 15% of data 
randomly, which finally gave good results. The final results also 
demonstrated a good level of performance according to the prepared 
dataset (Beale et al., 2010). 

For propane, the designed network regression R values were close to 
one, showing that there was a close correlation between ANN outputs 
and target values from prepared dataset. Fig. 5 shows how much accu
rate the ANN model is. 

Also, the optimized weights for propane produced by the artificial 
neural network model are summarized in Table 5. 

In the case of butane, the regression results (Fig. 6) show that the 
network was appropriately trained and a linear relation exists between 
output and target data. R values were close to unity which indicated 
linearity between target values from prepared dataset and ANN output 
data. 

The optimal weights for butane from the artificial neural network 
between input and hidden layers (W1) and between hidden and output 
layers (W2) are shown in Table 6. 

Fig. 1. Structure of an artificial neural network (Siddique and Adeli, 2013).  

Fig. 2. Feedforward neural network.  
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3.4. Comparative study 

Root-Mean-Square Deviation (RMSD) (Pi~neiro et al., 2008) as a 
statistical toolkit was used in the comparison of the results obtained with 
the ANN method and the aforementioned experimental data from Birk 
and VanderSteen (2006); Birk et al. (2007) and Johnson et al. (1990). 
TNT equivalent mass and the well-known plot of the scaled distance vs. 

peak overpressure were utilized for obtaining the resulting over
pressures (ΔP) at different distances. The results are shown in Table 7, 
together with those obtained from polynomial expressions (Hemmatian 
et al., 2017b). As can be seen, the functions derived from the ANN show 
a good performance. It can be stated that both methods proposed are 
accurate and practical to be applied. The nonlinear relation between 
temperature and filling level (Hemmatian et al., 2017b) is probably the 

Table 3 
Backpropagation training algorithms for propane.  

Backpropagation algorithm Function Testing mean square error (MSE) Epocha Regression R value Best linear equation 

Levenberg-Marquardt backpropagation trainlm 0.000364 232 0.99996 Output ¼ 1⋅Targetþ 0:0049  
Bayesian Regularization trainbr 0.000229 385 0.99998 Output ¼ 1⋅Targetþ 0:00098  
Scaled Conjugate Gradient trainscg 0.0736 39 0.99205 Output ¼ 0:97⋅Targetþ 0:17   

a In training process, each level is called “training epoch”. All the inputs are entered in each training epoch and give outputs which are compared with the target to 
give the error. By this process, weights and biases are calculated and modified at each epoch. 

Table 4 
Backpropagation training algorithms for butane.  

Backpropagation algorithm Function Testing mean square error (MSE) Epoch Regression R value Best linear equation 

Levenberg-Marquardt backpropagation trainlm 5.85⋅10� 5 116 1 Output ¼ 1⋅Targetþ 0:0019  
Bayesian Regularization trainbr 4.63⋅10� 5 1000 0.99999 Output ¼ 1⋅Target � 0:0012  
Scaled Conjugate Gradient trainscg 8.39⋅10� 1 17 0.94398 Output ¼ 0:93⋅Targetþ 0:33   

Fig. 3. Optimized neurons number for: a) propane, b) butane.  
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reason for the observed deviation that, as seen in the comparative 
analysis, remains in the range of the expected accuracy of this type of 
calculation and, therefore, should be considered acceptable. Fig. 7 
shows the differences between the various approaches and the experi
mental values. At short distances (corresponding to high overpressures) 
the calculated values from the four approaches are higher than the 
experimental ones. This should be attributed to the use of the TNT 
equivalency method for the estimation of the peak overpressure: this 
method gives usually better results in the far field, while it often over
predicts them in the near field. 

3.4.1. Example of application 
A cylindrical vessel with a volume of 80 m3, initially filled to 58% 

with liquid propane at room temperature (20 �C and 8.4 bar), undergoes 

Fig. 4. Artificial neural network structure for: a) propane, b) butane.  

Fig. 5. Regression plots of the mechanical energy (MJ) per cubic meter of the vessel for propane. Left: during training; middle: during the testing; right: all the data 
including validation. (Abscissa: target values from prepared dataset – Ordinate: ANN outputs). 

Table 5 
Propane’s weights matrix.  

Neuron W1 W2 

Input variables Output 

Temperature Filling level Energy 

1 � 1.2335 � 0.2862 � 0.8641 
2 1.7512 0.3928 0.5474 
3 � 0.8560 0.2377 3.16 
4 1.2560 � 0.3420 1.1380 
5 1.1617 0.2995 1.1103 

W1: Weights between input and hidden layers. 
W2: Weights between hidden and output layers. 
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a BLEVE due to fire engulfment, when the content temperature is 50 �C. 
The filling degree is 34% at the burst moment. Estimate overpressure 
(ΔP) at a distance of 100 m (Hemmatian et al., 2017b). 

The MATLAB file for calculating the overpressure in kPa is:  
clear 

clc 

T ¼ input(‘Temperature(K)\n’); %Temperature just before the 
explosion fl ¼ input(‘Filling Level\n’); %Filling level just before 
the explosion 

d ¼ input(‘Distance(m)\n’); 
v ¼ input(‘Volume(m3)\n’); %Volume of vessel 
a ¼ [T; fl]; 

Energy_predicted_per_m3 ¼ propanepredictor3(a); 

Energy_predicted ¼ Energy_predicted_per_m3*v; w_tnt¼(((10^3) 

*0.4)/4680)*Energy_predicted; 

c ¼ w_tnt^(1./3); 

scaled_distance ¼ d/c; 

(continued on next column)  

(continued ) 

overpressure_kPa¼((1/scaled_distance)þ(4/ 

(scaled_distance^2))þ(12/(scaled_distance^3)))*101.32; 

name ¼ ‘Overpressure’; 
X ¼ [name,‘ is equal to ’,num2str(overpressure_kPa),‘ kPa’]; disp 
(X)  

Here is the procedure for calculating the example and the result in 
kPa when running the previous MATLAB file:  
Temperature(K) 

323.15 

Filling Level 

0.34 

Distance(m) 

100 

Volume(m3) 

80 

Overpressure is equal to 3.6435 kPa.  

4. Conclusion 

The artificial neural network (ANN) approach was used to find the 
appropriate function between temperature and filling level as input data 
and the mechanical energy invested in creating the BLEVE peak over
pressure as output data. Calculations were performed by assuming real 
gas behavior and adiabatic irreversible expansion, as this thermody
namic assumption provides more accurate and therefore realistic pre
dictions than the others. 

Two functions were generated for propane and butane by using ANN. 
The smallest minimum square error (MSE) was given by three-layer 
Bayesian Regularization backpropagation algorithm with tangent sig
moid transfer function (tansig) at the hidden layer and linear transfer 
function (purelin) at output layer. For both substances, the designed 
networks regression R values were close to 1, this meaning that there 
was a close correlation between outputs and targets. 

To check the results from the ANN networks with two sets of 
experimental data from the literature, the corresponding peak over
pressure values were obtained by applying the TNT equivalency 
method. According to the root mean square deviation (RMSD), calcu
lated by various methodologies, the ANN networks showed a good level 
of performance (although there was a discrepancy in the near field for all 
the four applied methodologies). This, combined with its simplicity, 
allows obtaining quick and accurate results in an easy way. This 

Fig. 6. Regression plots of the mechanical energy (MJ) per cubic meter of the vessel for butane. Left: during training; middle: during the testing; right: all the data 
including validation. (Abscissa: target values from prepared dataset – Ordinate: ANN outputs). 

Table 6 
Butane’s weights matrix.  

Neuron W1 W2 

Input variables Output 

Temperature Filling level Energy 

1 � 1.3757 � 0.4138 � 0.2668 
2 0.7913 � 0.1637 � 1.8164 
3 � 0.8212 � 0.1932 � 2.4487 
4 � 1.5521 0.4522 � 0.3672 

W1: Weights between input and hidden layers. 
W2: Weights between hidden and output layers. 

Table 7 
RMSD values for the comparison of ΔP experimental values and the prediction 
from the different methodologies and the TNT equivalency method.  

Thermodynamic assumptiona 

RMSD RAIE SE Polynomial 
approach 

Neural Net Fitting 
approach 

Johnson-TNT eq. 
method 

2.3 2.2 2.2 2.2 

Birk-TNT eq. 
method 

4.9 4.1 4.2 4.3  

a RAIE ¼ Real gas behavior and adiabatic irreversible expansion; SE ¼ Liquid 
superheating energy. 
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methodology for calculating the mechanical energy is independent of 
substance’s thermodynamic properties information (enthalpy, entropy, 
internal energy, etc), and it only requires the vessel filling level and 
temperature just before the explosion, and the vessel volume, as input 
parameters to calculate the BLEVE mechanical energy. 
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Nomenclature 

b Bias value 
b Bias vector 
f Transfer function 
m Mass (kg) 
Prup Failure pressure (kPa) 
T Temperature (K) 
V Volume (m3) 
w Weight value 
W Weight matrix 
xi Input variable 
y Output variable 
Y Output vector 
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