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This manuscript concerns quasi-pinning synchronization and B-exponential pinning stabilization for a
class of fractional order BAM neural networks with time-varying delays and discontinuous neuron acti-
vations (FBAMNNDDAS). Firstly, under the framework of Filippov solution and fractional-order differential
inclusions analysis for the initial value problem of FBAMNNDDAs is presented. Secondly, two kinds of
novel pinning controllers according to pinning control technique are designed. By means of fractional or-
der Lyapunov method and designed pinning control strategy, the sufficient criteria is given first to ensure
the quasi-synchronization for the dynamic behavior of FBAMNNDDAs. Furthermore, the error bound of
pinning synchronization is explicitly evaluated. Thirdly, via Kakutani s fixed point theorem of set-valued
map analysis, Razumikhin condition, and a nonlinear pinning controller, the existence and f-exponential
stabilization of FBAMNNDDAS equilibrium point is obtained in the voice of linear matrix inequality (LMI)
technique. Fourthly, based on as well as Mittag-Leffler function and growth condition, the global existence
of a solution in the Filippov sense of such system is guaranteed with detailed proof. At last, a numerical
example with computer simulations are performed to illustrate the effectiveness of proposed theoretical

consequences.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In 1695, the idea of fractional order calculus becomes first off
mentioned through German mathematician Leibniz and it failed to
attract more attention for a long time since it lack of application
background and the complexity. In past few decades, fractional or-
der calculus has superior characteristics over traditional calculus
[1,2], and some excellent results on fractional order systems based
on fractional-order calculation have been demonstrated, see [3-6].
Within the field of electronics, the version of fractional capacitor,
formally called the fractance, has been offered, which describes the
fractional differentiation constitutive relationship Z; = CDPV; be-
tween V; and Z; passing through it, where C is the capacitance of
the capacitor, V; is input voltage, Z; is current and the fractional
order B is identified with the misfortunes of the capacitor. The
integer-order capacitor (inductor) is in reality not existing, that’s
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only an approximation of a fractional order capacitor (or inductor)
C. The primary reason is that dielectric materials represent capac-
itor (inductor) pondered the fractional order traits. Consequently,
the fractional-order differential equation can accurately describe
with a capacitance (or inductor) circuit system [7,8]. Neural net-
works have found a wide scope of applications in automatic con-
trol, combinatorial optimization, image processing and signal pro-
cessing [9-12]. An electronic implementation of an artificial neural
network model, many of the researchers attempted to update the
normal capacitor by fractional capacitor, then it creates the frac-
tional order neural network models. Until newly, it has got increas-
ing interests of many researchers and it plays a vital role in syn-
chronization [13,14], state estimation [15], dissipativity [16], pas-
sivity [17], stability [18] and stabilization [19] of fractional order
neural networks and the research of the fractional order dynami-
cal system has been a hot spot.

As a type of recurrent neural networks, BAM neural networks
was firstly predicted by Kosko in 1987. As we recognize, a BAM
type of neural network model is a nonlinear feedback network
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model and it contains two sorts of layers like K-layer and L-layer.
These layers are always fully interconnected with each layer. Over
the beyond few years, the research topic of BAM type neural net-
works(BAMNNSs) dynamics has received great attention because it
has successfully applied in many areas, like power systems, me-
chanics of structures and materials, hetero and auto-associative
memories and other related research areas. In practical neural dy-
namic systems, the arising of time delay is unavoidable due to
the limited speed of information transmission. In accordance, there
are different kinds of time delays, such as neutral time-delay, con-
stant time-delay, time-varying delay, finite(or infinite) distributed
delay, leakage delay and so forth. In fact, the advent of these de-
lays might also have an effect on the deteriorated overall perfor-
mance of the dynamic of neural network systems. Hence, the study
of fractional order delayed BAM neural networks has been broad
interests of many scholars, see Refs. [20-23]. It is well known that
the neuron activation functions, that's a fundamental relation be-
tween the input layer and output layer of a single neuron, plays an
essential role in the stabilization, monostability, multistability [24],
synchronization and dissipativity analysis of systems. Very recently,
the problem of state estimator design of FNNs was established in
[15], by using fractional order Lyapunov direct methods. In [17],
by using finite-time stability theory and passivity theory, the au-
thor investigated about the finite time analysis of fractional or-
der neural networks in the voice of linear matrix inequality. In
[25], by using Mittag-Leffler function, Gronwall’s inequality and
Lyapunov functionals, the author investigated about the existence
and Mittag-Leffler stability analysis of fractional order neural net-
works with time delays. It should be mentioned here, the above
mentioned FNNs activations are assumed to be Lipschitz continu-
ous or bounded. But, these conditions are restricted in this paper
and not required to monotonicity of the activation functions.

To the best of our author’s knowledge, most practical systems
are unstable in nature. In this situation, we have applied to some
suitable controllers in the practical FNNs system to ensure the cor-
responding asymptotic behavior and enhance the system perfor-
mance. During the past few years, various kinds of control tech-
niques have been developed, for instance, sliding mode control
[26], state feedback control [27], non-fragile control [28], adaptive
control [29], output feedback control [30] and intermittent control
[31] so forth. It is noticed that all the aforementioned controllers
are applied to every neuron of FNNs, which could be very high
priced and impractically. Different from those control techniques,
pinning control is more effective because it has been applied to
one neuron or the huge number of neurons instead of all neurons.
The basic model of classical pinning control strategy is defined as
below:

M;(t), ifie{1,2,...5}

Mi(t) =
’ 0, ifie{s+1,s4+2,....n,

where n denotes the number of neurons in FNNs, s denotes the
number of directly controlled neurons, M;(t) denotes the normal
control inputs, which is added to each neurons and M;(t) is ap-
propriate pinning control inputs. Obviously, n —s neurons are not
directly controlled.

As a collective behavior of a discontinuous FNNs dynamical sys-
tem, stabilization and synchronization concepts are very important
owing to its wide application in both control theory and system
identification respectively. Recently, some remarkable results have
been well addressed on synchronization and stabilization of FNNs
models in the overview of the earlier literature, kindly see Refs.
[19,30,32]. It is noticed in the previous mentioned FNNs results,
the neuron activation functions are assumed to be common Lip-

schitz continuous and their tools are not suitable for the discon-
tinuous FNNs dynamical system. However, some excellent results
relevant to stability and synchronization of FNNs with discontin-
uous activation has been paid in the present assessment of lit-
erature, see Refs. [33-37]. For instance in [33], the authors gave
some asymptotical synchronization criteria for time varying de-
layed FNNs with discontinuous activation by means of state feed-
back and adaptive feedback control. In [37], by using some inequal-
ity scaling skills, Lyapunov direct method and linear feedback con-
troller including discontinuous term the author investigated about
the finite time stabilization of FNNs with discontinuous activation
and uncertain parameter.

Due to the merits the of pinning control method, till present,
few results on integer order stability and synchronization of neural
networks with continuous or discontinuous activations results have
been concerned. For example, Dongshu et al. [38] investigated the
pinning control policy of synchronization criteria for integer order
discontinuous Cohen-Grossberg neural networks with mixed time-
delays, while Dongshu et al. [39] studied the robust synchroniza-
tion analysis of integer order discontinuous Cohen-Grossberg neu-
ral networks with time varying delays. Global exponential pinning
stabilization of neural networks with delays was focused in [40].
Besides, the exponential pinning impulsive stabilization of integer
order mixed time delayed reaction-diffusion neural networks were
analyzed in [41]. Nevertheless, there are null results in dynami-
cal behaviors of stability and synchronization of neural networks
with fractional order derivative and discontinuous neuron activa-
tions and is it become still an open problem.

Motivation by above discussion and inspiration ideas of Refs.
[42-46], we try to analyze the quasi-synchronization and B-
exponential stabilization for time-varying delayed FBAMNNs with
discontinuous activations. The crucial novelty of this research work
is highlighted in the following aspects.

1. Firstly, two novel pinning controllers are developed to en-
sure the quasi-synchronization and S-exponential stabiliza-
tion results.

2. Secondly, based on developed control policy and suitable
Lyapunov functional, a list of quasi-synchronization analysis
is introduced for time-varying delayed FBAMNNS with dis-
continuous neuron activations. Moreover, the proposed Lya-
punov functional is also dependent on the definition of frac-
tional integrals of order 0 < <1.

3. Thirdly, the proper designing algorithm of pinning control
policy is proposed.

4. Fourthly, via Kakutanias fixed point theorem, functional dif-
ferential inclusion analysis and the framework of Filippov
solutions, the existence of equilibrium point is presented,
and new f(-exponential stabilization for FBAMNNS with dis-
continuous neuron activations is discussed in the voice of
LMI approach.

5. Finally, one numerical examples with computer simulations
is presented to illustrate the feasibility of obtained theoreti-
cal results.

Nomenclature. In this proposal, R represents the space of real
numbers, R™ represents the space of m-D Euclidean space, respec-
tively, and R™ ™M stands for a set of all m x m real matrices. Let
v=(11,...,Um)T € R™ denotes a column vector, where superscript
T stands for the transpose operator. Given a symmetric matrix G,
G>0(G>0)) means positive-definite (positive semi-definite), that
is vIDv>0(>0) for any 0 # z € R™, Afin(G) (Mhax (G)) denote the
minimal(maximal) Eigenvalues of real matrices D, respectively. The
two norm of vector v is defined by [|[v|l, = /v + ... + V3.
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2. Preliminaries and system description

In this subsection, we will first recall some basic definitions and important properties in fractional order calculus.

Definition 2.1. [47] The Riemann-Liouville fractional integral order 8 (0, 1) for a function k(t) is defined as

t
TPK(t) = [ (t — )P k(o) do.
0

1
T
where I'(-) is Euler’s Gamma function.

Definition 2.2. [47] The Caputo fractional-order derivative with order § for a differential function h(t) is defined as
1 t o hM ()
Tm—pB) Jo (= wyemt °
where t>0 and m -1 < 8 <m e Z". Peculiarly, when g (0, 1),
1 ' H(w)
ra-p)Jo (t-w)b

Furthermore, the following Caputo fractional-order derivative properties are necessary to derivative our main results.

DPh(t) =

DPh(t) = dw.

Property 1. For m—1 < 8 < m, we have

m-1 i

TP[DPk(t)] = k(t) — 2; %k@(m), B =0.
Jj=

Especially, 0 < 8 <1, one has

7 [Dﬁk(t)] = k(t) — k(0).

Property 2. For any arbitrary constants f; and f,, the linear property of Caputo derivative is denoted by:
D[ ki (0 + faka () | = fiDPky (0) + 2Dk (1),

Definition 2.3. [47] The two parameters Mittag-Leffler function with 8 > 0, B > 0 has expressed in the following form:

+00

Zi
£ @0=Y — 2
159" L G p)

where z € C. For B =1, its one parameter function Mittag-Leffler is described as
400 i
z)
E(2) =) =~ =E51(2).
! ; F@j+n ~

Particularly, & 1(z) = exp{z}, when 8 =8 =1.
In this manuscript, we consider the drive system of fractional order BAM neural networks (FBAMNNs) model:
DPk;i(t) = —aiki(t) + YTy vizh; (1;(6)) + X7y wijh; (L(t = n(6))) +J;
DAL;(t) = —b;l;(t) + Y1 pjigi(ki(t)) + iy qjigi(ki(t — () +1;
ki(w) = ¢i(w), i €Ty ={1,2...,n},
li(w)=vjw), jeIm={1,2,....m}, Yo e[-n,0],
and the vector form is
DPk(t) = —Ak(t) +Vh(I(t)) + Wh(I(t — n(t))) +]
DPI(t) = —BI(t) + Pg(k(t)) + Qg(k(t — n(t))) +1 (2)
k(w) =¢(w), l(w) =¥ (0), Vwe[-n.0],

where K = {ky,....kp} and L={l;, ..., I} are bi-layers in FBAMNNs model (1), D? is the Caputo fractional order B lies between 0 and
1, k(t) = (ke (t), ... kn(©))T, 1(t) = (L (1), ..., lm(t))T represents the vector of neuron states at time ¢ in K-layer and L-layer, respectively;
I=(,...In)T and J = (J1,....Jn)T denotes the ith and jth components of constant external input vectors; A = diag{a;,...,ay} >0, B=
diag{by,....bm} > 0 are self feedback inhibitions in K-layer and L-layer, respectively, where a;>0,b;>0 for i € Jn, j € Jm, respectively;
V = (Vjj)nxm € R™™ and W = (W;j)nxm € R"™™ stands for the synaptic connection strengths at time t and t — 7(t) in K-layer, respectively,
while P = (pji)mxn € R™" and Q = (ji)mxn € R™" are the similar statuses in L-layer; h(I(t)) = (hy (1 (t)). ..., hm(In(t)))" and g(k(t)) =
(g1 (ki (t)),....gn(ln (t)))T are the discontinuous neuron activations of the ith neurons and jth neurons respectively; the time-varying delay
n(t) is bounded on the interval [0, +o00) and they satisfy 0 <1 < n(t) <n, 0 <n'(t) <ij <1 for t € [0, +o0).

(1)
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In this manuscript, the neuron activations h;, j € m and g;, i € J, are considered with the presence of discontinuity. As a result, the
classical solution for fractional order differential equations does not applicable to FBAMNNs model (1). In this case, we need to study the
concept of Filippov solutions (1) of considering fractional order discontinuous right hand side system [48].

Now, the set-valued map analysis [49,50] of h(l) at | e R™ and g(k) at k € R" are defined as below:
Definition 2.4. (Filippov Regularization). Consider the following fractional order differential system:
{Dﬁv(t)zh(t,\)), t>0, veRm, -

v(0) = vo,
where h(t, v) is discontinuous in v. The Fillipov set-valued map F : R™ — 2R" is defined as:

Fev = N @[hes0.0\m)]

7>0 p(M)=0

where B(v, ) ={V; ||V —v| < t}, M CR™and u(M) is the Lebesgue measure of set M. A vector function v(t) defined on I C R is called
a Filippov solution of system (3), if it is absolutely continuous on any subinterval a non degenerate interval [ty, t;] of I, for a.a. tel, v(t)
satisfies the differential inclusion: DPv(t) € F(t, v)

Definition 2.5. (Filippov solutions). A function (k(t), I'(t))T is said to be Filippov solution of (1) on [-71,T), 0 < T < 400 if

1. (KT(t), I"(t))T is continuous on [—n, T) and absolutely continuous on [0,T).
2. k(t) and [(t) satisfies

{Dﬁki(t) € —aik;(t) + X1y vicoth; (1 ()} + X1, wcolh; (1 (t — n(6)))} +J;
DAIi(t) e =bjl;(t) + X1, pjicofgi(ki(t)} + Y1, qjico{gi(ki(t — n(t))} +1;,

a.a. te[0, T), where

(4)

aolh; (1))} = [min{hj(lj‘),hj(l;’)}, max{hj(zj-),hja;)}]

oolgi(k)} = [min{gmk;),gi(km max{g(k;),gi(lcr)}].

By virtue of measurable selection theorem, there exist a measureable function A = ()Ll, e )Lm)T 7. T) > R™and p = (m, e un)T :
[7,T) — R" such that A;(t) e cofh;(I;(t))}, ui(t)  co{g;(k;(t))} such that

DPki(t) = —aiki(t) + X1y vijhj(t) + X0, wijhj(t —n(t)) +J;
DALi(t) = —b;lj(t) + X0, pjii(t) + X0 qjimi(t — n(6) +1;,
ki(@) = ¢i(®). wi(w) = gi(w). i€ n,

(@) = ¥j(@), Aj(@) =Vj(®), jeIm Ywel-1.0]

a.a. te[0, T). In this manuscript, we consider the system (1) as drive system, the associated controlled response system is given as fol-
lows:

DPki(t) = —aiki(t) + X7y vijh; (1) + Xy wish; (G (£ = () +Ji + Li(t)

DAI;(t) = —b;l;(t) + X0 piigi (ki () + 1 q5igi (ki (t — 1 () + I + N; (©)

ki(w) = ¢; (), i€ Tn,

(@) =V} (), jeIm ¥Yoel-1,0]

and the vector form is

DPk(t) = —Ak(t) + Vh(I(t)) + Wh(I(t — n(t))) +] + L(t)

DAI(t) = —BI(t) + Pg(k(t)) + Qg(k(t — n(t))) + 1+ N(t) 7)
k(w) = ¢*(w). l(w) = ¥*(). Vo e [-n.0],

where k(t) = (I~<1 (t),...,fcn(t))r and I(t) = (l~1 (t),...,fm(t))T are the vector of neuron states at time t of response system, and L(t) =

L), .., Ly)T, N(t) = (N1 (t),...,Nm (t))T are the pinning control input vectors, which is designed in later. The other parameters are
similar dynamical meanings as those in drive system (1). And from system (6), we have

{Dﬁ’zi(t) € —aik;(t) + Yl vijcolh; ([ ()} + YL wiicolh; ([ (¢ — n(t)} +Ji + Li(0)
DPIi(t) € —b;lj(t) + X1, pjicolgi(ki(t))} + Y0, qjicolgi (ki(t — n ()} +1; + N (©),

(5)

(6)

(8)
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aa. te[0, T). Or there exist o;(t)  cofh;(j(t))} and B;(¢t) € cofg;(ki(t))} such that

DAki(t) = —aiki(t) + 7Ly vijorj (£) + 7 wijet (¢ = () +J; + Li(©)
DPL(6) = —b;li(6) + XL, piii(6) + X1y 4t — n(©) +1; + Nj (©), o)
ki(w) = ¢f (w), Bi(w) = ¢} (w), i€ Tn,
[[(@) = ¥7 (@), dj(@) =} (®), jeIm ¥Yoel-n0]

From response system (9)[or (7)] and drive system (6)[or (1)], the synchronization error dynamical system is described as follows:
DPu;(t) = —aju(t) + YT i@ (t) + YTy wig@;(t — n(t)) + Li(t)
DPzj(t) = ~bjzj(t) + XLy piBi(0) + LIy ¢;iBi(t = n(©) + N;(©). (10)
ui(w) = ¢f (@) — ¢i(w).i € Jn,
zj(@) =¥ (@) = ¥j(®), j € Jm. Y@ € [-1.0],

where  u;(t) = ki(6) —ki(D),  z;(©) =[;(0) = 1;(6),  @;(®) =;(t) - 2;(0) e Cofh;([;(©)} —Tofh;(;(£))} and  Fi(6) = Bi(t) — wi(t) €

colgi(ki(£))} — colgi (ki (1))}
For further quasi-synchronization and S-exponential stabilization results, we need the following key definitions, assumptions and re-
lated lemma’s.

Definition 2.6. A constant vector (k" )T = (kj, R 5 l;)T e R™M js said to be an equilibrium point of FBAMNNS in the Filip-
pov’ sense if and only if k* = (kj,.....k;)T e R" and [ = (I;,..... ;)T e R™ satisfy the following conditions:

0 € —aik; + 3751, vycoth; (1)} + X7, wijcoth; (1)} +J;

0 e —b;lx + 3L pjicolgi(k)} + iy qjicolgi (ki) } + 1.
Or equivalently, there exists kjf € E{hj(l;f)} , u; ecofgi(ks)} , such that

0 = —aik; + X750 vihs + 205 wihs +;

0= —bjls + 1Ly pjilt; + Xilq Qi + 1.

T
Definition 2.7. The FBAMNNS (1) is said to be -exponential sable to an equilibrium point (k*T, l*T> = (k;‘ oo K l;‘, e l,‘;)T, if for any
initial conditions k(w) € C([—. 0], R") and I(w) € ¢([-7n, 0], R™), there exist a constants K > 0 and « > 0 such that

+ 1) -1

[Hk(t) —k; ] <K s[upO] [||k(a)) NI l*||] exp{—«tf} t>0.
wel-n,

Definition 2.8. The FBAMNNSs drive system (1) and controlled response system (7) are said to be quasi-synchronized if for any initial
conditions k;(®), ki(w) € ¢([-n,0].R") and l;(w), [;(®) € C([-n,0],R™) for i€ Jn, j € Im. there exist a small error bound # > 0 such
that

Jim [(k© - k©) + ([O - 40) | <A t=1

where tg the observation of starting time.

Remark 2.9. In view of Definition 2.8, the systems are said to be asymptotically stable (or asymptotically synchronized) if # = 0.

Assumption [A;]. For every i€ Jn, j € Jm, suppose the discontinuous activations g;, h; : R — R are bounded (|g,-(-)| < zzrl.l, [hj ()] <
w}‘) and continuous function excluding for a finite number of jump discontinuities vy on every bounded interval. Furthermore, there
exist a left limits gi(vf), hj(vf*) and right limits g,-(U)T), hj(vjf), respectively.

Assumption [A;]. For every i € Jn, j € Jm. there exist positive constants R/, Rf 7! and n}‘ such that

|aj (@) = 2 (0)| < RE|z; (O] +7f, |Bit) — (0| < RE|ui©)| + 7/,

where (1) — A;(t) e cofh;([;(t))} — cofh;(;(t))} and B;(t) — pu;(¢t) e cofg;(ki(t))} — colg; (k;(t))}.
Assumption [ A3]. For every i € J,, j € 3m, suppose F satisfies a growth condition, then there exist positive constants 7~Zf 7?5‘ fril and
ﬁ]’.‘ such that

[Flh )| = sup el < R[]+
sreF[hi(i ()]
|Flaik@)]] = sup  |cal < RE|ki(0)| + 7F.

S2eFgi(ki(t))]
where F[h;(l;(t))] =colh;(l;(t))} and F[g;(k;(t))] = co{g;(k;(t))}.
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Remark 2.10. When the activations are assumed to be continuous activations, then co{h;(l;)} = {h;(l;)} and co{g;i(k;)} = {gi(k;)}
are singleton. Suppose, there is one discontinuous point exist in Assumption [A4;], then rr]’? = ni’ = 0. In this particular case, the neurons
continuous activations are satisfied the common Lipschitz-continuous on R. i.e., there exist positive constants Rf >0 and Rz‘ > 0 such
that

i) = hiA;(0)] < RE|Zi(0)], |gitki(©)) — &i(ki(0))] < Ri|ui(D)],
forieJ, and j € Jm.

The following Kakutanids fixed point theorem is very useful tool to guarantee of the existence of an equilibrium point for the considered
model.

Lemma 2.11. [49] Let E be a compact convex subset of a Banach space X, if the set-valued map Q:E— P (E)={ECX:
nonempty convex compact set} is an upper semi continuous convex compact map 2 has fixed point in E. That is k €E, such that x € Q(k).

Lemma 2.12. [51] A continuous function y(t) is defined on the interval [0, +o00) and for 0 < B <1, if there exist two positive constants P; > 0
and P, > 0 such that

y(®) = =PiDPu(t) + P,

then

y(@) < 7’25/3[ - Plt'B:I

where >0 is a positive constant, £g is a Mittag-Leffler one parameter function and T'(-) is a Gamma function.

Lemma 2.13. [52] For 0 < 8 <1 and let u(t) is the continuous differentiable function, then for any t>0,
1
Dﬂjuz(t) <u(t)DPu(t), ¥V B € (0,1].

Lemma 2.14. [53] For ¢ > 1 and if uq, ..., un > 0, then we have

m m

ml*[X:uj]e < Zu;
i

j=1
Lemma 2.15. [54] For 0< 8 <1 and let u(-) : [tg — 1, +00) — (—o0, +00) be a continuous function such that

Dj, u(t) < —yu(t) + yo max u(w)t =0,
j t-n<w=<t

then there exist a positive scalars 1,1, and t* > ty +n such that
ut) < Yiép(— ot —to)?), t = 1",
where y1>y,>0.

Remark 2.16. Let t > t;, then monotonic decreasing function Eﬂ( — Y (t - to)ﬂ) satisfy the following condition:

Ep(— Va(t —10)P) €[0.1] for v, > 0.
Lemma 2.17. [55]. For any vectors u, v € R" and positive definite matrix A, then
2uTv <uTAu+vA~1T.

Remark 2.18. When 8 = 1, model (1) degenerates into integer order exponential stabilization and pinning synchronization of BAM neural
networks with discontinuous activation.

Remark 2.19. Our proposed discontinuous neural networks model can be improved time-varying delay term into constant delay term, the
following quasi-synchronization and stabilization results are still true for quasi-synchronization and S-exponential pinning stabilization of
fractional order delayed neural networks with discontinuous neuron activation and constant delays.

3. Quasi-synchronization results

In this section, a classical pinning control is designed and quasi-synchronization criteria is discussed for drive-response systems with
discontinuous activations.

Novel pinning control is a method which just needs control partial nodes to realize quasi-synchronization for the whole systems.
Without loss of generality, we will primary randomly select § neurons from all neurons in one layer and § neurons are randomly chosen
in another layer. Referring to the basic principle of pinning control in introduction section, the novel pinning controller is defined as:

Mi(t) —Esgn{u; ()} x [Zlu(f)l} x Y0 Jup(t)] ifieds={1,2,...8)

Y lui)]
ified\J={§+1,....n) o
_ ‘ T l5O1 m o P
Ny = | et O} > [zf} w] x T O] ifjeds={1.2,...8)

ifjedm\Js={S+1,....m},
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& and ¢ are adjustable positive constants.
In the following, we will deal with the quasi-synchronization of the drive-response (1) and (6) via a novel pinning control approach.

Theorem 3.1. Assuming the conditions [A;] —[A;] hold, and then drive-system (1) and controlled response system (6) can be quasi-
synchronized via pinning controller (11) if the following algebraic conditions are satisfied:

‘H = min { min{&;;}, min{slj}} > £ = max : max{&,}, max{szj}} >0
i€Jn J€Tm i€dn Jj€Tm

_ 1 2 1 2
®= {?Qé‘i‘{zg“’"} +?23if{z;3“’2f}} =0

and
. 4P
Jim (1@l + 12012 < /5.
where
k k |q;il R}
511 —2(1,+2§' S‘B*Zlvl]lR S1— Z|W1]|R G2 — é' le]1|R SZI_Z Cz s
j=1 j=1
! . 1< nwij|RY
e1j =2bj+2e = &3 =Y IPilRiG = D ailRica — — D [ij RS, €25 =)  ———2,
i=1 i=1 S1ia i 52
m n
D= <|Vij| + |Wij|)7T]I'<a Dyj=). (lpjil + |jS|)7Tll
j=1 i=1
Proof. Consider the following Lyapunov function
1 1
G(t) = EuT(t)u(t) + EzT(t)z(t) (12)

By virtue of Lemma 2.13 and assumption .4,, we have

DPG(t) < Xn: u;(t)DPu;(t) + Xm:zj(t)uﬁzj(t)

i=1 Jj=1

= Zu (t){ —aju;(t) +Zvua](t) + ZW,]a](t () + L (t)}

j=1

+le(f){ —bjz;(t) + Zpﬁﬁi(f) + Zq]'i,gi(t —n()) +Nj(f)}
i in1 in

< - Yo awd O+ 0 Y gl w1 Rz O+ + 3 3wyl )]

i=1 i=1 j=1 i=1 j=1

X[R§|zj(t—n(t))|+n]’?] + ) M) ui(0)] - sz “HZZ'pﬂ”Zl(t)'

i=1 j=1i=1

<[ Rl 1+ |+ 30 3 1l O Rilui e = n @)+ 7/ + 3 Njlz; 0
j=1i=1

j=1

< —Za uf (t) + ZZ v RE[ui ()12 (6) +ZZ vy 7 Flui (0) +ZZIW,J |RYu; (6))]

i=1 j=1 i=1 j=1 i=1 j=1

Al (t =) + 33wyl (o) +Z|u (t>|[ssgn{ui<r>} x [zl'”(”']
i=1 j=1 it lwi@®)]

XZ|uj(t)|i| Zb 2 (t)+ZZ|pﬂIR’IZ,(t)IIu (t)I+ZZ|pﬂ|ﬂ |z;(t)]
j=1

j=1i=1 j=1i=1
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+ 3 gl Rz (€ = n@)|Jui (O] + Y lgjilw 1z ()]

j=1i=1 Jj=1i=1

d Yzl &
+ IzA(t)l[—esgn{z(t)}[{] x Izi(t)l}
121 ! TULEL o) Z]

< —Z(a, +EUF () + ZZ v | RS s (0)]12; ()| + ZZ wi | RS |ui (6)12;(t = n(¢))]

i=1 j=1 i=1 j=1

i=1 = j=1i=1

03 gl Rz O us (€ = @)+ |:Z (|pji| + |jS|)7TiI:||Zj(f)|
i1

j=1 i=1 Jj=1

< —Z(G, +EUF () + ZZ v I RE [ui (0112 (0] + ZZ |wij | RS |us (£) 12 (£ = n(6))]

i=1 j=1 i=1 j=1

+Z|u(t)|d>u Z(b +8)75 (t)+ZZ|pﬂ|R’Izj(t)llu(t)l

i=1 j=1i=1

Y 1l Rz O ui (& = n(@)] + Y 12;(t) | Da;.

j=1 i=1 Jj=1

By means of important inequality we get

uO)l12;0] = S o) + fz] ®
Jus(0) 123 — 0] = S22 0) + Zigzzfa —n())

S3 1
[ui ()| 1; < Zu? () + qu’%i

= S
5 OI®] < $3O + 510

12Ot - ()] < 2z3(t)+%ul(r— )
12,(0)| @5 < %zf(t)+%d>

Substituting (14)-(19) into (13), we get

+Z[Z(|vu|+|w,-,»|)n;f]|u,-(t>| Z<b LB+ 3 Y IRz O o)
j=1

Dﬁc(t)<‘z(“1+f)“ (f>+ZZ|vu|Rk[§] z(f)+7z (t>]+ZZIWUIRk[§1 w3 (1)
j=1

i=1 j=1 i=1

1 ~[s 1
Tog 4= n(t))] 2 [;u?(f) + zg;bi-]

i=1

—Z“’ LB+ Y Y Indr[ 4 20+ g8 0]+ Y lair[420
j=1

j=1i=1 i=1

+fu, 2e-n(0))] +]Zl[§3 2<r)+i§¢ }

n 1 m l m .1 m
<> { -6 —-§+ % +3 D lvyIRY 1 + 5 D lwyIRY sy + 2% > Ipjil Ry pu? (t)
i1 i1 =1 i1

(13)

(14)

(15)

(16)

(17)

(18)

(19)


hotpaper.net

hotpaper.net

A. Pratap, R. Raja and J. Cao et al./Chaos, Solitons and Fractals 131 (2020) 109491 9
m
I
2| gl fizc-nor 530

m 1y
+Z —b; - 8+f+22|p]1|73’§1+22|QJ1|R1§2+ Zlvile?}zJZ(t)

> i=1
m n 1 1 S
——|wi | RE 22 (¢ — 2 2
+]Z=1: §2§2|WU|RJ}ZJ t—n)+ 2% ;‘Dy
n 2 - ;
. uz(t) . ui(t —n(®)
= —min{en) 3 =g+ mini) 3=

m -2 _
—mm{e]]}Z ﬁ + mm{ez]}z M +®

< “HG(t) + LG(t — 1(t)) + D. (20)
Let A(t) = G(t) — 727, then we have

DPA(t) < —HA(t) + LA(t — 5(t))
< —HA() + Etil?71<a63(<[A(a)), (21)

where 7(t) € [0, n]. According to Lemma 2.15, there exist a constants ¥ and 1/, such that

A() = ynép(—Yat?). =t
which implies that
)
G(t —Yth)+ ——. 22
(t) < vrép(— V2 )+7-l—£ (22)
Note that

G(t) = T () + 32" O2(0) = ;[numnz ¥ ||z<t>||2}.

According to Lemma 2.14, we have
1 20
5[ OI+1ZON]? < @ + 12012 < 29180~ vat?) + =2

which shows that

49

||u<r>||+||z<t>||s\/wlsﬂ( Yath) + o

Based on above inequality and Remark 2.16, we obtain

. 4P

tim [ @l + 1201 | = /577

Therefore, drive-system (1) and controlled response system (6) realize quasi-synchronized via pinning controller (11). The proof is
completed. O

Remark 3.2. Although, the quasi-synchronization of fractional order neural networks (FNNs) with state feedback control have been ex-
tensively studied in the existing work of literatures, see for Refs. [44,45]. As far as we know, there are no results about the combination
of quasi-synchronization and pinning control analysis in all kinds of neural network models, especially BAM neural networks of such
model. In view of this, pinning control for fractional order synchronization of BAM neural network model is presented and its quasi-
synchronization is studied.

Remark 3.3. In practice, a synchronization error signal can be controlled in a certain range and synchronization error bound closely related
to control gains and number of randomly selecting pinned neurons. To illuminate how to design a suitable pinning controller in application
perspective to achieve quasi-synchronization or stabilization, we take Theorem 3.2 for instance, we are able to design following steps:

4. Stabilization results

In this part, we will derive the existence of equilibrium point for FBAMNNs with discontinuous activations and time-varying delays
based on the Kakutani’s fixed point theorem for set-valued map analysis (Table 1).
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Table 1
The Algorithm to design the novel pinning controller.
Algorithm
step.1: Initialize the system parameters A,B,P,Q,U,V,1,].
step.2: Randomly selecting $ of pinned neurons from all neurons in one layer, similarly s of
pinned neurons in another layer.
step.3: Properly find out the values of Rgf, RY, nj’.‘, 7! according to assumptions [A;] and [A4;].
step.4: Choose the control strengths & and ¢.
step.5: Given ¢1,62,63,¢1,¢2,¢3 and compute to easily obtain #, £, .
step.6: Check whether # > £ > 0 and ® > 0. If success, the procedure further moves to next
level. Otherwise the procedure turns back to adjust the control strengths in step 4.
step.7: Based on the proper control strengths, we design a novel pinning control.

4.1. Existence of equilibrium point via Kakutani’s fixed point theorem

Theorem 4.1. Under the assumptions [A1] and [A;], then the FBAMNNs with discontinuous activations (1) has at least one equilibrium point.

Proof. Let X be a Banach space and a norm is defined by |«||; = Z”*m [kgl, ¥ (K15 -+ s Kn, Kng1s - - Knim)T € X. Obviously, existence of
equilibrium point for the system (1) is equivalent to the following dlfferentlal inclusion system.

ki(t) € & [ S v@olh 1 (0)} + 5 wigalhy (15(€ — n(©)} +4 ]
4 € | T picolei(ki©) + Ty acole kit = n©))) +

for i € 3, and j € Jp. Then by using Kakutani's fixed point theorem, in order to we will prove the existence of equilibrium point in three
steps.
Step: 1. From assumption [A;], the neuron activations f; and g; are bounded. Denote a compact convex subset is

(23)

E= [K = (ki oo B b)) € X 2 il gw},

where
n

i=1 J:

k m n n
(|Vu| +|Wu )(D'] +Z (|P11| +|q11) +Z£+ZF (24)

j=1 i=1 i=1 j=1 4

—_

Step: 2. Now, we define a set-valued map Q (k) = (Ql(k1), con Qn(kn), 21(L1), ..., Qm (lm))T : X — P¢.(X). Based on the aforementioned

argument for system (1), (k) is an upper semi-continuous with non-empty compact convex values.
Step: 3. By means of differential inclusion theory and set-valued map analysis, there exist  A;(t) e co{h;(l;(t))} and ;) €

co{g;(ki(t))} , such that @ = (&1......0n 1, ....Om)" € Q(k), where
0i = %[Zﬁ] A () + 5L wiih i (t —n(t)) +]i]
0j= ,%[ZL Pjiti(6) + XLy jipki(E = n(8)) +I,~].

Then

n+m

n m
ol = losl =3 lail + 3 181
f=1 i=1 j=1

1 d | ;
{ > fvij)»j(f) +y EWij)\j(t -n() + ch”
i a; o 4 i

n

2

i=1
1

n
SZ{ZW:]'ZH +Z |Wu|w +| }
i=1 J

{Zb pﬂul(t)+zb qjitti(t —n(t)) + ”

i=1

l

+Z{Zb Ipjilo} +Zb i} + | ’|}

i=1 i=1
= w,

where Assumption [4;] has been used. Thus for any « €E and o€ (), we have geE. Based on Lemma 2.11 that, a map Q2: E— Py(E)
has at least one fixed point k* = (Iq‘, B (o l;;)T e Q(k*), it follows there exist al least one equilibrium point for FBAMNNs with
discontinuous activations (1). Hence the proof is completed. O
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4.2, B-exponential stabilization under nonlinear pinning control

In this segment, we need to design the most effective controller to stabilize unstable equilibrium point of FBANNS (1) to origin. By
using change of variables x(t) = k(t) — k* and y(t) = [(t) — I*, new fractional order error system can be derived from (1):

DAxi(6) = ~am(®) + S [y 0) = b | + S wi By 1y¢ = @) = byt |
DAy;(6) = ~byy;(©) + Tiy P8 ©) - &) | + =iy 4 mxtkice - n(©) - gtk |

Due to discontinuity of vector fields, classical pinning control strategy is very difficult to achieve stabilization goal. In this particular case,
a discontinuous pinning control strategy is needed to stabilize unstable equilibrium point of FBANNS (1), and the controlled system can
be expressed by the following fractional order discontinuous system.

DFx;(6) = ~api(6) + S iy 1y 050 = hy05) | + Sy wy [y tie = n @) = byt | + Ei)

(25)

(26)
DPy;(t) = —bjy;(t) + X1, pji[gi(ki(t)) - gi(k;*)] + X qﬁ[gi(kf(t -n(t)) - gi(k?)] + H;(t)
for i € 3y and j € I, where Ej(t) and H(t) are pinning controllers which is designed by
{Ei(t) = Eqi(t) — tsgn{k;(t) — k*}, i€ T, (27)
H;(t) = Hyj(6) — Osgn{lj(6) I}, j € I,
where
. * Doieq ki () =k n . 2 if 7 . &
E,i(t) = —Esgnf{k;(t) — k*} x [251 ka(t)—k*li| x i lki(®) —k*| ifieds=(1,2,....8}
0 ified,\Je=1{5§+1,...,n}
* OGR! m o T Z
Hy (€)= —esgn{l(t) — I} x [w} x Yy @) =1 ifjeds={1,2,...,5}
0 ifjedn\Js=1{§+1,..,m},
&,e,7 and O are adjustable positive constants.
By means of set-valued map analysis and differential inclusion theory, from (26)
Dixi(t) € —a(t) + S vy @0l (15(6)) ~ olhy 1)} | + S wi[ealh; ;e = n ()}
~ao{h; (1)} | + E:©)
(28)
DAy;(©) € ~byy;(t) + Xy pi| olgi(ki(0)} — 0l (k)| + Ty 4| oleiCkice — n())
~eolgi(k)} | + H (o)
for a.a t>0. Or there exist A;(t) e co{h;(1;(t))}, Ajf 1S E{hj(l;‘)}, wi(t) eco{gi(k;(t))} and pu; eco{gi(kf)} such that
DPx;(t) = —a;(t) + X1y vy (0) + 271y wigh (¢ — () + Ei(t) 29)
DPy;(t) = —bjy;(t) + 31y pjifi(t) + 31y qjifki(t — n(t)) + H;(0),
a.a. te[0, T), where
Xj(t)=)»j(t)—)»}feﬁ{hj(lj(t)}—ﬁ{hj(l;f)} (30)
and
i(t) = pi(t) — pi € cofg;(ki(t)} — cofgi(k)} (31)

Next, -exponential stabilization results of time-varying delayed FBAMNNs with discontinuous activations can be provided.

Theorem 4.2. Assuming the conditions Ay and A, hold, and then equilibrium point for FBAMNNs with discontinuous activations (1) is B-
exponentially stable if there exist a diagonal matrices A = diag()q, e An) >0, T= diag(yl, e )/m> >0, &, d,, ¥V, ¥, and four posi-
tive constants ¢, ¢, 8, 4, such that the following LMI:

(i)
2AA-2AE+ W RZ+cA  AlV| A|W|
* —-d, 0 <0,
* * -d,
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—2YB-2Ye+®R?>+¢Y Y|P TY|Q
* -y 0 <0,
* * -\,

(ii) W,R2 —8A <0, ®,R%2 —uY <0,
(iii) min{¢, ¢}> max {4, u}>0,

where R = diag(R!.....R}) and R = diag(R¥. ..., RK,). Furthermore, the control gains are subjected to
m n
= nggi({ ;(w + |wij|)n,'f} and 6 > 5‘13?5{;(“”"' " |q,-i|)nf’}.
Proof. Consider the following Lyapunov-functional
G(t) = [x(O)[TAlx(t)| + [y Ty ()]
where [x(0)] = (1x1 Ol .. [xa (©)])T and O] = (1Ol .. ym (O]
From Assumption [A;] — [A;], Lemmas 2.13 and 2.17, we have
DPG(t) = 2[x()|" ADP|x(0)] + 2|y ()" Y DP |y (©)]

=2 Z x(6)|2:DP|x(t)| + 2 Z ly@®)]y;DPly ()]

j=1

< —ZZIX;(t)I/\ a;|x;(t)] +ZZZ|X,(I)IK || 13;0)] +ZZZ|Xz(t)I)» il 135t = n(©))]

i=1 j=1 i=1 j=1

2y |xi<t)|ki[—ssgn{xi(r>} x [Zl"‘(”} 3 qu —22 (O ATé(0)
i=1 Yia k@Il 3

=23 lyiOlyibjly;O1+2) > lyiOlyslvgl 1RO +2> 0y lyilwgl 1@t — n(e)]

j=1 j=1 i=1 j=1 i=1

m m (t m m
2y |yj<t>|yj[ ~ esgly; () x [W] . |yl-<t>|} 23 Ol
j=1 it @] i=1 j=1

IA

—22 Ol (0 + € ) ) £23°3 (Ol EZGIEEA

i=1 j=1

#2303 IO abwil [RE]y;(¢ - @) +7f] - 23 Aiebe)]
i=1

i=1 j=1

=23 il (b + €)1 +2 30 Y WO il Rl + /]

=1 j=1 i=1

233 O ylwyl Rl = n@)] + 7t | 23 @10,
j=1

j=m i=1

where &(t) e sgn{x;(t)} and é;(t) € sgn{y;(t)}. According to theorem conditions with respect to control gains, we have

—22Ar|xl<r>|+zzzx(|v,,|+|wu|) (0] < 0

i=1 j=1

m m n
=23yl 01 +2 30 3 vi(1pl + layl )y (©)] < 0.

j=1 j=1i=1
From (31) is equivalent to the following vector form:
DPG(t) < =2]x(®)["A(A+E)IX(@®)] + 2[x(@O) [T AIVIRIY ()] + 2[x(D]" AIW[R|y(t — n(1))]

=2ly(O[" Y (B+¢)ly®)] +2lyO)" T IPIRIx(®)| + 2|y (©)|" YIP[R[x(t — n(t))]

(31)
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< |x(t)|T[ —2AA = 2AE + AVIOTHVITA + AW DT WITA + W R? + §i| [x(t)]
~IXOITAX(O) |+ (¢ = 1) 7| 2R = 84 [[x(t = 1)+ 8}x(¢ = nO) Ale(t = (©))]
+ly®)|* [ —2YB-2Ye+ YIPIUPI™Y + YIQI¥, QY + +P1R? + w} ly(©)]

—Zly O™ ly©)] + [yt — n(t))V[%ﬁz - w] V(= ()] + ply (e — n@©)[TTLy(E — (). (32)

where Lemma 2.17 has been used.
By virtue of condition (i) and (ii) of Theorem 4.2 and (32), one has

DPG(t) < —|xOITAlx(t)] + 81x(t — n(®)[TAlx(t — n(t))]
=ZlyO" Y ly®)] + plyt = nE)I" Yyt — n(t))]
< —o1G(t) + oy sup G(w), (33)
we(t—n,0]

where a7 = min{¢, ¢}, oy = max{s, 1} and n(t) € [0, n.] Now for any solution (x7(t), y(t))T of (25) which satisfy the Razumikhin condition
[27].

G(w) < G(t), w e[t —n,0]. (34)

According to condition (iii) of Theorem 4.2, there exist a positive constant ¢ >0 such that 0 < ¢ < a7 — «,. Combining (33) and (34), we
have

DPG(t) < —0G(t). (35)

From the famous Gronwall-inequality, we have

G(t) < G(0) exp (/Ot %(r _ w)ﬁfldw)

_ Q ;3)
_G(O)exp<r(ﬂ+1)t . (36)
Otherwise, the Lyapunov functional G(t) satisfies
Min (A IR + A (0) YOI = G () = A (A) XN + A () Y O 11,
which implies that
Kin| IXOI2 + YOI | £ 6O) = Kin IXOI + Iy O] (37)
where K, = min {)L’;nm(A), A’&lm(T)} and Kmax = max {)\;}HX(A), Minax () }
On the otherhand,
G(0) = Anax (A) IX(O) 17 + A (1) ly (O) 12
= Knin| IX(O) | + Iy @) (38)
Combining Eq. (36), (37) and (38), we obtain
2 2 ’CmaX[ 2 2] ( -0 ,3)
Ix@© 1" + [ly@©I* < Ko Ix(0)[I* + lly(0)|* | exp INGES)] o) (39)
By using Lemma 2.14, we obtain
_x _x & e B L /3)
I(©) =Rl D) = ) = R 1@ =k 1+ 100) = 1l [ exp (555
> —Q
<K su [kw — k|| + | 1(w) = I* ]ex <7tﬁ>, 40
o (k@) =kl @) =0 Jexp (5rc5 3 (40)

where £ = % From Definition 2.7, equilibrium point for FBAMNNs (1) is 8-exponentially stable. This ends the proof. O

Remark 4.3. Chen et al. [34] dealt with the synchronization condition of fractional order delayed neural networks with discontinuous neu-
ron activation by using adaptive feedback controller including discontinuous terms. Zhixia et al. [37] investigated the global stabilization
in finite-time fractional order neural networks with discontinuous neuron activation by simple feedback controller including discontinu-
ous terms. It is seen that all the aforementioned controllers are applied to every neuron of FNNs, which could be very high priced and
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4 I

| k1(t)
= mmm \tilde{k}_1(t)

—— kz(t)

mmmm \tilde{k}_2(t)

step

Fig. 1. The state trajectories of k;(t) vs. k;(t) for i =1, 2.

impractical. Different from the control methods used in [34,37], designed pinning control methods are more effective because it has been
applied to one neuron or the huge number of neurons instead of all neurons, which greatly reduce the control costs and consumption.

Remark 4.4. Reviewing the previous works in the literature, very few results of stabilization for fractional order delayed neural networks
with discontinuous(or continuous) activations have been concerned [19,29,37,56]. However, there are no results at present to concern the
stabilization problem for fractional-delayed order BAM neural networks with discontinuous activations via pinning control as far as we
know. So the presented B-exponential result here is new.

5. Existence of solution in the Filippov sense

In order to further proceed and sake of simplicity, we first introduce some notations. Let

k(t) A 0 0 v 0o w o(k(t)) ]
- . B= . K= . S= , - CoN=|"]
v [t(t)} s [o B} * [P 0] g [Q o} o) [h(l(t))} H

FBAMNNSs system (1) is equivalent to the following form:

DPy(t) = —By(t) + KF (D)) + SFY(t = () + N )
V(@) = V(@) = (¢7 (@), T (@), o e [-n.0],

and the norm of initial conditions is defined as [|[W|| = supye[_; o1 IV (@) |-

Theorem 5.1. Under the assumptions [A;] and [A,], then there exists at least one solution (kT(t), I'(t))T of FBAMNNs with discontinuous
activations (1) on [0, +o0) in the sense of Filippov.

Proof. By means of brief account in Section 2, the set valued map y(t) — —By(t) + KF(y(t)) + SF(y(t —n(t))) + N is upper semi con-
tinuous with non empty, bounded, compact and closed convex values. Hence the local existence of solution y(t) for (41) with initial value
®(w) can be guaranteed. By virtue of property (1) in Definition 2.4, one has


hotpaper.net

hotpaper.net

A. Pratap, R. Raja and ]. Cao et al./Chaos, Solitons and Fractals 131 (2020) 109491

4 T T T T T T

_4 ! ! ! ! ! !

] |1(t)
= momw o \tide{l}_1()

— |2(t)

= omom om0 \tilde{l}_2(t)

0 1 2 3 4 5 6
step

Fig. 2. The state trajectories of [;(t) vs. l}(t) for j=1,2.

y(t) = ¥(0) +D7 [ — By(t) + KFy(t)) + SFy(t —n(t))) +N]

= W(0) - BDPy(t) + KDPF(y(t)) + SDPF(y(t —n(t))) +D PN
From assumption [.43] and it is notice that

n+m

IFGE)I =D IFEp©)]

p=1

< ;{ﬁﬁ|l,~(t)|+ﬁi’}+‘

m
j=

{7%’;|k,-(r)| +ﬁ;<]
1

= @lly®Ol+ 7.

where ® = max;cs, jesn {7%{ ﬁ’; and Y = Y0, 7l + Y1, ﬁj’.‘.
From (42) and (43), we have

Iy = 1% ©1 + 181D [ Iy©1] + Iclp? [ IFo @)1l

HISID (170 - n@)1]+D# [ In1]

< WO + ||B||D*ﬂ[||y(t)||] +lIKlD# [cbuymn + T]

+]|s|ID~ [<D||y(t — @) + T} +D-ﬂ[|wn]

10

15

(42)

(43)
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3
25 Estimated error bounded B
1.818

Experimental error bounded
1.2482

luhll,+izoll,
&
I
|

0.5
'| |
0 10

20 30 40 50 60 70 80 90 100
step

Fig. 3. Time response of controlled quasi-pinning synchronization error curves |[u(t)|> + ||z(t)]|2 .

< 19O+ [usu . ||K||¢}Dﬂ[||y<t>||] +1@NISID* [ Iy - n(eni]

+Dﬂ|:||’C||T+||$||T+||N||}- (44)
Ifte [o, n(r)], then

D #[Iy(e - neNl] = g5 | (e-o) @ - nwplde

P B A so1 lyl
—Foﬂ)/ﬂm (- —n@) T ™

e
_F(ﬂ)(l—ﬁ)/ (£ = = n@)* "y e

1n(0)
W] P
= —— |t 0) —n(t
ﬁr(ﬂ)(l—ﬁ)[+"() n()]
Wl P
— =0 _[2n]f. 45
_F(1+ﬂ)(1—ﬁ)[n] (45)

Ifte [n(t), +oo>, we obtain

D[yt - n@nll] = %ﬁ) /0 [ (1= @) Iy - n@)ldo
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m— K (1)

= m mky(t)

_3 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
step

Fig. 4. The state trajectories of kq(t) and k,(t) without control inputs.

n(t)
ﬁ 1
F(ﬁ) / Iy(@ - n(w))|ldw

1

t
—_ _ ﬂ_] _
TH nm(f ‘“) ly(@ - n(w))lldw

n(©)-nn(t))
B e

') Joyo n'(w)
1 t=n() g1 Iyl
+F(/3) HO-100) (t (t)) -n'(w) do

S S L U, v
T TB(1-1) -/—n(O) (t « n(t)) lly ()l dx

t=n(t)
K — B-1
F(ﬂ)( )fo (= =n©) Ty lde

F(ﬂ) /Z(O) (—")ﬂ“ lly () | dic
+m /00 (C’ - K)'g‘l lly () l1dic

_ v’ 1 G Npa
_F(ﬂ+1)(1_ﬁ)+r(ﬁ)(1_ﬁ)/o(t € )Py lde 46)
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-3 | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
step

Fig. 5. The state trajectories of [;(t) and I,(t) without control inputs.

So together with (45) and (46), we obtain

A 1ly (e — - ] po 1 po
o# e -n o] = gl + 750 ol (47)

From (44) and (47), we have

< -f L B P R
||y<t>||_||w<o>||+[||s||+||zc||d>}n [||y<r>||]+||<I>||||8||[F(1+ﬁ)(1_ﬁ)[2n] + =0 [vol]

+D5[I|K||T + ST + IINII]

Ienisi ], EIIRIIRY]
= 19O+ [nsu Ikl + Tﬁ]n flvorn]+ Gy w1

+D“3[I|/CIIT + s+ IINII]

- PD—ﬂ[”y(t)H] P, .
where
P = 1IB] + K@ + %
@ISl

Po= VO + [2n]” +D"3[IIK||T+ IS17 + IINII}-

L1+ p)(1-14)
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3 I

— k1 )

EEm kz(t)

_3 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
step

Fig. 6. The state trajectories of k;(t) and k,(t) with control inputs.

Based on Lemma 2.12, and from (48), we obtain

ly @1 = Posy| ~Pt?

Therefore the solution y(t) of system (41) is bounded on [0, +c0), which means the solutions are exists in the Filippov sense. O

6. Numerical simulations

In this part numerical example with simulations are provided to show the effectiveness of designing pinning control method and
developed theoretical results.

Example 6.1. Consider two-dimensional FBAMNNs described by the following expression:
DPk(t) = —Ak(t) + Vh((t)) + Wh((t — n(t))) +]
{Dﬁl(t) = —BI(t) + Pg(k(t)) + Qg(k(t —n(t))) +1
where B =0.999, k= (k1. k)T, 1= (I1,L)T, I=] = (0,0)7, A=diag(7,7). B=diag(7,7),n(t) = 0.8 «e’ and

05 5.65 -15 -0.1 2 41 2 4
V = , W= P= , Q= .
-52 06 1 2.42 -1 1.7 -35 2
In addition the discontinuous neurons activation are g(k) = (g1(kq).22(kx))T with g(k;) = 0.5« tanh(k;) + (sgn(k;)) and h(l) =
(h1(I1), hy (Ib))T with h(l;) = 0.5« tanh(l;) + (sgn(l;)), where i = j=1,2.
Obviously, the above neuron discontinuous activation functions are satisfy the assumptions [.4;] and [A;] with R’1 = R’z = R’l‘ = R’z‘ =
0.5 and 7} = 7} =0.25, 7k =nk =04
The controlled response system is given by:

DPk(t) = —Ak(t) + Vh(I(t)) + Wh((t — n(t))) +] + L(t)
DPI(t) = —BI(t) + Pg(k(t)) + Qg(k(t — n(t))) + I+ N(t).

(49)

(50)
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3 \
— |1(t)
EEE |2(t)
2F _
1 - —

| | | | |
0 5 10 15 20 25 30 35 40 45 50
step

-3 ! ! ! !

Fig. 7. The state trajectories of l;(t) and I,(t) with control inputs.

which shares the similar parameters as (35). In this example, we select first neuron in the two layers are directly controlled,i.e., §=5=1.
In the following simulation, the initial values are selected as k(w) = (k; (@), kz())T = (1.5,2)7, l(w) = (h (@), L (@))" = (-2.5,-0.5)"
and k(o) = (ki (). k2 (0))" = (-2.75.2)", [(0) = (I} (@). h(®))" = (2.25.1.25)" for w € [-1,0].

Firstly, we choose & = ¢ = 10 in pinning controller (11), the condition of Theorem 3.2 is satisfied. In afterwards, it is easy to get H =
25.715, £=3.015 and ® =18.76 with ¢; =1, ¢, =0.5, g3=0.5, {; =0.5, & =1 and {3 = 0.5. By virtue of Theorem 3.2, drive system

(1) and controlled response system (6) can be realize quasi-synchronized via pinning controller (11) with estimated error bound % A

1.818, which is shown in Figs. 1-3.

In Figs. 1 and 2 depict the two states evolution curves of drive-response FBAMNNs under pinning control. The controlled synchroniza-
tion error curves are displayed in Fig. 3 and the obtained experimental error bound is |[u(t)||; + ||z(t)||2=1.2482. From those Fig. 3, one
can observe that experimental error bound is less than the theoretical error bound, which confirm the effectiveness of proposed pinning
control for quasi-synchronization. This implies that, the drive-response system achieves quasi-synchronization under pinning control.

In Figs. 4 and 5 display the time response of state variables kq(t), ko(t),11(t) and I5(t) with similar initial values. From those figures, the
equilibrium point of FBAMNNS (49) is not stable. Manifestly, k* = (0,0) and I* = (0, 0) is an equilibrium point of FBAMNNSs (49). Based on
obtaining results in Theorem 4.2, and the controller (27) with § = §=1 is transformed into the following expression:

2 .
E1(6) = —10sgnk; (1)) [Zfrkll {f;f”'} x Y2, [k; (0] - 4sgnik; (©)),

2 51
Fi(t) = ~10sgn{l (1)} x [Z’ﬁ]‘—('f{f”] x X (O] = 3.55gn{h (O}, GU
Ex(t) = —4sgn{ly ()}, K (t) = —3.5sgn{kz (t)}.
Now, we are able to obtain the controlled FBANNSs (49) is
DPk(t) = —Ak(t) + Vh(I(t)) + Wh(l(t — n(t))) +] + E(t) (52)
DPI(t) = —BI(t) + Pg(k(t)) + Qg(k(t — n(t))) + 1+ F(t),
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where E(t) = (E;(t), Ex(t))" and F(t) = (F (t), K(t))" are defined
in (51) and other parameters are similar as in (49). Taking ¢ = ¢ =
3, § =1, u =1.5. By simple manipulation, we can get

m
4=1> l;Ielgi( { Z] (lvijl + |W,J|)7Tjk} = 3.688 and
Jj=
n
35=0> max { > <|p,,-| + |qﬁ|)ni’} = 3.025.
JEIm i1

Moreover, via LMI MATLAB toolbox, we find that linear matrix in-
equality is viable and the feasible solution is as follows:

[3.6993 0 3.7476 0
A= , Y= ,
0 3.7531 0 3.7147
[41.8784 0
@ = ;
0 40.1113
[10.5702 0 51.7706 0
o, = , W= ,
0 10.6853 0 47.7329
[8.4258 0
v, = .
0 8.7657

In simulation part, the state trajectories of kq(t), ko(t),l;(t) and Iy(t)
of system (49) are displayed in Figs. 6 and 7 with control inputs
(51). From those figures the sate trajectories of (52) converges to
origin. That is, the system (49) can be S-exponential stabilized via
pinning controller (27).

7. Conclusion

In this paper, the quasi-pinning synchronization and pf-
exponential stabilization has been studied for fractional order BAM
neural networks with time-varying delays and limiting discon-
tinuous neuron activations based on pinning control policy. Via
the framework Filippov’s theory and set valued map analysis, the
quasi-synchronization issue for a class of drive-response discontin-
uous right hand side of the FBAMNNSs dynamical system is formu-
lated. Furthermore, a novel pinning control policy was designed to
guarantee the quasi-synchronization for considering drive-response
discontinuous FBAMNNSs error dynamical system. Then, based on
Kakutani's fixed point theorem of set-valued map analysis, the
global existence and equilibrium point of discontinuous right hand
sides of FBAMNNS is investigated, while a new brand of some alge-
braic B-exponential stabilization criteria of such FBAMNNSs system
is displayed by a designing nonlinear pinning controller. A numer-
ical computer simulations is also presented to demonstrate the ef-
fectiveness of the pinning control method. Moreover, the synchro-
nization problem has played an important role in engineering ap-
plications, such as information sciences [58] and secure communi-
cation [59-61]. Pinning control techniques can be suitable for vari-
ous glorious dynamics such as FNNs [18], memristor based FNNs
[25], memristor based complex-valued FNNs [57], and fractional
order T-S fuzzy neural networks [62]. This will appear in soon.
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