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SUMMARY
Accurate modeling of the effects of mutations on protein stability is central to understanding and controlling
proteins in myriad natural and applied contexts. Here, we reveal through rigorous quantitative analysis that
stability prediction tools often favor mutations that increase stability at the expense of solubility. Moreover,
while these tools may accurately identify strongly destabilizing mutations, the experimental effect of muta-
tions predicted to stabilize is actually near neutral on average. The commonly used ‘‘classification accuracy’’
metric obscures this reality; accordingly, we recommend performance measures, such as the Matthews cor-
relation coefficient (MCC). We demonstrate that an absurdly simple machine-learning algorithm—a neural
network of just two neurons—unexpectedly achieves high classification accuracy, but its inadequacies are
revealed by a low MCC. Despite the above limitations, making multiple mutations markedly improves the
prospects for achieving a stabilization target, and modest improvements in the precision of future tools
may yield disproportionate gains.
INTRODUCTION

Proteins are being used in an increasingly wide range of indus-

trial, medical, and research applications (Bornscheuer et al.,

2012; Choi et al., 2015; Truppo, 2017; Sheldon and Woodley,

2018). Although the societal and economic impacts of proteins

have been growing, their full potential has yet to be realized

because natural proteins have a limited repertoire of functions

and insufficient stability to survive challenging application condi-

tions (Bornscheuer et al., 2012; Bommarius and Paye, 2013;

Huang et al., 2016; Sheldon andWoodley, 2018). Computational

modeling of proteins promises to overcome these limitations via

the rational design of requisite stability and novel functions.

However, while notable successes have been reported, most

designs still fail to be stably folded and soluble (Rocklin et al.,

2017; Koga et al., 2012; Parmeggiani et al., 2015), and local or

global instability commonly thwarts achieving desired activity

(Procko et al., 2014; Bommarius and Paye, 2013; Gershenson

et al., 2014; Khersonsky et al., 2012). As a consequence, the

optimization of existing proteins or design of new ones typically

requires laborious and costly high-throughput screening, a bar-

rier that impedes broad commercial development (Bornscheuer

et al., 2012; Truppo, 2017; Sheldon andWoodley, 2018). Reliable

computational tools for modeling protein stability would enable

the rapid and economical development of proteins for innumer-

able applications while also advancing understanding of the im-
pacts of mutations during directed (Bloom et al., 2006; Tokuriki

et al., 2008) and natural (Frey et al., 2010) evolution as well as

in disease (Stefl et al., 2013; Stein et al., 2019).

Here, we test 21 methodologically diverse and commonly

used protein stability prediction tools against experimentally

characterized mutations. Th‘e scoring or energy function is an

essential element of computational engineering tools, used to

discriminate between stable and unstable, active and inactive

protein variants. The scoring functions for the examined tools

cover current approaches, from molecular mechanics (CC/

PBSA, Benedix et al., 2009; LIE, Wickstrom et al., 2012; and

EGAD, Pokala and Handel, 2005) to statistical functions (DFire,

Yang and Zhou, 2008; SDM,Worth et al., 2011; CUPSAT, Parthi-

ban et al., 2006; Eris, Yin et al., 2007; MultiMutate, Deutsch and

Krishnamoorthy, 2007; and Hunter, Cohen et al., 2009), and

empirical combinations thereof (Rosetta, Kellogg et al., 2011;

FoldX, Schymkowitz et al., 2005; Bioluminate, https://www.

schrodinger.com/products/bioluminate; and ENCoM, Frappier

and Najmanovich, 2014). Also, tools with scoring functions

based onmachine learning with physico-chemical input features

(IMutant2, Capriotti et al., 2005; IMutant3, Capriotti et al., 2008;

andMuPro, Cheng et al., 2006) and those usingmachine learning

with statistical scoring functions as inputs (PoPMuSiC, Dehouck

et al., 2009; MAESTRO, Laimer et al., 2015; NeEMO, Giollo et al.,

2014; DUET, Pires et al., 2014a; and mCSM, Pires et al., 2014b)

are included. Through systematic assessments using discerning
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Figure 1. Performance of Computational Protein Stability Prediction Tools

(A) Using computational tools to predict stabilizing mutations (positive values of change in Gibbs free energy of unfolding, DDG, cyan distribution) in a range of

proteins (Table S2) results in experimental changes in stability that are typically neutral.

(B) Testing prediction tools against a large dataset of point mutations (Table S3) reveals the general phenomenon that mutations predicted to stabilize (cyan

boxplots) result in essentially no stability change experimentally (gray boxplots, see also Figure 2 for full density plots). Boxes encompass the middle 50% of the

data, solid horizontal lines indicate the mean, notches correspond to the 95% confidence interval of the mean, and dashed whiskers extend to 1.5 times the

interquartile range.

(C) The Protherm database (Bava et al., 2004), generally used for training and/or testing of computational protein design tools, consists predominantly of highly

(red) and moderately (yellow) destabilizing mutations, with fewer neutral (gray) and moderately stabilizing (cyan) mutations.

(D) Tools often correctly classify highly (red) and moderately (yellow) destabilizing mutations as destabilizing, but have markedly lower accuracy when classifying

moderately stabilizing mutations (cyan). Mutations with no effect on stability within experimental uncertainty (magnitude R 0.3 kcal/mol) cannot be reliably

analyzed and so are excluded. Error bars represent the standard-deviation from the mean after taking 1000 bootstrap samples.

(E) Analysis of the Protherm database reveals that experimentally validated stabilizing mutations on protein surfaces (cyan distribution) typically increase side

chain hydrophobicity (positive DDGsolvation), with a median change of �0.8 kcal/mol (dashed vertical line) similar to mutating alanine to valine. Conversely,

experimentally validated destabilizing mutations on the protein surface (orange distribution) are typically to more hydrophilic residues.

(F) The trend in (E) is recapitulated by computational protein engineering tools, withmutations predicted to stabilize on the protein surface (cyan boxplots) being to

more hydrophobic residues, and those predicted to destabilize (orange boxplots) being to more hydrophilic residues.

Data for EGAD, FoldX, Rosetta-ddG, CUPSAT, DFire, Hunter, MultiMutate, SDM, PoPMuSiC, IMutant3, andMuPro are from Broom et al. (2017). Tool classes are

identified by numbered boxes: 1, physical forcefields; 2, empirical potentials; 3, statistical potentials; 4, machine learning using statistical potentials; and 5,

machine learning using physico-chemical features.
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Figure 2. Prediction Tools Poorly Discriminate Stabilizing from Destabilizing Mutations

For each tool, a density distribution of mutations predicted to stabilize (cyan) or destabilize (red) is shown as a function of the experimentally determined change in

stability (+ve stabilizing). Mutations predicted to stabilize typically form normal-like distributions centered around no change in experimental stability (dashed

(legend continued on next page)
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metrics for tool performance (described in detail below), the

analysis defines current capabilities and limitations for deter-

mining stability, as well as unexpected consequences for solubi-

lity. In addition, the assessments highlight current best practices

and strategies for future advances; notably, how impressive

gains in engineering protein stability can be achieved viamultiple

concurrent mutations.

RESULTS AND DISCUSSION

Predicted Stabilizing Mutations Are Typically Neutral
We find that, although protein stability prediction tools report

�75%–80%accuracy for discriminating stabilizing fromdestabi-

lizing mutations (Table S1), only �20% of point mutations pre-

dicted to stabilize have the intended result. Compiling the results

of recent studies that used various computational tools to engi-

neer stability enhancing pointmutations, the individualmutations

are predicted to yield on average �1–2 kcal/mol of stability (Fig-

ure 1A, cyan distribution; Table S2); however, the experimentally

measured effect is typically no change in stability (Figure 1A, gray

distribution; Table S2). Testing the 21 computational tools

against single-point mutations derived from the Protherm data-

base (Bava et al., 2004) (Table S3), we find a similar problem:

the average experimental effect of mutations predicted to stabi-

lize is neutral (Figures 1B and 2).We note that tools using a statis-

tical scoring function as input to a machine-learning algorithm

appear to provide the best performance (Figure 1, group 4,

PoPMuSiC, etc.), yet even in these cases the typical experimental

stabilization is only �0.5 kcal/mol (Figure 1B, gray boxplots,

group 4). Although not applied to the full dataset of mutations

here, molecular dynamics and thermodynamic integration were

the most successful approaches used by researchers seeking

to stabilize proteins (�50% success rate, see Table S2, Thermo-

dynamic Integration; Song et al., 2013). The high computational

cost of these methods presents a barrier to their extensive appli-

cation, which future computational advances may help over-

come (Gapsys et al., 2012; Tian et al., 2015; Perez et al., 2016).

Altogether the discrepancies noted here between the predicted

and experimental effects of mutations arise because the tools

are good at identifying substantially destabilizing mutations, but

the impacts of mutations predicted to stabilize are distributed

in a narrow range, near neutral on average (�2 to +2 kcal/mol,

see Figures 1A, and 2). This finding has ramifications for practical

protein engineering, which are analyzed further below.

Prediction Accuracy Is Skewed toward Highly
Destabilizing Mutations
Most tools, while correctly identifying >95% of highly destabiliz-

ing (�6 to �3 kcal/mol) mutations, and >80% of moderately de-

stabilizing mutations (�3 to 0 kcal/mol), only correctly identify

stabilizing mutations in <50% of cases (Figures 1C and 1D,

red, yellow, and cyan bars, respectively). Although this problem

has been previously identified in select cases (Foit et al., 2009),
lines). Tools usingmachine learning with a statistical potential as input (MAESTRO

mutations slightly shifted in favor of experimentally stabilizing, and thus tend to be

reliability comes at the cost of incorrectly predicting most experimentally stabilizin

to the right of the dashed line). Thus, stability prediction tools face a no-win situatio

a large pool of stabilizing mutations intermixed with an equally large number of n
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its prevalence has yet to be appreciated. A few exceptions pre-

sent themselves, such as DFire (Yang and Zhou, 2008) and SDM

(Worth et al., 2011)—tools using statistical potential scoring

functions with limited training against existing experimental mu-

tation datasets. These tools correctly identify most stabilizing

mutations, but often mistake moderately destabilizing mutations

for stabilizing ones, resulting in poor discrimination. Most muta-

tions are destabilizing (Broom et al., 2017); contaminating the

very small pool of stabilizing mutations through classification

errors limits reliability. Since existing datasets of experimental

mutations contain predominantly destabilizing mutations (Fig-

ure 1C), training with more balanced data may be a useful strat-

egy to eliminate bias toward recognizing destabilizing mutations

more effectively than stabilizing ones. Deep sequencing is an

example of an approach that may generate such datasets (Araya

et al., 2012), as is measurement of all point mutations via robotic

automation (Nisthal et al., 2019). Improved sampling of protein

conformational space may also reduce the rate of classification

errors made by these tools (Davey et al., 2015; Barlow et al.,

2018). Together, these results illustrate the challenge of engi-

neering stabilizing mutations using computational tools: of all

possible mutations most will be destabilizing such that, while

tools will filter out many of the worst, those predicted to be sta-

bilizing are just as likely to be neutral or destabilizing.

Stabilizing Surface Mutations Often Sacrifice Solubility
Our analyses uncover another challenge that complicates stabil-

ity engineering: unintended reduction of protein solubility.

Analyzing mutations on the protein surface that are experimen-

tally confirmed to stabilize reveals that such mutations often in-

crease hydrophobicity (Figure 1E); exploiting this phenomenon

to increase stability (Nisthal et al., 2019) (Figure 1F) may have

the undesirable effect of reducing protein solubility. In general,

natural proteins balance trade-offs between stability, solubility,

folding, and function (Bloom et al., 2006; Tokuriki et al., 2008;

Klesmith et al., 2017; Gosavi, 2013). The requirement for solubi-

lity may be observed in evolutionary preferences inferred from

consensus mutations, which show a preference for hydrophilic

mutations on the protein surface (Figure 1F, Consensus). Also,

consensus mutations are often stabilizing (Magliery, 2015).

Thus, the incorporation of consensus information into stability

predictions (Berliner et al., 2014; Goldenzweig et al., 2016) might

favor mutations that do not sacrifice solubility for stability. Still,

evolutionary information exists only for natural proteins, limiting

its utility for tailor-made novel proteins. Alternatively, treating sol-

vent exposed and buried positions differently, as does the statis-

tical potential used by CUPSAT (Parthiban et al., 2006) which

does not show a preference for surface hydrophobics (Figure 1F,

CUPSAT), may offer similar benefits. Mutations likely to

decrease solubility could also be filtered out using computational

solubility prediction tools (Trainor et al., 2017). Similar logic

inspired a protocol for the avoidance of hydrophobic patches

on the protein surface during de novo design with Rosetta (Jacak
, NeEMO, PoPMuSiC, DUET, mCSM) have a distribution of predicted stabilizing

more reliable when attempting to engineer more stable proteins. However, this

g mutations as destabilizing (relatively small cyan area compared with red area

n of either finding a small set of stabilizing mutations withmoderate reliability or

eutral or destabilizing mutations.
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Figure 3. Performance Metrics Highlight Considerable Differences between Tools

(A) Using our recommended performance metrics (Spearman rank andMatthews correlation coefficients, light and dark gray, respectively) distinguishes the best

performers within and between classes (classes identified by numbered boxes: 1, physical forcefields; 2, empirical potentials; 3, statistical potentials; 4, machine

learning using statistical potentials; and 5, machine learning using physico-chemical features). Error bars represent the standard-deviation from the mean after

taking 1000 bootstrap samples. Although computational tools have in general been improving over the years, much room for further improvement exists as

measured by the (B) Spearman rank and (C) Matthews correlation coefficients. For example, the best tools approach a Spearman rank correlation coefficient of

0.75, where the square of this coefficient (0.56) indicates the best tools still only capture ~50% of what causes a mutation to be better or worse than another.

Similarly, the tools most extensively used by other researchers to make mutations, Rosetta-ddG, FoldX, and PoPMuSiC, have Matthews correlation coefficients

between 0.3 and 0.5, and produce success rates between ~15% and 40%.
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et al., 2012). In fact, stabilization can be achieved without

increasing surface hydrophobicity, as illustrated by work that

optimized charge-charge networks on the protein surface lead-

ing to increased stability and foldability without sacrificing solu-

bility (Tzul et al., 2015). These findings suggest various avenues

for improving protein stability engineering while also addressing

solubility.
Discerning Performance Metrics for
Computational Tools
The performance of stability prediction tools is typically evalu-

ated using well-established metrics: the linear correlation coeffi-

cient (r), accuracy, and error. These metrics have the advantage

of being widely recognized but can also be misleading. In partic-

ular, linear correlation coefficients may be uninformative when
Structure 28, 717–726, June 2, 2020 721
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Figure 4. Evaluation of Tool Performance Using Typical Metrics

SimpleMachine (highlighted in red) performs better than many of the published tools on the basis of (A) the Pearson correlation coefficient and (B) standard error,

and (C) accuracy.
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the data contain outliers or anchoring points. The practice of

removing said outliers on the basis of their poor fit inflate

apparent performance metrics (Myers et al., 2010). Furthermore,

binary (stabilizing/destabilizing) classification accuracy may be
722 Structure 28, 717–726, June 2, 2020
uninformative when the validation dataset is skewed toward

one class (such as a preponderance of destabilizing mutations,

Figure 1C). Error is also a poor discriminator in the case of protein

stability as most point mutations for which changes in stability

hotpaper.net


Figure 5. Multi-mutants Increase Protein Engineering Success

The effect on protein stability of making different numbers of predicted stabilizing mutations are based on experimental distributions from our dataset (see STAR

Methods).

(A) Single mutations (solid line) are unlikely to yield substantial increases in stability (3 kcal/mol, cyan, area corresponds to ~2% probability), whereas multi-

mutants of 5 (dashed line) or 20 (dotted line) residues are more likely to reach these targets (~15% and ~30% probability, respectively), and in the latter case may

provide extreme stabilization (10 kcal/mol, purple area corresponds to an ~5% probability).

(B) More generally the success chance for reaching a target stability (3 kcal/mol, cyan; 10 kcal/mol purple) increases with increasing number of mutations.

(C) Increasing the accuracy of protein design tools (average experimentalDDG of mutations predicted to stabilize of�0.1, 0.0, and 0.1 kcal/mol shown as dotted,

solid, and dashed smoothed histograms, respectively) increases the probability of reaching target levels of stabilization (shown here for making a 20-residue

multi-mutant). The average experimental DDG values of �0.1 and 0.0 kcal/mol are representative of most tools, whereas 0.1 kcal/mol illustrates the effect of a

modest improvement in tool accuracy.

(D) When using a computational protein engineering tool with typical accuracy (average experimental DDG of mutations predicted to stabilize of �0.1 kcal/mol,

black dotted line), the probability of gaining 3 kcal/mol of stability (cyan curve) is ~25%, and for gaining 10 kcal/mol of stability (purple curve) the probability is only

~5%, evenwhenmaking 20mutations (the number of mutations illustrated in this panel). The success in reaching these targets is considerably improved to ~40%

and ~10%, respectively (black arrows) with even small gains in tool accuracy (average experimental DDG of mutations predicted stabilize of 0.1 kcal/mol, black

dashed line).
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have been experimentally determined are conservative (e.g., hy-

drophobic truncations), resulting in a narrow range of stability

changes (typically, �2 to 0 kcal/mol); this unbalanced distribu-
tion results in low prediction error achieved simply by predicting

small changes in stability and underestimation of the magnitude

of stability changes resulting from types of mutations that are not
Structure 28, 717–726, June 2, 2020 723
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well-represented in the training or validation datasets. To

address these problems, we propose the use of metrics better

suited to the analysis of stability prediction data, the rank-order

(r) coefficient (Myers et al., 2010) and Matthews correlation co-

efficient (MCC) (Matthews, 1975). Using these metrics, we

demonstrate machine-learning approaches whose inputs

include statistical potential terms as particularly effective,

whereas physico-chemical features as machine-learning inputs

yield the poorest performance (Figure 3A). Overall, while compu-

tational protein engineering tools have progressed over the

years, there remains much room for improvement (Figures 3B

and 3C).

To illustrate the advantages of the proposed metrics for stabil-

ity prediction, we present an intentionally simplistic prediction

tool, SimpleMachine. SimpleMachine is a neural network

comprised of a single, two-neuron hidden layer and accepts as

input four commonly used structural descriptors of amino acid

substitution: change in volume, change in hydrophobicity,

change in secondary structure propensity, and location (i.e., sol-

vent exposure) (Figure S1). SimpleMachine would not be ex-

pected to achieve predictive power comparable with the other

machine-learning tools used herein which include between 30

and 180 inputs and use complex architectures (Table S1).

Notably, however, SimpleMachine appears to perform better

than or equal to 15, 12, or 17 of the 21 tools tested when ranked

based on r, accuracy, or error, respectively (Figure 4). When

evaluated instead using rank-order coefficient and MCC, Sim-

pleMachine’s deficiencies are revealed, as are the deficiencies

of other tools (Figure 3A).

Making Multiple Mutations Increases Stabilization
Success
In light of the finding that computational tools identify stabilizing

point mutations with a relatively low success rate of �20% (Fig-

ure 1; Table S2), it is counter-intuitive that similar success rates

have been reported for de novo design and that the resulting pro-

teins are often extremely stable (Koga et al., 2012; Parmeggiani

et al., 2015). To understand this, we use the simplifying assump-

tion that each point mutation is independent and model the ex-

pected experimental stabilization resulting from multiple muta-

tions (from the pool of those predicted to stabilize, Figure 1A).

The model reveals that the greater the number of mutations,

the better the odds are of reaching a given stabilization goal (Fig-

ures 5A and 5B). Although themulti-mutants—like the single mu-

tants that constitute them—are still most likely to have no change

in stability, the distribution of changes is broader (Figure 5A),

increasing the odds of achieving impressively high stability.

Although mutations made during whole-scale redesign or de

novo design are unlikely to be independent, the success rates

and typical total stability predicted by our model are in reason-

able agreement with the experimental data (Koga et al., 2012;

Parmeggiani et al., 2015; Dantas et al., 2003). These results offer

some explanation for the remarkable successes of de novo

design given the difficulty of accurately predicting even single-

point mutations and suggest making multiple mutations is a use-

ful strategy for achieving stabilization targets.

Another key result of the above model is that even relatively

small improvements in stability prediction accuracy will produce

markedly higher success rates when making multiple mutations.
724 Structure 28, 717–726, June 2, 2020
Consider, for example, a 20-position multi-mutant; an improve-

ment in the mean experimental effect of mutations predicted to

stabilize from 0.0 kcal/mol (the current value for most tools,

see Figure 1A) to +0.2 kcal/mol—a modest improvement—

greatly increases the chances of gaining 3 kcal/mol of stability

(from �33% to �60%) (Figures 5C and 5D). To put this in

context, we note that, for a protein of 100 amino acids, with a

moderatemelting temperature of 40�C, an increase in thermody-

namic stability of 3 kcal/mol corresponds roughly to an increase

in melting temperature of 20�C (Rees and Robertson, 2001).

Such a gain in stability would be extremely valuable for industrial

applications, as it translates to much longer enzyme lifetimes at

higher reaction temperatures used to increase activity (Bommar-

ius and Paye, 2013).

Conclusions
Reliable computational tools promise to be invaluable in the

development of proteins with a wide range of impactful applica-

tions (Bornscheuer et al., 2012; Huang et al., 2016; Truppo, 2017;

Sheldon andWoodley, 2018), shed light on the roles ofmutations

resulting from both directed and natural evolution, and help us

better understand the molecular mechanisms of disease (Frey

et al., 2010; Stefl et al., 2013; Stein et al., 2019). Our analyses

identify important shortcomings in the computational protein

stability prediction tools currently available: (1) the tools effec-

tively identify strongly destabilizing mutations, but their perfor-

mance is substantially lower for stabilizing mutations; (2) muta-

tions predicted to stabilize actually produce a distribution of

stability changes that is near neutral on average; and (3) stabiliz-

ing mutations may increase the surface hydrophobicity of pro-

teins, consequently decreasing solubility. Our results suggest

both strategies for the use of currently available stability predic-

tion tools and ways in which they may be improved.

We find that making multiple concurrent mutations can greatly

increase the odds, relative to single mutations, of achieving a

given stabilization target. The positive impact of this strategy

will be amplified as stability prediction tools improve, i.e., when

mutations predicted to stabilize are better than neutral, on

average. Using balanced experimental datasets (with suitable

representation of stabilizing and destabilizing mutations) for

training and parameterization, using molecular dynamics-based

methods that do not rely so heavily on experimental data, and

incorporating evolutionary preferences, are auspicious avenues

for future stability prediction tool development, guided by the

robust metrics we have suggested (r, MCC).
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EGAD Pokala and Handel (2005) Source code from author
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NeEMO Giollo et al. (2014) http://protein.bio.unipd.it/neemo/

ENCoM Frappier and Najmanovich (2014) https://github.com/NRGlab/ENCoM
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CC/PBSA Benedix et al. (2009) Webserver no longer available, data used was from publication

LIE Wickstrom et al. (2012) No Webserver or code available, data used was from publication

SCWRL4 Krivov et al. (2009) http://dunbrack.fccc.edu/SCWRL3.php/

VMD http://www.ks.uiuc.edu/Research/vmd/

DSSP Kabsch and Sander (1983) https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.html

PsiPred Jones (1999) https://github.com/psipred/psipred

pBLAST Altschul et al. (1990) https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=

BlastDocs&DOC_TYPE=Download

Clustal Omega Sievers et al. (2011) https://www.ebi.ac.uk/Tools/msa/clustalo/
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Other
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Data and Code Availability
The published article includes all datasets generated or analyzed during this study.

METHOD DETAILS

Dataset Construction and Curation
For testing tools against point mutations with experimentally determined stability we used a previously curated database of point

mutations (Table S1) (Broom et al., 2017). Briefly, unique point mutations with measured DDG values from the Protherm database

(Bava et al., 2004) where a crystal structure of the wild-type was available, and the experimental pH was between 5 and 9, were

selected. From these, only those where the DDG value was determined at, or could be extrapolated to, a temperature between

20 and 30�C, were kept. Finally, proteins with cofactors or prosthetic groups were removed (unless the experimental conditions spe-

cifically were done in the apo state). Manual inspection of the primary citations for all remaining 605 point mutations was performed in

order to correct cases where the DDG value was entered into the Protherm database with the incorrect sign (a known problem (Bava

et al., 2004)) or where the value from the primary citation had been entered with incorrect units (kJ/mol versus kcal/mol), which we

found to happen in several cases.

Experimental Application of Stability Prediction Tools
Construction of a 270 point mutant dataset was made by exhaustively examining forward-citations (using Web of Science, www.

webofknowledge.com) for each of the 20 published tools, and recording all caseswhere a stability prediction tool was used to recom-

mend a point mutation that was later tested experimentally (see Table S2).

Stability Prediction by Individual Tools
The following individual tools were used by supplying the wild-type (WT) PDB structure and desired point mutation (experimental

temperature and pH where applicable): BioLuminate (stand-alone application, version 2.1) (www.schrodinger.com/products/

bioluminate), CUPSAT (Parthiban et al., 2006) (webserver: cupsat.tu-bs.de/), DUET (Pires et al., 2014a) (webserver: biosig.

unimelb.edu.au/duet/stability), EGAD (Pokala and Handel, 2005) (stand-alone application), ENCoM (Frappier and Najmanovich,

2014) (stand-alone application), Eris (Yin et al., 2007) (webserver: redshift.med.unc.edu/eris/login.php), FoldX (Schymkowitz et al.,

2005) (stand-alone application, version 3.0), Hunter (Cohen et al., 2009) (stand-alone application), IMutant3 (Capriotti et al., 2008)

(stand-alone application, version 3.0.7), IMutant2 (Capriotti et al., 2005) (stand-alone application), MAESTRO (Laimer et al., 2015)

(stand-alone application), mCSM (Pires et al., 2014b) (webserver: biosig.unimelb.edu.au/mcsm/), NeEMO (Giollo et al., 2014) (web-

server: protein.bio.unipd.it/neemo/), MultiMutate (Deutsch and Krishnamoorthy, 2007) (stand-alone application), MuPro (Cheng

et al., 2006) (stand-alone application, version 1.1), PoPMuSiC (Dehouck et al., 2009) (webserver, version 2.1: dezyme.com/), SDM

(Worth et al., 2011) (webserver: mordred.bioc.cam.ac.uk/sdm/sdm.php).

In the case of DFire, WT and mutant structures were generated using SCWRL4 (Krivov et al., 2009) followed by energy evaluation

using DFIRE2 (Yang and Zhou, 2008) (stand-alone application, version 1.1) with the DDG computed by taking the difference between

the mutant and WT energy evaluations (DGMutant - DGWT). In the case of CC/PBSA the webserver is no longer available, and a 581

point mutation dataset was constructed from reported predictions (Benedix et al., 2009) after filtering based on the criteria used in our

primary dataset. In the case of LIE, the computational procedure has not been fully automated and a 822 point mutation dataset was

constructed from reported predictions (see method 2 in Wickstrom et al. (Wickstrom et al., 2012)) after filtering based on the criteria

used in our primary dataset. Despite using somewhat different datasets, the dataset sizes and composition are similar in all cases

suggesting the results are comparable to the other tools used herein. As both of these tools represent the use of physical forcefields

(e.g. molecular mechanics forcefields) which are rare in current stability prediction, they represent important points of comparison.

Training SimpleMachine
Simple machine was trained on a dataset of 1058 point mutations that were not part of our 605 point mutation test set, yet had been

used in the training of several other tools (Broom et al., 2017). The machine learning architecture was a feed-forward neural network

with 4 input neurons, 2 hidden layer neurons, and a single output. The 4 inputs, whichwere computed for each point mutation were: 1)

change in amino acid polarity, measured by DDG of solvation between the mutant and wild-type (WT) sidechains as determined by

data reported by Wimley et al. (Wimley et al., 1996), 2) change in amino acid size between the mutant and WT, measured in Å3 as

determined by data reported by Darby and Creighton (Darby and Creighton, 1993), 3) solvent accessible surface area of the WT res-

idue, measured in Å2 (determined by VMD, http://www.ks.uiuc.edu/Research/vmd/), and 4) change in secondary structure propen-

sity relative to the native structure. The change in secondary structure propensity relative to the native structure was determined by

estimating the secondary structure propensity of the wild-type and mutant residue using PsiPred (Jones, 1999) (without the use of

BLAST so as to not bias the estimate with known sequence information) and compared to the native secondary structure in the WT

PDB, determined usingDSSP (Kabsch and Sander, 1983). If both themutated andWT residuewere predicted to adopt the secondary

structure present in the native PDB, the score was calculated as: PropensityMutant - PropensityWT, thus a positive score when the

mutation increases the propensity of the existing secondary structure, and negative otherwise. If the mutated residue was predicted

to adopt the native secondary structure but the WT was not, the score was calculated as: PropensityMutant + PropensityWT, thus a

positive score. If WT was predicted to adopt the native secondary structure but the mutated residue was not, the score was
e2 Structure 28, 717–726.e1–e3, June 2, 2020
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calculated as: -(PropensityMutant + PropensityWT), thus a negative score. Finally, if both themutated andWT residuewere predicted to

adopt secondary structures other than the native secondary structure, the score was 0. All inputs were normalized to be between

0 and 1 based on the full range of data available in the training set. The network was trained to minimize the average unsigned error

between predictions and the experimentally determined DDG values for the 1058 point mutation training set. The MLPRegressor

class of the neural_network module from scikit-learn (www.scikit-learn.org) was used with the default parameters except that

the minimization solver used was stochastic gradient descent, and the regularization parameter a was set to 0.1.

Prediction of Sequence Preference from Consensus
In order to predict theDDG of amutation based on sequence information (e.g. a consensusDDG), theWT sequencewas submitted to

pBLAST (Altschul et al., 1990) and any sequences with an E-value < 0.001: were kept (up to a maximum of 10,000 sequences) and a

multiple-sequence alignment (MSA) generated using Clustal Omega (Sievers et al., 2011). The expected DDG was computed as:

�RT 3 lnðfrequencyaminoacid = 0:05Þ (Equation 1)

where R is 0.001987 kcal mol-1 K-1 and T was 298.15 K. Here, no removal of highly redundant sequences was performed, nor were

background probabilities corrected for the codon usage or overall amino acid frequencies, nor were MSAs manually curated. Any of

the previously mentioned modifications may improve the quality of the MSA and thus reliability of the DDG predictions (Magliery,

2015), but here we were primarily interested in whether consensus prediction could be useful in counter-balancing the stability pre-

diction tools’ tendency to predict hydrophobic surface mutations as stabilizing.

Modelling Expected Stabilities and Success Rates for Single and Multiple Mutations
The data shown in Figure 5 are based on assuming a hypothetical ’’average’’ stability prediction tool is used for engineering stabilizing

point or multiple mutants. To model the behaviour of such a tool we looked at the experimentally determined DDG values for muta-

tions predicted to stabilize by the existing tools (Figure 1B, grey distributions) and chose a typical representative. The effect of any

mutations in our model were then chosen at random for a normal distribution with mean and standard deviation matching that of the

typical tool. In particular, for the typical tool, where mutations predicted to stabilize have a mean DDG of 0.0 kcal/mol and standard

deviation of 1.4 kcal/mol, a point mutation has an�2% likelihood of increasing stability by 3 kcal/mol, whereas a multi-mutant with 5

or 20 positions changed has an �15% or �33% chance of this stability increase, respectively (Figures 5A and 5B). When modeling

the effect of improving stability prediction tools, the standard deviation was left unchanged but the mean was altered and mutations

again drawn at random from a normal distribution. Here for instance, increasing the mean experimental DDG for mutations predicted

to stabilize from 0.0 kcal/mol to 0.1 kcal/mol changes the success rate of increasing stability by 10 kcal/mol when making 20 muta-

tions from �4% to �10% (Figures 5C and 5D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance Evaluation Metrics
Pearson’sR, Spearman’s r, and the Standard Error were computed as defined in standard texts (Myers et al., 2010). For computation

of Accuracy, any mutation with an experimental DDG value between -0.3 and 0.3 kcal/mol was ignored. Overall Accuracy was calcu-

lated as the number of predictions that successfully classified the mutation as stabilizing versus destabilizing divided by the total

number of predictions. In the case of Accuracy for highly and moderately destabilizing mutations and moderately stabilizing muta-

tions, only those mutations with experimental DDG values with the ranges: -6 to -3 (exclusive), -3 (inclusive) to -0.3, and 0.3 to

3.0 kcal/mol were used, respectively. Calculation of MCC was also as standard in the literature (Matthews, 1975), but as with Accu-

racy anymutation with an experimentalDDG value between -0.3 and 0.3 kcal/mol was not included. Mutations withDDG values in the

range -0.3 to 0.3 kcal/mol were ignored in the above classification metrics because typical experimental error in determining DDG is

�0.3 kcal/mol (Pokala and Handel, 2005). For calculation of hydrophobicity, the DDG of solvation was calculated as the difference in

DG of solvation between theWT andmutant sidechain (Wimley et al., 1996). In all measurement cases the reported values and plotted

error-bars were determined by bootstrapping (Efron and Tibshirani, 1993) the data (re-sampling with replacement) 1000 times and

computing the average and standard deviations.
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