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Unseen or out-of-domain data can seriously degrade the performance of a neural network model, 
indicating the model’s failure to generalize to unseen data. Neural net pruning can not only help to 
reduce a model’s size but can improve the model’s generalization capacity as well. Pruning approaches 
look for low-salient neurons that are less contributive to a model’s decision and hence can be removed 
from the model. This work investigates if pruning approaches are successful in detecting neurons that are 
either high-salient (mostly active or hyper) or low-salient (barely active or hypo), and whether removal 
of such neurons can help to improve the model’s generalization capacity. Traditional blind adaptation 
techniques update either the whole or a subset of layers, but have never explored selectively updating 
individual neurons across one or more layers. Focusing on the fully connected layers of a convolutional 
neural network (CNN), this work shows that it may be possible to selectively adapt certain neurons 
(consisting of the hyper and the hypo neurons) first, followed by a full-network fine tuning. Using 
the task of automatic speech recognition, this work demonstrates how the removal of hyper and hypo 
neurons from a model can improve the model’s performance on out-of-domain speech data and how 
selective neuron adaptation can ensure improved performance when compared to traditional blind model 
adaptation.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Deep Neural Networks (DNNs) have become the ubiquitous ma-
chine learning technique, demonstrating significant performance 
gains over its peers in almost all applications where they have 
been tested [1–3], including automatic speech recognition (ASR) 
[4,5]. DNNs are both data hungry and data sensitive [6].

Neural nets are usually overparameterized with significant re-
dundancy in their number of neurons and the transforms that they 
learn, given training data [7]. A consequence of information redun-
dancy in neural nets is data over-fitting, where a model ends up 
learning fine grained structures present within the training data 
that may not be relevant for the classification task and may not be 
present in unseen data. Such over-fitting results in models failing 
to generalize well to unseen data conditions, as a consequence sig-
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nificant performance degradation is observed when such models 
are deployed to unknown datasets as compared to seen or in-
domain datasets. To prevent models from over-fitting, well known 
techniques such as regularization, dropout [8], pruning [9], data 
augmentation [10] etc., are deployed. Pruning strategies try to min-
imize data over-fitting by removing less salient neurons from a 
model while retaining the model’s performance on a given data-
set. The goal of network pruning is to find neurons in a model 
whose removal will not degrade the model’s performance, while 
improving its generalization capacity.

Using traditional pruning algorithms, this work investigates the 
role of neurons that are deemed as less-salient versus the ones 
that are high-salient. The work investigates the following:
(1) Is the traditional approach of pruning out “less salient” neurons the 
best strategy for performing neural network pruning?
(2) What are the effects of network pruning in each individual layer of a 
fully connected network?
(3) Is there any benefit in adapting only the “to-be-pruned” neurons at 
first during unsupervised model adaptation, followed by adapting the 
whole network?

The general observation from this study is that there are three 
main groups of neurons: (1) less-salient, or almost inactive or 
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‘hypo’ active neurons; (2) high-salient, or, very active or, ‘hyper’ ac-
tive neurons, and (3) medium-salient neurons, or relevant neurons, 
whose removal results in catastrophic degradation in a network’s 
performance.

Observations in this paper are based on a speech recognition 
task, with both ‘in-domain’ or ‘seen’ data and ‘out-of-domain’ or 
‘unseen’ data as evaluation tasks. The in-domain evaluation data 
consists of speech recorded in close microphone conditions with 
varying microphone channels and background degradations. The 
out-of-domain evaluation data consists of speech recorded using 
distant microphones, recorded in varying room conditions with dif-
ferent reverberation times and noisy background conditions.

We investigate a new mutual-information based neural net 
pruning approach, capable of detecting salient neurons leveraging 
temporal properties of a speech signal and demonstrate its effec-
tiveness in a speech recognition task. Please note that proposing a 
new pruning approach is not the aim of this paper; instead, under-
standing which neurons can be pruned and whether there is any 
benefit in selectively updating such neurons during unsupervised 
model adaptation is the main goal of this work.

We derive our conclusions based on a state-of-the-art convo-
lutional neural network (CNN) acoustic model [11], focusing on 
network pruning only for the fully connected layers. Unlike prior 
work, we investigate layer-wise pruning where we evaluate the im-
pact of pruning on each layer individually.

We investigate if the neurons that are supposed to be pruned, 
can be used to selectively adapt the neural network model to out-
of-domain data. This investigation stems from the fact that certain 
neurons can be pruned as they have been deemed as “not use-
ful”, while the others are retained as they are useful. Rationally, 
it makes sense to retrain the ‘not useful’ neurons, while retaining 
the ‘useful’ neurons as-is. Our observations show that such selec-
tive model adaptation can result in well regularized models that 
can adapt to out-of-domain data while retaining their performance 
on in-domain data.

2. Data

The acoustic models in this work were trained using the multi-
conditioned, noise and channel degraded training data from the 
16 kHz Aurora-4 [12] noisy WSJ0 corpus. Aurora-4 data contains 
six additive noise types with channel-matched and mismatched 
conditions. It was created from the standard 5K WSJ0 database, 
containing 15 hours of training data and 0.6 hours (330 utter-
ances) of testing data. The test data is replicated into 14 test 
sets (0.6 hours each) consisting of two different channel condi-
tions and six different added noises (car; babble; restaurant; street; 
airport; and train station) in addition to the clean condition. The 
signal-to-noise ratio (SNR) for the test sets varied between 0 and 
15 dB. The evaluation set consists of 5K words. The Aurora-4 
test set is used as the in-domain evaluation set in our experi-
ments.

In this work, we treated reverberation as the out-of-domain 
data condition (not included during training). For adaptation, op-
timization, and evaluation purposes, we have used the single-
microphone subset of the training, dev, and the eval sets dis-
tributed with the REVERB 2014 (denoted as REVERB14 in this 
paper) [13] challenge, respectively. The adaptation set consists of 
the clean WSJCAM0 [14] data, which was convolved with differ-
ent room impulse responses (reverberation times from 0.1 to 0.8 
sec) and then corrupted with background noise. The performance 
was evaluated on the dev and test subsets, which contain both 
real and simulated reverberation conditions. The real data is bor-
rowed from the MC-WSJ-AV corpus [15], which consists of utter-
ances recorded in a noisy and reverberant room. The simulated 
and the real eval sets contained 1088 and 372 utterances, respec-
tively, split equally between far and near microphone conditions. 
Note that none of our experiments used any speaker-level infor-
mation.

3. Acoustic model

Earlier [16] we found that CNN models perform better than 
the DNNs for Aurora-4 ASR task, hence CNN acoustic models 
were used in this work. The training alignments consisted of 3125 
context-dependent (CD) states, which were generated from a base-
line DNN acoustic model. The input acoustic features were formed 
by using a context of 17 frames (8 frames on either side of the cur-
rent frame). We observed that time-frequency convolution (using 
TFCNN [11,17–21]) performed better than 1-D frequency convolu-
tion, and hence we have focused on the TFCNN acoustic models 
for our experiments presented in this paper. The TFCNN architec-
ture is same as in [11,22], where two parallel convolutional layers 
are used at the input, one performing convolution across time, and 
the other across frequency on the input filterbank features. The 
TFCNNs had 75 filters to perform time convolution and 200 filters 
to perform frequency convolution. For time and frequency convo-
lution, eight bands were used, followed by a max-pooling over 
three samples after frequency convolution, and five samples for 
time convolution. The feature maps after both the convolution op-
erations were concatenated and then fed to a fully connected DNN 
having 2048 nodes and four hidden layers. The TFCNN network 
was trained using four initial iterations with a constant learning 
rate of 0.008, followed by learning rate halving based on cross-
validation error. Training stopped when no further reduction in 
cross-validation error was noted or when it started to increase. 
Backpropagation was performed by using stochastic gradient de-
scent with a mini-batch size of 256 examples. Note that each 
model has been trained three times to interpret the uncertainty in 
the model performance. In our experiments we provide the mean 
WER from the multiple iterations and their standard deviations are 
reported within parenthesis in tables and as error bars in figures. 
Note that the baseline acoustic model was trained from a random 
initial seed, and that baseline model has been used as the seed 
model for all our experiments.

We used gammatone filter-bank energies (GFBs) as the acoustic 
feature for our experiments. GFBs were generated using a bank of 
40 time-domain gammatone filters, using an analysis window of 
26 millisecond and a frame rate of 10 millisecond. The gammatone 
subband powers were compressed using 15th root.

4. Neural network pruning

One main goal of this work is to understand how layer-wise 
pruning affects performance on out-of-domain data and validate 
that across multiple pruning strategies. We explored three pruning 
strategies and they are briefly described below:
(1) Magnitude based pruning (MBP): assumes that small weights are 
less important [23–25]. Two factors are typically used for deter-
mining redundant neurons: consuming energy and weight power 
[20]. In this work, we ascertained a neuron’s saliency by using its 
weight’s power [24].
(2) Optimal brain surgeon (OBS) is a sensitivity-based approach that 
attempts to find the contribution of each weight or node in the 
network and then prunes the weight or node that have the least 
effect on the objective function. One of the celebrated sensitivity-
based pruning algorithms is Optimal Brain Damage (OBD) [26], 
that approximates the measure of ‘saliency’ of a weight by estimat-
ing the second derivative of the network output error with respect 
to that weight. OBS [27] relaxed some of the assumptions in OBD. 
In this work we have used OBS to ascertain neural saliency of each 
layer.
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(3) Mutual independence (MI) based pruning leverage relationships 
between input and output of a neuron to predict the neuron’s 
saliency. One such approach is mutual information based [28,29], 
which uses singular value decomposition to analyze the hidden 
unit activation covariance matrix, where the rank of the covariance 
matrix determines the optimal number of hidden units.

In this work we investigated a cross-correlation based MI mea-
sure to estimate the input-output relationship of a neuron to de-
termine the saliency of that neuron, given an input feature set. The 
cross-correlation analysis can be performed using a subset of the 
training data after neural network training.

Let an,l be the nth neuron of the lth layer, whose inputs are:

[x1,l−1[t], x2,l−1[t], ...xp,l−1[t], ...xN,l−1[t]]
where xp,l−1[t] is the activation from the pth neuron of the pre-
ceding l − 1th layer at time instant t . Let the activation from the 
an,l at t be xn,l[t], assuming that l − 1th layer had N neurons, the 
mean absolute cumulative cross-correlation between the input and 
the output activations for the neuron an,l over a time window q at 
time t will be:

r̂n,l[t] = 1/N
N∑

p=1

∣∣∣∣∣∣

q/2∑

k=−(q/2−1)

xn,l[t]xp,l−1[tk]
∣∣∣∣∣∣

(1)

Saliency of neuron an,l of layer l is determined by the value of 
ĥn,l[t]; higher the value the more salient the neuron is and vice 
versa. Note that, this measure is particularly suitable for quasi-
periodic pseudo-stationary signals like speech, that retain a certain 
degree of temporal correlation. The measure in (1) indicates that 
if the inputs to the neuron n is not correlated to the output from 
the neuron n, then neuron n is less salient, in the sense that is in 
not conveying information to the succeeding layers. r̂(n,l)[t] is used 
to estimate saliency in the MI based pruning investigated in this 
paper.

Note that while pruning, we rank-sorted the neurons based on 
their saliency, where the top salient neurons are selected as high-
salient or hyper-active neurons and the low-salient neurons are 
selected as low-salient or hypo-active neurons.

5. Neural network pruning

We investigated layer-wise pruning, focusing only on the fully 
connected hidden layers, by pruning 2% to 12% in steps of 2%. We 
investigate layer-wise pruning in three possible ways:
(a) pruning neurons with low saliency,
(b) pruning neurons with high saliency,
(c) pruning neurons with medium saliency (i.e., the neurons that 
are in between (a) and (b).

Note that during layer-wise pruning a 2% pruning means prun-
ing 2% of the neurons in that layer, for example if the number of 
neurons in that layer is 2048, a 2% pruning of that layer would 
indicate removing 41 neurons from that layer.

5.1. Pruning of low salient (hypo) neurons

These are the neurons that are least contributive to informa-
tion flow within the neural net and have been the candidates 
for pruning in traditional approaches. We investigated MBP, OBS 
and MI based pruning of neurons in each fully connected layers 
of the baseline TFCNN model and analyzed their role on both in-
domain and out-of-domain data. The word error rates (WERs) on 
the Aurora-4 evaluation set, real and simulated dev sets of RE-
VERB14 data is given in Table 1, when 2% pruning is performed 
only on the 1st layer of the fully connected network. Fig. 1 shows 
the outcome of pruning on the 1st hidden layer, demonstrating 
Table 1
WERs (in %) from the baseline (not pruned) model and the 2% pruned (fully con-
nected layer 1 only) acoustic model when evaluated on the Aurora-4 and REVERB14 
dev (simulated and real condition) set.

Pruning Layer Pruning % Aurora-4 REVERB14

Simulated Real

None – 0 9.1 39.3 42.4
MBP 1 2 9.2 (0.0) 38.5 (0.3) 41.0 (0.4)
OBS 1 2 9.2 (0.1) 38.2 (0.1) 40.1 (0.7)
MI 1 2 9.2 (0.1) 36.6 (0.3) 38.9 (0.2)

that it did not significantly impact the model’s performance on in-
domain data, with up to 6% relative deterioration at 10% pruning 
level; where MBP showed the least deterioration out of the three 
pruning approaches investigated.

Fig. 2 shows the effect of 1st hidden layer pruning on out-of-
domain data. Interestingly, Fig. 2 shows that pruning resulted in 
performance improvement for out-of-domain data (compared to 
the unpruned baseline model), with maximum relative reduction 
of 9.6% in WER obtained from MI at 8% pruning level.

Note that Figs. 1 and 2 correspond to pruning only the 1st 
fully-connected hidden layer. Figs. 3 and 4 show the effect on the 
performance after pruning the low-salient neurons from the 2nd
and the 3rd fully-connected hidden layer. The performance on in-
domain data was found to be similar (as shown in Fig. 1) for the 
first two fully connected layers, for up to 12% pruning. The 3rd
hidden layer (the prefinal layer) was found to be quite sensitive 
to pruning (as observed from Fig. 4), where pruning beyond 6% 
neurons resulted in more than 10% relative increased in WER for 
in-domain data.

Several interesting observations can be made from Figs. 2, 3 and 
4. While MI always performed the best from pruning the 1st and 
3rd hidden layers, OBS performed the best for pruning the 2nd
hidden layer. Note that the 3rd layer was the pre-final layer, hence 
pruning beyond 8% was found to adversely affect the output layer 
decisions.

Note that MI uses temporal correlations, and as speech is a 
quasi-stationary signal, the acoustic features across time have tem-
poral dependencies. The output targets (in this case the senone 
labels) also have temporal dependencies. The above fact may jus-
tify why the performance from MI-based pruning was better across 
the different layers of the network, compared to the other two ap-
proaches. From the above figures the following observations can be 
made:
(I) Pruning on first and second hidden layer tend to increase the 
generalization capacity of the network, which may indicate that 
there is more redundancy in the hidden layers than in the pre-
final layer.
(II) The pre-final layer seems to be quite sensitive to pruning, 
where pruning beyond 6% may significantly reduce the perfor-
mance of the model. Interestingly, for this case MI-based pruning 
did not show any performance degradation.
(III) Removal of low-salient (hypo-neurons) from the network re-
sults in improved performance on out-of-domain data-set, while 
maintaining the performance on in-domain data. Indicating that 
the model’s generalization capacity can be improved by pruning of 
the hypo neurons.

5.2. Pruning of hi-salient (hyper) neurons

We investigated the role of the high salient (or hyper active) 
neurons, by layer-wise pruning of such neurons and observing 
model performance for both in-domain and out-of-domain data. 
We explored all the three pruning techniques in a layer-wise fash-
ion like the steps in 5.2.
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Fig. 1. WER versus low-salient (hypo-) neuron pruning levels in fully-connected layer-1 for in-domain data (Aurora-4). Red dotted line shows the same for the un-pruned 
baseline model. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. WER versus low-salient (hypo) neuron pruning levels in fully-connected layer-1 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for 
the un-pruned baseline model.
The WERs on the Aurora-4 evaluation set, and the real dev set 
of REVERB14 data are shown in Figs. 5 to 8, when pruning is per-
formed from 2% to 12% in steps of 2% for the 1st, 2nd and the 3rd
fully connected hidden layers.

Figs. 5 and 6 show that MI is the most sensitive amongst 
the three for hyper-neuron pruning. The model performance re-
duces for MI after 4% pruning of hyper-neuron. Whereas for 
OBS and MBP, up to 10% pruning of hyper-neuron was possible, 
which gave better performance on the out-of-domain data, where 
WER reduction as high as 6.8% relative to the baseline was ob-
served.
Fig. 7 shows that for 2nd hidden layer, all three pruning tech-
niques resulted in WER reductions, however Fig. 8 shows that the 
same pruning strategies on the pre-final layer resulted in signifi-
cant deterioration of performance beyond a pruning threshold of 
4% hyper neurons.

From Figs. 5 to 8 the following observations can be made:
(I) Pruning of high-salient or hyper neurons can retain baseline 
performance for in-domain data and can improve performance for 
out-of-domain data. Hyper neurons are the ones that are more 
likely to fire given an input feature, hence they may not be con-
tributing to the discriminative power of the network, and thus 
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Fig. 3. WER versus low-salient (hypo) neuron pruning levels in fully-connected layer-2 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for 
the un-pruned baseline model.

Fig. 4. WER versus low-salient (hypo) neuron pruning levels in fully-connected layer-3 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for 
the un-pruned baseline model.
can be removed without a significant loss in performance. We ob-
served that the removal of up to 4% of the top hyper neurons 
can retain in-domain performance while improving the general-
ization capacity of the network to out-of-domain data. To the 
best of our knowledge, this is the first claim where hyper ac-
tive neuron pruning was explored and was found to be use-
ful.
(II) Salient neurons defined by MI based approach are found to 
be more essential to the neural net’s performance, than from the 
other two techniques. Removal of MI-based salient neurons was 
found to result in significant deterioration of the network’s per-
formance on in-domain data, as compared to OBS and MBP, as 
observed from Fig. 5.
(III) Removal of salient-neurons from the pre-final layer was found 
to have deleterious effect, where pruning beyond 4% of top salient 
features, resulted in performance degradation across all three 
pruning methods for both in-domain and out-of-domain data.

5.3. Pruning medium-salient neurons

Finally, we explored pruning of the medium salient neurons 
that are neither the lowest 12% salient neurons nor the top 12% 
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Fig. 5. WER versus hyper-neuron pruning levels in fully-connected layer-1 for in-domain data (Aurora-4). Red dotted line shows the same for the un-pruned baseline model.

Fig. 6. WER versus hyper-neuron pruning levels in fully-connected layer-1 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for the un-pruned 
baseline model.
salient neurons. Exploring layer-wise pruning of mid-salient neu-
rons resulted in catastrophic performance failure (with WER reach-
ing as high as 100%) for both in-domain and out-of-domain data, 
indicating that mid-salient neurons are crucial for a neural net’s 
performance.

While pruning the mid-salient neurons we investigated pruning 
of the neurons in steps of 10%, from 5% pruning to pruning of all 
mid-salient neurons; and we observed the baseline WER to range 
from 16.5% to 100%. The results indicated that with 5% pruning 
of mid-salient neurons the baseline performance deteriorates by 
more than 80%.
5.4. Pruning of both hyper- and hypo- neurons

Given the observations in sections 5.1, 5.2 and 5.3, we inves-
tigated layer-wise pruning of both hyper- and hypo- neurons and 
pruning across multiple layers. Based on findings from sections 5.1
and 5.2, we investigated 8% pruning of the hypo-neurons and 4% 
pruning of the hyper-neurons on layer 1 (that resulted in an overall 
pruning of 4% across all the three fully connected layers), and the 
results are shown in Table 2. Table 2, shows that pruning both the 
hyper and hypo neurons in fully connected layer 1, resulted in re-
taining in-domain performance, while improving the performance 
on out-of-domain data-set, indicating that such pruning strategy 
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Fig. 7. WER versus hyper-neuron pruning levels in fully-connected layer-2 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for the un-pruned 
baseline model.

Fig. 8. WER versus hyper-neuron pruning levels in fully-connected layer-3 for out-of-domain data (REVERB14-real dev set). Red dotted line shows the same for the un-pruned 
baseline model.
helped to improve the model’s generalization capacity to unseen 
data conditions. Table 2 shows that a 4% pruning of hyper and 
hypo neurons (based on MI) resulted in WER reduction relative to 
the baseline of 8.7% and 7.5% for simulated and real Reverb14 dev 
data sets respectively.

Next, we investigated the pruning of hyper- and hypo- neurons 
across multiple layers. We investigated (a) pruning the three fully 
connected hidden layers and (b) pruning the first two fully con-
nected layers only (ignoring the prefinal layer, as pruning of that 
layer was not found to be useful from Figs. 4 and 8). Table 3 shows 
the results from pruning across multiple layers. Note that for the 
1st two fully connected layers 8% and 4% hypo and hyper neu-
rons were pruned respectively, and for the pre-final layer 2% hyper 
and 2% hypo neurons were pruned respectively. Table 3 shows that 
pruning across all the three layers had more deleterious effect than 
pruning neurons only from the first two hidden layers, indicating 
that existing blind pruning techniques may be missing out on po-
tential benefits of selective layer-wise pruning. Note that overall 
8% pruning was performed for the experimental results shown in 
Table 3 compared to 4% overall pruning for the results shown in 
Table 2, which justifies the slightly worse out-of-domain perfor-
mance in Table 3.
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Table 2
WERs from the baseline (not pruned) model and the 8% hypo-neuron and 4% hyper-
neuron pruned (deep layer 1 only ≈ 4% pruning across 3 fully-connected layers) 
acoustic model when evaluated on the Aurora-4 and REVERB14 dev-set.

Pruning Layer Pruning % Aurora-4 REVERB14

Simulated Real

None – 0 9.1 39.3 42.4
MBP 1 4 9.2 (0.1) 38.1 (0.3) 41.4 (0.9)
OBS 1 4 9.6 (0.3) 37.5 (0.5) 40.4 (0.8)
MI 1 4 9.3 (0.1) 35.9 (0.2) 39.2 (0.5)

Table 3
WERs from the baseline (not pruned) model and multi-layer pruned (pruning per-
centage computed over the 3 hidden layers) acoustic model when evaluated on the 
Aurora-4 and REVERB 2014 dev-set. Percent pruning computed for the entire net-
work.

Pruning Layer Pruning % Aurora-4 REVERB14

Simulated Real

None – 0 9.1 39.3 42.4
MBP 1 8 9.1 (0.2) 39.1 (0.1) 43.1 (0.7)
OBS 1 8 9.7 (0.3) 39.3 (0.7) 42.1 (0.2)
MI 1 8 9.4 (0.1) 36.9 (0.3) 41.2 (0.4)
MBP 1-2 8 9.7 (0.3) 39.6 (0.3) 43.7 (0.8)
OBS 1-2 8 9.9 (0.5) 37.0 (0.5) 41.7 (0.9)
MI 1-2 8 9.7 (0.3) 36.7 (0.3) 41.0 (0.5)
MBP 1-2-3 9 10.4 (0.2) 41.2 (0.4) 44.2 (0.8)
OBS 1-2-3 9 10.5 (0.4) 39.0 (0.5) 44.3 (0.9)
MI 1-2-3 9 9.9 (0.5) 37.8 (0.3) 42.6 (0.6)

Table 4
WERs from the baseline (not pruned) model and multi-layer pruned (pruning per-
centage computed over the 3 hidden layers) acoustic model when evaluated on the 
REVERB 2014 test-set. Percent pruning computed for the entire network.

Pruning Layer Pruning % REVERB14

Simulated Real

None – 0 37.8 46.9
MBP 1 8 37.2 47.5
OBS 1 8 36.6 46.8
MI 1 8 35.5 46.7
MBP 1-2 8 36.0 44.9
OBS 1-2 8 35.1 43.8
MI 1-2 8 34.0 43.4
MBP 1-2-3 9 37.3 46.9
OBS 1-2-3 9 35.1 44.6
MI 1-2-3 9 34.4 44.2

Table 3 shows that pruning over first two fully-connected hid-
den layers gave much better performance compared to pruning 
across all the fully connected layers or pruning only the first hid-
den layer. A relative reduction in WER (for the MI based pruning) 
was found to be 6.7% and 3.3%, for the simulated and real sets of 
out-of-domain (REVERB14 dev) data-set.

Table 4 presents recognition results from the out-of-domain 
(REVERB14) data-set, where observations are similar to that in Ta-
ble 3. Pruning across the first two fully connected layers were 
found to be more useful than pruning across all three layers or 
the first hidden layer alone. A relative reduction in WER (for the 
MI based pruning) was found to be 10% and 7.5%, for the simulated 
and real sets of out-of-domain (REVERB14 test) data-set.

Following the observations from Tables 3 and 4, we can state 
the following:
(a) Pruning both the hyper and hypo neurons can help to improve 
the generalization capacity of the network.
(b) The best results on out-of-domain data-set was observed from 
pruning the fully connected hidden layers without the pre-final 
layer. The pre-final layer was found to be quite sensitive to pruning 
for the given task of speech recognition.
Table 5
WERs from the baseline (not pruned) model, adapted baseline models: Models A, 
B, C and D (as outlined above), when evaluated on the Aurora-4 and REVERB14 dev 
set.

Models Layer update Aurora-4 REVERB14

Simulated Real

Baseline 0 9.1 39.3 42.4
Model-A All 15.3 24.8 33.2
Model-B 1-2 12.6 23.9 32.8
Model-C 1-2 9.5 22.2 32.2
Model-D All 9.5 22.0 31.5

Network pruning relies on the fact that a subset of neurons 
may not have learned reliable information, or, may have learned 
redundant information, hence preventing the model to generalize 
well to unseen data conditions. As a consequence, removing such 
redundant neurons from the network may not cause a significant 
loss in performance. Table 3 shows that an 8% pruning of hyper 
and hypo neurons across the first two fully connected hidden lay-
ers resulted in a relative WER increase of 6.5% compared to the 
unpruned baseline model.

Instead of pruning the redundant neurons, they can be updated 
during unsupervised model adaptation. Typically, during model 
adaptation, all neurons in one specific layer, or a subset of lay-
ers or the whole model are blindly updated, given an adaptation 
set; where over-fitting is prevented using a suitable regularization 
parameter. In this work we investigate if there is any benefit in 
performing initial adaptation of only the redundant neurons (that 
are supposed to be pruned) and then fine tuning the whole model. 
Such an unsupervised adaptation technique will focus on learning 
the new patterns from out-of-domain data through updating the 
redundant neurons only.

6. Acoustic model adaptation

For acoustic model adaptation, we have used the REVERB14 
training data-set as the unsupervised adaptation data. The baseline 
TFCNN acoustic model was used to generate labels for the unsu-
pervised adaptation set and those labels were used to retrain the 
network. During adaptation, model parameters were updated with 
an L2 regularization of 0.001 and an initial learning rate of 0.004, 
with the learning rate halving at every step and a maximum epoch 
of 10.

Table 5 shows the results from the:
(a) Baseline model: Unpruned TFCNN acoustic model.
(b) Model A: Baseline model after traditional unsupervised adap-
tation (blind model update), where all parameters of the network 
were updated.
(c) Model B: Baseline model after selective neuron-update based 
unsupervised model adaptation, where only the redundant neu-
rons (neurons that can be pruned) in the network were updated.
(d) Model C: obtained by fine-tuning of Model B, where the adap-
tation set is augmented with part of the original Aurora-4 training 
set (≈ 50%) and all of the model parameters were updated.
(e) Model D: obtained by updating all parameters of the baseline 
model using a mix of the REVERB14 training set and the original 
Aurora-4 training set (≈ 50%).

Evaluation of the above five models were performed on the 
Aurora-4 test set, REVERB-14 real dev and test sets. For unsuper-
vised adaptation, we have used data-selection using the procedure 
outlined in [30]. Table 5 shows that the selective neuron-update 
based unsupervised adaptation (Model B) gave better performance 
than traditional (blind model update) unsupervised adaptation 
(Model A). Both cases of selective and blind model update re-
sulted in reduction in WER for the out-of-domain data (simulated 
and real REVERB-2014 dev sets), however, that came at a cost of 
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Table 6
WERs from the baseline (not pruned) model, adapted baseline models: Models A, B, 
C and D (as outlined above), when evaluated on the REVERB 2014 test set.

Models Layer update REVERB14

Simulated Real

Baseline 0 37.8 46.9
Model-A All 22.9 37.1
Model-B 1-2 22.4 35.9
Model-C 1-2 20.8 35.7
Model-D All 20.6 34.7

increase in WER on in-domain data (Aurora-4), due to the phe-
nomena commonly known as the catastrophic forgetting. Table 5
shows that the blind model adaptation had more pronounced per-
formance degradation on in-domain data, which is 68% relative to 
the baseline, as compared to the selective neuron-update based 
unsupervised adaptation, where performance degradation was 38% 
relative to the baseline. Hence, Model B suffered less from catas-
trophic forgetting than model A, which can be attributed to the 
selective model update. Based on the observation from Tables 3
and 4, the selective unsupervised adaptation was performed only 
on the hyper and hypo neurons of layers 1 and 2, based on the 
decisions from the MI pruning technique.

The deterioration in the performance on the in-domain data is 
expected for the selective neuron-update based model adaptation, 
as only a part of the network gets updated during unsupervised 
adaptation. Such a selective parameter update can result in altering 
some network connections that may have had learned patterns in 
in-domain training data. Model C overcomes such a shift, through 
the fine-tuning of the Model B by using a part of in-domain train-
ing data in addition to unsupervised adaptation data to update the 
model parameters. After the fine-tuning, Model C demonstrated in-
domain performance almost as-good-as the baseline, which can be 
observed from the final row of Table 5.

Additionally, Model D reflects the case where all the parameters 
of the baseline model is updated with a mix of REVERB14 training 
set and the Aurora-4 training set. Results from Model D in Table 5
shows that the performance of Model C and Model D are very close 
to each other, where Model D has a mildly lower WER for RE-
VERB14 eval sets than the Model C. Model-D has the advantage of 
having all parameter update given the adaptation set and the orig-
inal training set compared to the selective model update followed 
by fine tuning in Model C. However, the interesting observation 
is that the fine-tuning of the model after selective adaptation re-
sulted in a model (Model C) which performed almost as-good-as 
the blind-model update using both in-domain (Aurora-4) and out-
of-domain (REVERB14) data-sets. However, both models C and D 
assumes the existence of the original training data, which model B 
does not, hence Table 5 clearly shows that in absence of the origi-
nal training data the selective model update (Model B) can reduce 
the effect of catastrophic forgetting as typically observed in blind 
model updates (model A). In presence of the original training data 
both models (selectively trained or not) seems to converge to sim-
ilar performance.

Table 6 shows the results from the baseline model, models A, 
B, C and D for the REVERB14 test set. Similar to Table 5, both 
models A and B show lower WERs for the simulated and real 
test sets compared to the baseline model. Model B shows bet-
ter performance than the model A, indicating the effectiveness of 
the selective-neuron update in unsupervised adaptation. The fine-
tuning step resulted in even better performance as observed from 
the WER obtained from Model C in Table 6. Fine-tuning lowered 
the WER by 7.1% and 0.5% for the simulated and real test sets re-
spectively, relative to Model B. Selective neuron-update followed 
by fine-tuning based unsupervised adaptation (model C) resulted 
in similar performance as the blind model update (Model D) using 
both REVER14 and Aurora-4 adaptation sets, bolstering the obser-
vation from Table 5 showing that the fine-tuning step helped the 
model to converge to blind model update, where both in-domain 
and out-of-domain data-sets were used for adaptation. However, 
in case of the absence of in-domain data for adaptation, the Model 
B clearly demonstrates that it is relatively resilient to catastrophic 
forgetting as compared to the blind model update.

7. Observations

The goal of this study has been to understand the following:
(a) How does neural network pruning help to improve the model’s 
generalization capacity?
(b) What are the effects of network pruning in each individual 
layer of a fully connected network?
(c) How does the model’s generalization capacity to unseen data 
vary when we prune the low-salient neurons (that is neurons that 
are barely active or hypo neurons) as opposed to the high salient 
neurons (that is neurons that are mostly active or hyper neurons), 
and if there is any trade-off between choosing one over the other 
during the network pruning step?
(d) If there is any benefit of adapting the to-be-pruned neurons 
during unsupervised adaptation?

Based on the results obtained from our studies, we can make 
the following observations:
(i) We observed a significant improvement in an acoustic mod-
el’s generalization capacity to out-of-domain data, when pruning 
was performed at different layers of the fully connected network. 
We found that pruning of up to 6% of the neurons can be per-
formed which resulted in retaining in-domain performance, while 
improving performance on out-of-domain data. Overall an average 
of 4.5% relative reduction in WER was observed for out-of-domain 
data, while no significant change in WER was observed for the 
in-domain data, from pruning 6% of the low salient neurons from 
each of the three layers of the fully connected layer using MI based 
pruning.
(ii) We observed that each individual layer behaved differently to 
pruning for the given task of acoustic modeling. Pruning of the 
first two fully connected layer resulted in significant reduction of 
WER (with over 97% confidence), however pruning the pre-final 
fully connected layer did not result in such significant reduction in 
WER. The justification of such an observation may be the fact that 
more redundancy may prevail in the middle layers than the pre-
final layer, hence pruning the latter had more deleterious effect on 
the overall performance of the model.
(iii) We observed that pruning of low-salient neurons was quite ef-
fective in improving the model’s generalization capacity to out-of-
domain dataset without sacrificing significant performance degra-
dation on in-domain data. Additionally, we observed that hyper-
neurons or overly-active neurons can also be pruned, with similar 
results.

Traditionally, the literature has focused on only the pruning of 
low-salient neurons and this work shows that hyper active neurons 
can also be pruned from the model without significantly impairing 
the model’s performance. Experimental results from the pruned 
acoustic models in our studies demonstrated substantial improve-
ment in recognition results on out-of-domain data as compared to 
the unpruned model.
(iv) Finally, we investigated if the to-be-pruned neurons can be se-
lectively updated during unsupervised model adaptation, instead 
of pruning them out. Results indicated that updating such neu-
rons during unsupervised adaptation results in well regularized 
networks, that can learn additional information from the out-of-
domain adaptation data without significant drop in performance 
on the in-domain data. Table 6 shows that the selective neuron 
update-based model adaptation (model B) resulted in 40.7% and 
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23.5% relative reduction in out-of-domain WER compared to the 
baseline for simulated and real test sets of REVERB 2014, respec-
tively. The blind model adaptation (model A) provided a 39.4% 
and 20.9% relative reduction in out-of-domain WER compared the 
baseline for simulated and real test sets of REVERB 2014, respec-
tively. The deterioration in in-domain WER was 38.5% in case of 
the selective neuron update based unsupervised adaptation (model 
B) as opposed to 68.1% from the blind model update (model A). 
The fine-tuning stage (updating all the model parameters) after 
the selective model update resulted in 22.3% relative reduction 
in WER for the out-of-domain data with a relative increase in 
WER of only 4% for the in-domain data. The improvement in ASR 
performance from the two-stage unsupervised adaptation was sta-
tistically significant when compared to the more traditional blind 
unsupervised adaptation technique.

8. Conclusion

In this work, we investigated neural net pruning, to better un-
derstand which neurons can be pruned to improve the general-
ization capacity of a network to out-of-domain data. We observed 
that pruning can help in generalization and found that pruning at 
different layers may have different impacts, where aggressive prun-
ing toward the final layers may not be desirable. We observed that 
the fully connected layers have broadly three groups of neurons: 
hypo-neurons, hyper-neurons, and the informative neurons (which 
are in between the hyper and hypo neurons w.r.t their saliency). 
Literature primarily focused on pruning off the hypo neurons, but 
we observed that pruning both hypo and hyper neurons can not 
only help in reducing the model size, but also improve the mod-
el’s generalization capacity.

Finally, we investigated whether instead of pruning the hyper 
and hypo neurons, we can selectively update those neurons dur-
ing unsupervised model adaptation and found such strategy to be 
more successful compared to blind model update. We observed 
that selective model update gave better performance on out-of-
domain data and diverged less from the in-domain data, compared 
to the blind model update approach. Finally, a fine-tuning adap-
tation step using a combination of in-domain and out-of-domain 
data was found to provide in-domain performance almost as-good-
as the in-domain baseline model and a significant relative reduc-
tion in out-of-domain WER of more than 22% (for the real test 
set of REVERB 2014) compared to the baseline model. The findings 
from this study indicates that during unsupervised adaptation, it 
may be beneficial to first update the neurons that are deemed as 
prunable by standard pruning techniques and then perform fine-
tuning by updating all the model parameters.

In this work we have focused only on pruning the fully-
connected layers, leaving the convolutional layers untouched. From 
our preliminary investigation we did not find pruning the convolu-
tional layers as-promising-as pruning the fully-connected layer. In 
future studies, we plan to investigate more on pruning of the con-
volutional layers, to see if we can find more room for improvement 
after the pruning of the fully connected layers.
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