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a b s t r a c t

Swarm robotics is an emerging interdisciplinary field that has many potential real-world applications.
Swarm robotics aims to produce robust, scalable, and flexible self-organizing behaviors through local
interactions from a large number of simple robots. In this paper, a novel pheromone model of swarm
foraging behavior is developed based on a neural network. The output of a single neuron corresponds
to the density of a pheromone, which diffuses to neighboring neurons through their local connections.
A neural network is updated based on the proposed evaporation model. Neural networks can often
mimic the dynamics and features of pheromones. Therefore, in this work, we develop an optimization
method to determine the key parameters of cooperative foraging based on mathematical modeling.
The differential equation variables represent the number of foraging robots assigned different tasks.
The solutions of the differential equations represent the dynamics of the foraging behavior. The key
parameters that affect task allocation are determined to make optimal decision rules. Simulation
experiments are conducted under different foraging scenarios. The experimental results demonstrate
the effectiveness of the proposed pheromone model.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Swarm intelligence is a discipline inspired by nature, espe-
cially social insects. This discipline focuses on the collective be-
havior of social swarms [1]. The desired swarm behavior emerges
from a set of simple rules and the local interactions of a large
number of homogeneous and simple individual robots. The self-
organizing coordination mechanisms of social insects have been
effectively implemented in swarm robotic systems [2–4]. The
application of swarm intelligence in robotics is known as swarm
robotics, which has been successfully applied to different fields,
such as self-driving, delivery robots, autonomous agricultural
robots and automated warehouses [reviewed in 5].

Swarm robotics are a relatively new approach to designing
robust, scalable, and flexible collective behaviors in which swarm
intelligence techniques are applied. Many different schemes for
emerging collective behaviors have been proposed during re-
cent years, such as fully distributed architecture (ALLIANCE) [6],
parallel multi-agent architecture [7], task-oriented hierarchical
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control architecture [8], neural-endocrine architecture [9], coop-
erative architecture [10], and modular multi-agent architecture
[11]. To date, a complete theoretical framework that constructs
a control architecture for group behavior does not fully exist.
In recent years, nature-inspired metaheuristic algorithms have
been applied to swarm robotics applications. The most well-
known swarm-based algorithms are: particle swarm optimization
[12], ant colony optimization, bee algorithm [13], and fish-swarm
algorithm [14]. The remarkable success of using social animal
behavior to model emerging collective behaviors provides a best-
known paradigm for swarm robotics. In addition, macroscopic
modeling has been available to understand the individual robot
characteristics and gain insight into the design and analysis of
swarm robotics behaviors [15–18]. Mathematical models are typi-
cally abstract versions of swarm robotics and are usually based on
Markov processes. In practical implementations, thoughtful work
must be performed to overcome the limitations of the models.

Although some emerging behavior models have been imple-
mented in some swarm robotics platforms, the dynamic real-time
control of a swarm robotic system is still considered challeng-
ing. Swarm foraging behavior is a classical benchmark problem
in swarm robotics. The biggest challenge is to develop a self-
organizing search and collection algorithm for swarm robotic
foraging behaviors. This work targets two main contributions:
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to propose a novel neural network-based pheromone model of
swarm foraging behavior and to study the optimization method
for key parameters of cooperative swarm foraging with math-
ematical modeling. In this paper, a novel pheromone model of
swarm foraging behavior is developed based on a neural network.
If the foraging robots secretes pheromones, a corresponding neu-
ron output will increase. The output will diffuse to neighbor-
ing neurons through local connections. Therefore, the output
of the neural network will be updated based on the proposed
pheromone evaporation model. The evolution of the neural net-
work can mimic the features of pheromones. A parameter opti-
mization algorithm, based on differential equations, is proposed
in this work. The key variables of a set of rate equations are
indexed by the number of foraging robots assigned to different
tasks. Theoretical analysis shows that the waiting time of scouting
robots to deliver food items is a critical parameter that affect the
cooperation rate. We determine the optimal parameters of coop-
erative foraging to make the optimal control strategy. In addition,
we present various scenarios that verify the effectiveness of the
proposed pheromone model for cooperative swarm foraging.

The remainder of this work is organized as follows. The most
relevant literature describing swarm foraging robotics are re-
viewed in Section 2. Section 3 proposes a novel foraging algo-
rithm and an optimization method to find the cooperation rate.
Section 4 describes the simulation experiments run for different
foraging scenarios, lists the performance metrics, and begins the
analysis of the results. The results are discussed and analyzed
further in Section 5. Finally, some concluding remarks and future
work are provided in Section 6.

2. Related works

Swarm robotics systems coordinate the behaviors of large
numbers of simple mobile robots to emerge desired collective
behaviors. The robots must avoid collisions and perform a set
of tasks based on constraints of system. Therefore, communica-
tion and cooperation are the most challenging problems when
training swarm robotics.

2.1. Foraging in swarm robotics

Swarm foraging behaviors are part of the set of functions
swarm robotics possess that are inspired by social insects. As
in a foraging ecosystem, robots search and collect food items in
a shared environment. In general, foraging is self-organized by
local and stochastic decisions of the individual team members.
Pang et al. [19] proposed a dynamic response threshold model
to perform foraging in a self-organized manner. The amount of
food items in a nesting site was considered as the stimulus to
individual robots and the threshold can be computed dynamically
according to the number of resting robots. Brutschy et al. [20]
presented a self-organized method for foraging of the individuals
in swarm robotics systems. The proposed method was based on
the delay of robots working on one subtask while waiting for
another subtask. Nedjah et al. [21] proposed a distributed control
algorithm of foraging for swarm robotic systems inspired by par-
ticle swarm optimization. The algorithm that each robot must run
periodically to control the underlying decisions or actions. The di-
versity between these foraging behaviors makes them difficult to
carry out on real robot. Therefore, most studies were carried out
though simulation platform. The typical experimental platforms
for swarm robotics include some multi-agent based platforms
like Netlogo [22] and Starlogo [23], robotics based platforms like
Swarmanoid [24] and ARGoS [25], real swarm robotic systems
like Robotarium Swarm Robotics Testbed [26] and Kilobot Swarm
[27].

In swarm robotics systems, a large number of simple robots
interact with each other and with their environment. The de-
sired collective behaviors emerge with the cooperation among
robots. Therefore, the tasks must be allocated to a set of robots
in a group if a special task cannot be performed by a single
robot. Significant attention has recently been devoted to task
allocation in swarm robotics [28]. Some mechanisms of task allo-
cation have recently been proposed [19,29–31]. Depending on the
style of communication, the task allocation can be divided into
two classes, implicit and explicit. The complex swarm behaviors
emerge through relatively simple individual rules. All robots have
a set of decision-making mechanisms to realize their collective
behaviors. Swarm robots collaboratively work together towards
a common goal (e.g., foraging behavior), resulting in common
resource competition. Therefore, conflict resolution for swarm
foraging behavior is a challenging problem in swarm robotics,
which has been widely studied recently [32–34].

2.2. Pheromone communication in swarm robotics

In swarm robotic systems, a large group of simple individu-
als cooperate with each other to complete complex tasks. The
cooperation strategies of the individual robots are conducted
via implicit or explicit communication, depending on the size
and capabilities of the robots. The individuals in social insect
societies mainly change the shared environment by depositing
pheromones to emerging swarm behaviors, which is called stig-
mergy. Swarm robotic systems mostly rely only on the local
information, and exchange information implicitly to mimic natu-
ral swarms. Schroeder et al. [35] proposed a Keller–Segel model
for chemotaxis to develop a virtual-pheromone-based method
of area coverage. Several control rules for efficient area cover-
age were conducted and inspired by the swarm behaviors of
ant colonies. Kuyucu et al. [36] proposed a simple and efficient
way to coordinate a large number of homogeneous robots in
unknown environments. A guided probabilistic exploration is per-
formed using random movement and pheromone-based stigmer-
gic guidance in an unknown environment. Wei et al. [37] devel-
oped a communication system comprised of chemoemitter and
chemoreceiver modules. The system communicates by producing
volatile pheromone components and decodes the transmitted
information via sensors.

Although the pheromone can work well in social insects, creat-
ing artificial pheromones is not easy in swarm robotic system; the
system cannot replicate all the aspects of pheromones in nature.
The main question is how and what chemicals can be released by
the real robots, and how to describe the diffusion and evaporation
in the exploration and transportation of swarm foraging [38].
A practical solution for the communication problem in swarm
robotics is to use virtual pheromones. A stimergy field is typi-
cally found in swarm foraging, which corresponds to the shared
environment. Robots can access the data of the pheromone field
via an indirect communication among the individuals [39]. The
most common modes for exchanging messages between robots
in a swarm are bluetooth, wireless LAN and infrared [40–42].

2.3. Neural network architecture of swarm robotics

In swarm robotics systems, the complex swarm behaviors
emerge from simple interaction rules. However, designing rela-
tively simple individual rules to produce a large set of complex
swarm behavior is extremely difficult. Programming emerging
swarm behaviors still has no formal or precise architecture in
swarm robotics. Neural networks and evolutionary techniques
have been widely used to design individual rules of swarm robotic
systems [43]. To establish the relationship between the cognitive
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Fig. 1. The flowchart of cooperative foraging behavior (task). The cooperative foraging system consists of several different kinds of basic behavior: searching, waiting
and homing. The terms α1 , α2 , and α3 are the transition probabilities based on basic behaviors.

complexity and the simple rules, some neural network architec-
tures have been proposed for swarm robotics [44]. Generally, the
simple neural networks are evolved to develop rules specifying
interactions between the swarm. Although evolutionary swarm
robotics is an effective approach to develop robust collective
behaviors, this evolution has a high computational cost.

To overcome the computational cost problem, the neural net-
work method is combined with pheromones communication
to developing emerging collective behaviors. In swarm robotics
based on neural networks and pheromone communication, the
inputs are made up of discrete pheromone sources, while the out-
puts are the robots’ actions; therefore, the optimization weights
are determined by the distribution of pheromone sources and
the desired behaviors. The neural network-based model mainly
includes Probabilistic Neural Networks, Multilayer Perception
Neural Networks, Self-organizing Neural Networks, and Spiking
Neural Networks [45]. Neural network models extract complex
cognitive features from sensors to produce desired behaviors.
Stigmergic communication is predominant in swarm robotics.
However, in some cases, direct communication can also be ob-
served. Sun et al. [46] designed a neural network controller
that models the direct communication of swarm robots, whose
behavior model is more effective to a fast reaction in exploration.

3. The proposed methods

In this section, we propose a foraging algorithm based on
a neural network. Section 3.1 depicts the swarm mission. Sec-
tion 3.2 addresses the proposed pheromone model based on a
neural network. Section 3.3 describes the optimization method
that determines cooperation rate.

3.1. Swarm missions

In a swarm foraging system, a group of identical reactive
robots interact implicitly with each other in a shared environ-
ment. The motivation of these foraging robots is to search and
deliver food items cooperatively. Object transportation is a chal-
lenging task [47]. Therefore, in this work, a swarm foraging sys-
tem is simplified to consider a single food item cooperatively
delivered by two robots.

In the initial stage, all foraging robots are in the nesting site
without any prior knowledge about the tasks. Then, they search

for food items randomly. The range at which robots can detect
waiting robots or food items is 10 grid units. Once one scouting
robot discovers a food item, it will wait for another robot to
cooperate with it until the next time period τ . If there are no
other robots who detect the waiting robot within the given time,
the robot will give up the current food item and randomly search
for another food item again. When a searching robot detects a
waiting robot, the two foraging robots will deliver the food item
cooperatively and become homing robots. After the food item is
deposited in the nesting site, the homing robots will search for
food items again. The flowchart of the cooperative foraging task
is see Fig. 1.

The finite state machine model of the cooperative foraging
behavior is established to develop a set of strategies within the
task allocation. The model, which consists of a series of coupled
rate equations, combines different states by transition rates. Each
state corresponds to a special task. The cooperative foraging
system consists of several basic behaviors: searching, waiting and
homing. The state transitions of foraging robots with a special
probability are shown in Fig. 1.

Searching: The scouting robots execute a random walk, at a
fixed speed, to inspect the unknown environment. When a robot
discovers a food item with its sensors, it will wait for another
searching robot to cooperate with it.

Waiting: If the food source comes into the detection area,
the scouting robots will stop searching and stay near the food
item. Cooperation can be achieved when another scouting robot
discovers the waiting robot and delivers the food item to the
nesting site.

Homing: Any two robots who find the same food item will
return home, with the collected food item, via a pheromone trail
and will deposit more pheromones to increase the pheromone
quantity over the current position. The robots interact indirectly,
within the shared environment, to exchange the information.

3.2. Pheromones model based on a neural network

The collective behavior of swarm robotic systems emerges
from the interactions between individuals and with the envi-
ronment. Swarm robotics can be defined as a horde of mobile
robots mimicking social insects or animals, such as ants, bees
and other social animals. Social insects have developed many
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Fig. 2. Network neighborhood. The neural network has a single layer, which
corresponds to the discretized grid environment. Each neuron corresponds to a
unique position in the workspace.

ways to communicate with each other. For example, individuals
in ant societies (colonies) release pheromones to coordinate the
complex behaviors needed while foraging.

3.2.1. Pheromone diffusion model
Ants commonly use a pheromone trail to mark their foraging

paths [48]. Some ants carrying food items will lay down a trail of
attractive pheromones to help other ants find the food source.
The pheromones propagate and evaporate quickly. Meanwhile,
ants continuously renew the trail of pheromones to maintain the
foraging paths. Therefore, the pheromones will be distributed in
the work space while foraging.

In this work, a new pheromone diffusion model is developed
based on a neural network that imitates the physical pheromones
of ants. A dynamic wave expansion neural network (DWENN)
is used to model pheromone diffusion. Neural network systems
have a set of neurons with local area connections [49–51]. The
topological structure corresponds to the robot’s work space. The
local connection of the immediate neighbors of the ith neuron is
shown in Fig. 2.

When a robot secretes a pheromone in a certain position, the
corresponding neuron will have a positive external input. The
output of the neuron will diffuse via the immediate neighboring
neurons. The pheromone diffusion model is defined as

xi (t + 1) = f

⎛⎝ 8∑
j=1

wijxj(t) + Ii(t)

⎞⎠ (1)

where xi(t+1) is the output of the ith neuron at time t+1, xj(t)
is the output of the immediate neighboring neurons of the ith
neuron at time t, wij is the connection weight from the ith neuron
to the jth neuron, and Ii(t) is the input of the ith neuron at time
t. The connection weight matrix W is calculated by

wij =

{
e−η|i−j|2 if |i − j| ≤ 1
0 if |i − j| > 1,

(2)

where |i − j| is the Euclidean distance between the i -th and jth
neurons and η is a real positive number. The external input Ii(t)
depends on the pheromones at a pre-defined position. When a
scouting ant discovers a food item, it will try to bring it back to
the nesting site while laying down an attractive pheromone Paon
the ground. The other ants will be attracted to the food source
because of the pheromone trail. Once an exploring ant finds an
obstacle, it will release a repellent pheromone Po. When the ants
walk randomly and explore their environment, they will release a

repellent pheromone Pe to avoid other ants re-exploring the same
area. The external input Ii(t) is defined as

Ii(t) =

⎧⎪⎪⎨⎪⎪⎩
Pa Homing on xi(t)
Po Avoiding Obstacle on xi(t)
Pe Walking Randomly on xi(t)
0 Moving along Previous Trail

(3)

where Pa is a positive minor constant, Po and Pe are both negative
constants. Once an exploring ant finds an obstacle, it will release
a repellent pheromone Po. When the ants walk randomly and
explore the environment they will release a repellent pheromone
Pe to avoid other ants re-exploring the same area. The absolute
value of Po is large enough to guide the ants to avoid obstacles.
The absolute value of Pe is a minor constant. If there is new
food source appearance the ants can explore the area with the
evaporation of repellent pheromone Pe. When the homing robots
return to the nest and become searching robots. They will walk
randomly with probability r, which is exploration rate, a minor
constant. The searching robots from homing state will move along
the previous trail with probability 1-r. The transfer function f (·)
is defined as

f (x) =
1

1 + e−x . (4)

3.2.2. Pheromone evaporation model
In the pheromone field, the update of the pheromone val-

ues undergoes two stages. After the foraging ants lay down
pheromone trails, the trails will begin to evaporate. Evaporation
reduces the pheromone density to ensure the scouting ants can
explore new areas in the workspace. The evaporation of the
pheromones is updated by

x′

i(t + 1) = (1 − ρ) xi(t) + f (
8∑

j=1

wij∆xj(t)) (5)

where xi(t+1) and xi(t) are the density of the pheromones at time
t+1 and t, at the position of the ith neuron, respectively. There
term ρ is the evaporation rate, wij is the connection weight from
the ith neuron to the jth neuron, ∆xj(t) is the variations of the
pheromones neighboring the ith neuron xi, f (·) is the transfer
function.

The output of neuron network represents the pheromone
density. The output is positive when a robot secretes attractive
pheromone, and negative when a robot lays down repellent
pheromone on tails. The attractive trail pheromones guide the
ant colony to find the food source. The repellent trail pheromones
drive the colony to explore unknown territory and avoid obsta-
cles. With the evaporation of pheromones on trails the absolute
value of output keeps decreasing.

3.3. Optimization of cooperation rate

A differential equation approach has been widely used to de-
scribe the collective behaviors of multi-robot systems. The system
behavior usually derived from the finite difference equation [52].
In the differential equations model, each dynamic variable corre-
sponds to the average number of robots performing a special task.
Let Ns(t) denotes the number of searching robots at time t. Nw(t)
denotes the number of waiting robots who need to cooperate
with other scouting robots. Nh(t) denotes the number of homing
robots who are delivering food items to the nesting site. Nf (t)
denotes the number of food items at time t. In the initial state
of cooperative foraging, all robots begin at the nesting site to
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Fig. 3. The Solutions of the ratio equations, ns(t), nw(t), nh(t), and nf (t), are the ratios of the number of searching, waiting, homing robots, and food items at time t .

search for the food source. The differential equations models the
dynamics of each variable as

dNs(t)
dt

= −α1Ns(t)
(
Nf (t) − Nw(t) −

Nh(t)
2

)
− α2Ns(t)Nw(t) + 2α3Nh(t)
+ α2Ns (t − τ)Nw (t − τ) Γ (t, τ )

, (6)

dNw(t)
dt

= −α2Ns (t − τ)Nw (t − τ) Γ (t, τ ) − α3Ns(t)Nw(t)

+ α1Ns(t)
(
Nf (t) − Nw(t) −

Nh(t)
2

) , (7)

dNh(t)
dt

= −2α3Nh(t) + α3Ns(t)Nw(t) + α2Ns(t)Nw(t), (8)

dNf (t)
dt

= −α3Nh(t) + u(t). (9)

The first two terms of Eq. (6) account for the reduction of the
number searching robots; this reduction can be due to finding
food source or waiting too long. The third term accounts for the
number of searching robots that have transitioned from the hom-
ing state after a successful foraging task. The fourth term accounts
for the number of searching robots that have transitioned from
the waiting state. These robots fail to cooperate with other robots
within the waiting time. The last two terms result in an increase
in the quantity of searching robots. The first term of Eq. (7) is
the number of waiting robots which fail to cooperate. The second
term is the number of waiting robots which cooperate success-
fully. The third term is the number of waiting robots that find the
undetected food source. The first term of Eq. (8) is the number
of homing robots that perform a successful foraging task. The
second term is the number of homing robots that transition from
searching to waiting states when the cooperation is completed.
The first term of Eq. (9) is the number of food items delivered to
nesting sites. The second term is the production rate of new food
items.

The system of Eqs. (6)–(9) can be rewritten in a dimensionless
form using the ratios instead of the numbers of robots. The
variable transformations are defined by ns(t) = Ns(t)/N0, nw(t) =

Nw(t)/N0, nh(t) = Nh(t)/N0 and nf (t) = Nf (t)/Nf 0 such that N0 and
Nf 0 are the initial number of the searching robots and food items,
respectively. The corresponding ratio equations in dimensionless

form are given as

dns(t)
dt

= −α1ns(t)
(
nf (t) − nw(t) −

nh(t)
2

)
− α2ns(t)nw(t) + 2α3nh(t)
+ α2ns (t − τ) nw (t − τ) γ (t, τ )

(10)

dnw (t)
dt = −α2ns (t − τ) nw (t − τ) γ (t, τ ) − α3ns(t)nw(t)

+ α1ns(t)
(
nf (t) − nw(t) −

nh(t)
2

) (11)

dnh(t)
dt

= −2α3nh(t) + α3ns(t)nw(t) + α2ns(t)nw(t) (12)

dnf (t)
dt

= −α3nh(t) + u(t) (13)

where N0 and Nf 0 are the initial number of searching robots and
food items, respectively. The ratio model is initialized as follows
ns(0)=1, nf (0)=1, nw(0)=0, and nh(0)=0. The detection probabilities
(α1, α2, and α3) range from 0 to 1, where γ is the likelihood that a
cooperation during the time interval [t-τ , t] does not occur (failed
cooperation event), which also ranges from 0 to 1.

In one scenario, the food items will disappear when they are
delivered to the nesting site. Then, the numerical solutions of
the ratio equations (u(t)=0) are see Fig. 3(a). At time t0, at the
beginning of a run, all robots begin to search for a food source. As
more and more searching robots detect food items, they begin to
wait for another robot’s cooperation, or deliver the food items to
the nesting site. The number of food items decrease continuously
until they are depleted. Finally, all robots will search for food
sources randomly in the workspace. Another scenario is when
another food item appears as a food source when the food item is
delivered to the nesting site. In this case, the steady state solution
of the cooperative foraging system are shown in Fig. 3(b). The
foraging system reaches a steady state after a period of transient
oscillations. The foraging efficiency is fully-determined by the
waiting time τ . The dependence foraging efficiency on τ can be
obtained by the proposed criterion.

In a cooperative foraging system, a single food item must be
delivered by two robots. When a scouting robot detects a food
item, it will wait for another robot to cooperate with it. Therefore,
the waiting time is the critical parameter of the system. The
solutions depend on the waiting time because they satisfy the
following equations when the system reaches steady state,

− α1ns

(
nf − nw −

nh

2

)
− α2nsnw + 2α3nh + α2nsnwγ = 0 (14)
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Fig. 4. The cooperation ratio of foraging system with different β value. β is the
ratio of scouting robots and the amount of food items.

− α2nsnwγ − α3nsnw + α1ns

(
nf − nw −

nh

2

)
= 0 (15)

− 2α3nh + α3nsnw + α2nsnw = 0. (16)

The waiting robots can complete the foraging task successfully
through cooperative interaction. The cooperation ratio can be ex-
pressed by the following equation, in dimensionless form, based
on the values of ns and nw ,

R(t) = α2ns(t)nw(t). (17)

The cooperation ratio of a foraging system made up a set of
foraging robots is shown in Fig. 4. The parameter β is the ratio
of scouting robots to the amount of food items. If the quantity
of searching robots is fewer or slightly greater than that of the
food items, the waiting robots cannot obtain enough coopera-
tion from their companions, e.g., β is equal to 0.5 or 1.5. The
collaboration ratio will monotonically decrease as the waiting
time goes by. When there are twice as many foraging robots
as food items in the system the cooperation increases and then
decreases after reaching a maximum as the waiting time goes
by. If there are sufficient foraging robots in the system, e.g., β

is equal to 3, the cooperation ratio will monotonically increase to
reach the maximum because there are enough searching robots
to cooperate with the waiting robots. Then, for a given number
of robots, the cooperation ratio can be determined. Therefore,
the robot waiting time has an optimal value. For the given ns
and nw , the cooperation ratio reaches a maximum when ns is
equivalent to nwbased on Eq. (17). Therefore, the robot can choose
a special subtask at a different time, e.g., searching, waiting, and
homing. The foraging behavior of an ant colony works well with
the highest efficiency when the optimal waiting time τo is equal
to 2s.

4. Implementation

Two computer experiments were carried out with one and two
food sources in a dynamic environment. The grid world is made
up of 100 × 100 square lattices. Each grid item is sized within its
assigned area (a square 5 cm on a side). The output of the neurons
at the boundaries of the domain are set to a negative constant.
These boundaries are similar to obstacles in the area, e.g., areas
with repellent pheromones. The maximum simulation time is 200
s in each foraging experiment. The size of the robot colony is 20,
and the number of foraging robots is 10. There are no pheromones

on the field at the beginning of a simulation. The initial output of
the neural network is set to zero. The growth rate of fluctuation
of the neural network output is 0.02. The evaporation rate of the
output is 0.01. The sensing radius of each robot is 10 grip units,
and the step size of each robot is 3 grip units.

4.1. Foraging algorithm based on virtual pheromones

When foraging begins, and starting at the nest site, the search-
ing robots inspect the search space for a food source. There is
no pheromone in the shared environment. The neural network
output is initialized to zero. When exploring, the robots release
repellent pheromones (negative) on the ground to repulse their
mates from areas that were already visited. Once searching robots
encounter a food source, the robots try to carry it and deposit
attractive pheromones (positive) to attract their mates to the food
source. The pheromones will gradually diffuse into the whole
space and evaporate from the ground up. The waiting time of
cooperative foraging is chosen based on the optimization method
of the cooperation rate. The intensity of the pheromone trail
will be reinforced successively. Eventually, all foraging robots
will migrate toward the trail from the nest to the food source.
The cooperative foraging behavior will emerge based on virtual
pheromones. The foraging algorithm is as follows:

(1) Initialize output of neural network to zero

xi (t = 0) = 0

(2) Foraging and until the food is consumed

(3) Exploring until finding the food source
(4) Walk randomly/follow pheromone trails based on

exploration rate r
(5) Release repellent pheromone, and update the output

of network:
xi (t + 1) = f

(∑N
j=1 wijxj(t) + Ii(t)

)
, N = 8, Ii(t) =

Po or Pe
(6) Return to step (3)
(7) Waiting for the optimal waiting time
(8) Homing until arriving the nest site

Follow pheromone trails
Release attractive pheromones, and update the out-
put of network:
xi (t + 1) = f

(∑N
j=1 wijxj(t) + Ii(t)

)
, N = 8, Ii(t) =

Pa
(9) Return to step (8)

Pheromones evaporate from the ground: x′

i (t + 1) =

(1 − ρ) xi(t) + f
(∑N

j=1 wij∆xj(t)
)

,N = 8

(10) Return to step (2)

4.2. The foraging with one food source

In this section we introduce the implementation of a single
food source scenario. In the experiment, the ant nesting site
is placed in the lower right corner of the world. The robots
start from the nesting site to search for a food source, which
is positioned at the lower left corner (see Fig. 5(a)). The gray
rectangle obstacle is placed randomly, and can move freely. The
repellent pheromones are then released by the scouting robots
(green dots) according to Eq. (1) until gradually diffuse into the
workspace. The space marked by the repellent pheromones is
an area that has previously been explored. In response to the
repellent pheromones, the scouting robots will strive to explore
an unknown territory. Therefore, the scouting robots will find
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Fig. 5. Snapshots of pheromone distribution at different times with one food source, (a) Distribution of pheromone at time t=1, (b) Distribution of pheromone at
time t=60, (c) Distribution of pheromone at time t=120, and (d) Distribution of pheromone at time t=200.

the food source effectively. The distribution of pheromones is see
Fig. 5 at different times.

When the scouting robots discover the food source, they will
pick-up the food items and bring them back to their nesting
site. The homing robots (red dots) will lay down the attractive
pheromones from the food source to the nesting site on the
ground (see Fig. 5(b)). Likewise, the attractive pheromones diffuse
into the workspace gradually. When the homing robots arrive at
the nesting site, they are capable of recruiting other robots in
the nesting site so they may scout the food source together. The
pheromone trail attracts the other scouting robots (see Fig. 5(c)).
The scouting robots follows this trail to find the food source and
return to the nesting site. More and more homing robots release
the attractive pheromones along the trail. The pheromone inten-
sity of the trail will be reinforced by a large number of homing
robots. Meanwhile, the pheromones will evaporate gradually. In
the end, all robots scout the food source and return to the nesting
site by traveling along the trail (see Fig. 5(d)).

4.3. Foraging with two food sources

To validate the effectiveness and reliability of the proposed
pheromone model, another food source is introduced, that is po-
sitioned at the lower right corner (see Fig. 6(a)). After a period of
foraging the scouting robots (green spots) find both food sources,
and then carry the food items to home (see Fig. 6(b)). The homing
robots (red spots) will lay down attractive pheromones to form
a trail from each food source to the nesting site. Therefore, in
the early stage of foraging, there are two trails in the workspace
(see Fig. 6(c)). After a certain time (e.g. t=60), the gray rectan-
gular obstacle moves upward 10 grid units. The distribution of
pheromones will be updated continuously, and the foraging trail
will be optimized (see Fig. 6(d)). More and more robots choose
the shorter trail from the food source to the area where they
can forage. The intensity of the attractive pheromones on the
shorter trail will become stronger and stronger. Ultimately, all
robots will follow the shorter trail so they may begin foraging
faster; therefore, the robots ultimately give up on the longer trail.
The pheromones outside of the shorter trail will slowly disappear
with the evaporation.

4.4. Performance metrics

To test the proposed cooperative foraging algorithm, an opti-
mal decision rule is obtained based on the optimal waiting time
derived in Section 3.3. If finding the food source becomes too
difficult, the searching robot must give up their current subtask
to forage food items efficiently. The efficiency of the cooperative
foraging system is optimized based on an optimized decision
rule. Another important constraint to consider is the ability of
foraging robots to determine the maximum number of food items
a foraging robot can carry back to the nesting site.

In the cooperative foraging system, robots can obtain food
items, but they also require energy and time to scout and deliver
the food. The system’s objective is to gain the best benefit at
minimum cost during foraging. To determine the optimal decision
rule, a robots’ efficiency at the foraging task is defined as the ratio
between the number of delivered food items and the foraging
time. This is based on the optimal foraging theory defined as

E =

∫
nf d(t), (18)

where E is the robots’ efficiency at the foraging task and nf (t) is
the number of foraging food items at time t.

4.5. Result analysis

By analyzing the performance of the swarm foraging system,
we can determine the optimal control strategy for individual
robots. In this section, two foraging characteristics are intro-
duced: foraging efficiency and coverage rate. A swarm’s foraging
efficiency can be evaluated approximately by calculating the total
number of foraging food items and the total time in a given ex-
perimental implementation. Fig. 7 shows the number of foraging
food items with different waiting times τ . At the beginning stage,
all robots are searching for food sources. There are no food items
that need to be delivered to the nest. The foraging curve levels
off with a small slope and gradually increases as time goes on.

To calculate foraging efficiency, we will evaluate the line in-
tegral to determine a foraging curve. The area can be calculated
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Fig. 6. Snapshots of pheromone distribution at different times with two food sources, (a) Distribution of pheromones at time t=1, (b) Distribution of pheromones at
time t=40, (c) Distribution of pheromones at time t=100, and (d) Distribution of pheromones at time t=200.

Fig. 7. Numbers of foraging food items with different waiting time τ , which is
the waiting time for cooperation.

based on Eq. (18). The area indicates the average efficiency of
foraging behavior. Fig. 8 shows that the average efficiency is 4272,
which is equivalent to 2 s. A waiting time τ of 5 s and 0.2 s
corresponds with an average efficiency of 2589 and 2600, respec-
tively (Fig. 8(b) (c)). Fig. 8(d) shows the area of the foraging curve
integral with various waiting times τ . This curve suggest that as
the waiting time reaches 2 s, the system increases in average
foraging efficiency. The experimental results are consistent with
the theoretical analysis.

In a swarm foraging system, the robots do not know where
the food items are located at the beginning of the operation. The
robots initiate the roam and search tasks in the shared environ-
ment. When the searching robots discover a food source, they
will travel home with the food items. Fig. 9(a) shows the average
coverage of exploration. The optimal strategy for swarm foraging
has been identified. The swarms perform efficiently when the

waiting time is equal to 2 s. Foraging robots take more time to
deliver food items and have a lower exploration coverage rate.
The coverage rate of re-exploring area indicates the ratio of the
region is explored many times compared to the entire workspace.
Fig. 9(b) shows the coverage rate of repetition, which is an inter-
mediate value of various different waiting times. This means the
swarm robots perform the necessary search and deliver the food
items efficiently.

To illustrate the advantage of our novel foraging algorithm for
swarm robotics based on virtual pheromones, we do the next
simulation under the same condition. The distribution patterns
of food source is shown as Fig. 6(a). The pheromone will ac-
cumulate as the foraging task goes on. More and more robots
forage food items along the pheromone trail. The probability
of invalid searching will be reduced. The active walker model
can be regarded as moving agents, which leave markings on
the ground while moving. The movements of agents are subject
to the sharing environment. They also change the environment
locally by modifying the potential function. The agent moves
from the position of higher potential to lower potential. The
numbers of foraging food items with different algorithms show
in Fig. 7. The neural network based algorithm has a higher forag-
ing efficiency. Simulation demonstrates that the proposed novel
algorithm can significantly improve the performance of foraging
task (see Fig. 10).

5. Discussion

We have constructed and analyzed a novel pheromone-based
cooperative foraging behavior model based on the wave expan-
sion of neural networks. A neural network has a single layer that
corresponds to the discretized grid environment. Each neuron
is a label that identifies a unique position in the work space.
When an ant lays down a pheromone at a specific position, the
corresponding neuron is activated by an external input. Neural
activities in the field propagate in waves from the neuron, where
the activation is initiated. The output of the neuron represents
the density of pheromones. The neural network mimics the inner
workings of the pheromones. The proposed pheromone model
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Fig. 8. Average efficiency for different waiting times τ , where τ is the waiting time for cooperation. The area indicates the average efficiency of foraging behavior.

Fig. 9. Coverage rate of exploring robots. τ is the waiting time for cooperation.
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Fig. 10. Numbers of foraging food items with different algorithms.

is general. It easily transforms to other swarm robotic systems,
which use local observations to make decisions.

In this paper a mathematical method is used to analyze the
optimal parameters of collective behavior. A mathematical model
is developed that governs the dynamics of a set (swarm) of aver-
age robots with different behaviors. We made a few simplifying
assumptions in the proposed method. First, swarm robots are
largely independent of each other and the state transition rates of
probability were obtained from experiences. Second, we assumed
that a single food item must be delivered by two foraging robots
cooperatively. So, this is a specialized case of swarm foraging. To
consider more general cases, we design a more complex coopera-
tion strategy. In these general cases, a foraging system considers
additional states that describe additional behaviors. This means
that the coupled rate equations are associated to the number of
robots that are cooperating.

The mathematical model is developed based on stochastic
processes. A probabilistic model governs the evolution of the
swarm’s behaviors in time. Therefore, the solutions of the math-
ematical model describe the average collective behaviors over
many simulations or experimental implementations. The ana-
lytical results show that the stochastic model agrees with the
experimental results. In our simplified case, we obtain the ana-
lytical solution of the swarm foraging system. However, swarm
foraging behaviors are usually too complex to develop an exact
model. The implementation of a neural network model requires
a very sophisticated methodology that can model extremely com-
plex systems. At present, complex deep neural networks are
reasonably expected to provide a practical control architecture for
swarm robotics systems.

Finally, our proposed algorithm, based on neural networks,
was implemented with smaller swarm sizes. The spatial distribu-
tion of food items affects the foraging rate. If there are obstacles
or even mobile obstacles in the shared environment, the foraging
robots will stay in obstacle-avoidance mode for a longer period.
Additional difficulties may arise due to an increase in colony
size, a change in food distribution, and a change in avoidance
time. Some of the challenges of a swarm robotic system include:
detection areas overlapping, spatial interference, and obstacle
avoidance. In addition, even if the exact controllers are executed
in a standard hardware component of all the robots in the swarm,
the robot systems are still heterogeneous because of the inherent
difference between individual robots. The parameters distribu-
tions and system noise should be considered to exactly describe
the complex heterogeneous systems in practical applications.

6. Conclusions and future works

In this paper a novel pheromone model of swarm foraging be-
havior is developed based on a neural network. A dynamic wave
expansion neural network (DWENN) is used to model pheromone
diffusion. The neurons of the neural network correspond to dif-
ferent positions in a pre-defined workspace. When the robots
release pheromones into their environment, the corresponding
neurons (units) will receive an external input. The pheromones
will diffuse through the local connections between neurons. The
pheromone is also updated based on the proposed pheromone
evaporation model. An optimization method is developed to
choose the key parameters of the cooperative foraging task.
The differential equations represent the evolution of the tran-
sition between different tasks of foraging robots. Each variable
corresponds to the number of robots given a special task. The
cooperation rate is formulated to evaluate the performance of
the foraging behavior. The key parameter that affects foraging
performance is analyzed via a task allocation model. The optimal
parameters are found to determine the optimal control strategy
of the cooperative foraging system. Two simulated experiments
have been performed that consider a variety of food sources,
cooperative foraging techniques, and pre-selected performance
metrics.

The results reported in this paper suggest several future re-
search directions. For instance, foraging behaviors can be very
complex, depending on the system constraints considered; Thus,
the minimum number of homing robots required to deliver a food
item back to the nesting site needs to be found. Additionally, the
time needed for the robots to wait for cooperation or travel from
the nesting site to the food source are other constraints that need
to be found. In future work, the task allocation model will have
more identified constraints (for the cooperative foraging system).

In the proposed cooperative foraging algorithm, future work
will also involve a survey of evaporation, diffusion, and noise. The
magnitude of noise can impact another important performance
metric, the percent of area covered. Noise can drive the scouting
robots to find the area surrounded by the explored area to detect
new food sources. The impact of noise on performance can be
investigated for a combination of diffusion and evaporation. In
addition, the cooperation rate varies with both evaporation rate
and diffusion rates for a special noise value. The interaction of
noise, diffusion and evaporation will be examined further in
future work.

Swarm robotics has many potential applications due to its
inherent robustness, scalability and flexibility. Swarm foraging is
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a widely used benchmark testbed for swarm algorithms; these
foraging tasks can be tuned to improve the performance of swarm
robotics systems. Future work will also include experimenting
on real swarm robotic platforms to improve the proposed algo-
rithms.
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