
Applied Soft Computing Journal 92 (2020) 106278

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Online RBM: Growing Restricted BoltzmannMachine on the fly for
unsupervised representation
Ramasamy Savitha ∗, ArulMurugan Ambikapathi, Kanagasabai Rajaraman
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

a r t i c l e i n f o

Article history:
Received 18 October 2019
Received in revised form 30 March 2020
Accepted 31 March 2020
Available online 24 April 2020

Keywords:
Restricted Boltzmann Machine
Online learning
Unsupervised representation

a b s t r a c t

In this work, we endeavor to investigate and propose a novel unsupervised online learning algorithm,
namely the Online Restricted Boltzmann Machine (O-RBM). The O-RBM is able to construct and adapt
the architecture of a Restricted Boltzmann Machine (RBM) artificial neural network, according to the
statistics of the streaming input data. Specifically, for a training data that is not fully available at the
onset of training, the proposed O-RBM begins with a single neuron in the hidden layer of the RBM,
progressively adds and suitably adapts the network to account for the variations in streaming data
distributions. Such an unsupervised learning helps to effectively model the probability distribution of
the entire data stream, and generates robust features. We will demonstrate that such unsupervised
representations can be used for discriminative classifications on a set of multi-category and binary
classification problems for unstructured image and structured signal data sets, having varying degrees
of class-imbalance. We first demonstrate the O-RBM algorithm and characterize the network evolution
using the simple and conventional multi-class MNIST image dataset, aimed at recognizing hand-written
digit. We then benchmark O-RBM performance to other machine learning, neural network and Class
RBM techniques using a number of public non-stationary datasets. Finally, we study the performance
of the O-RBM on a real-world problem involving predictive maintenance of an aircraft component
using time series data. In all these studies, it is observed that the O-RBM converges to a stable,
concise network architecture, wherein individual neurons are inherently discriminative to the class
labels despite unsupervised training. It can be observed from the performance results that on an
average O-RBM improves accuracy by 2.5%–3% over conventional offline batch learning techniques
while requiring at least 24%–70% fewer neurons.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the recent years, deep learning has revolutionized various
fields of computer vision. Deep learning algorithms have superla-
tive capabilities for jointly performing feature mapping, exclu-
sively for tasks such as classification, segmentation, regression
etc. Thus, they outperform other machine learning approaches
in applications ranging from image classification [1] and medical
diagnostics [2] to credit fraud analytics [3]. However, it is chal-
lenging to adaptively re-train neural networks to track changes
in input data distribution, especially in non-stationary streaming
data applications, where the data is not completely available
before hand. Further, training multiple layer neural networks
requires a priori specification of a suitable network architec-
ture, and it is difficult to decide the required architecture for a
dynamically varying input data distribution.
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Online learning approaches for deep neural networks have
the potential to address both these challenges. Several stud-
ies have put forth online learning algorithms for training single
layer perceptron networks [4–6]. Single layer feedforward neural
networks can be trained in an online fashion using Stochastic
Gradient Descent [7] or Extended Kalman Filters [8,9] for the
parameter update. However, it remains challenging to extend
these successes to the task of training deep neural networks in a
fully online manner. For example, online algorithms for denoising
autoencoders (DAE) [10] have been used for incremental feature
learning with streaming data, but need a priori training with
a DAE architecture as the building block to learn a base set
of features first. Further, incremental learning has been applied
within a boosting convolutional neural network framework for
feature augmentation, loss function updation and fine-tuned back
propagation with information accumulating in successive mini-
batches [11]. Finally, it has also been shown that updating a
greedily pre-trained layer-wise restricted Boltzmann machines
(RBMs) in an online fashion automatically learns discriminative
features for classification [12,13].
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Recently, there is an increased interest with lifelong continual
learning approaches [14–16], aimed at adapting weights of a
pre-trained network to learn new tasks without catastrophic for-
getting. Progressive networks [17] incorporate prior knowledge
at initialization, retains a pool of pre-trained models throughout
training, and fine-tunes the model with new data to learn lat-
eral connections for extracting useful features. Inspired by the
neurogenesis of the human hippocampus that enables human
beings to learn continuously, and adapting themselves to chang-
ing environments, neurogenesis network [18] have been devel-
oped. A neurogenesis network adds neurons to a deep neural
network, while preserving previously trained data representa-
tions. The life long learning ability of a growing self-organizing
neural architecture equipped with recurrent neurons, for process-
ing time-varying patterns is studied in [19,20]. In order to avoid
catastrophic forgetting in a continual learning framework, the
representations of a deep neural network are divided into long
term and short term memory units in [21], and this division is
optimized with a Kalman optimizer.

While all the above-mentioned approaches enable lifelong
continual learning, these approaches require an a priori trained
network and/or a fixed base network architecture as a precur-
sor for incremental online updates with streaming data. Hence,
methods that evolve and train a network architecture from
scratch in an online manner, as the data streams in, would offer
novel capabilities and thus provide a complete online learning
solution. They also enable to understand knowledge distribution
across classes, thus, providing an ability to understand the data
through the network. Further, it has been proved in [22] that
the addition of a hidden neuron to a RBM helps to improve its
modeling power, unless it has already perfected the data. Hence,
it is important to find the right number of neurons in the hidden
layer of the network to perfectly model any data. This can be
achieved by letting the model grow its network, depending on
the data.

In this work, we present a fully online, unsupervised learning
algorithm named the Online Restricted Boltzmann Machine (O-
RBM), for an effective and efficient feature representation. At the
beginning of training, there are no neurons in the hidden layer
of a RBM neural network. As training data samples stream in, the
ability of the network to represent the current sample is assessed
using the reconstruction error for the sample, from the current
architecture. Based on this reconstruction error, the online adap-
tive learning algorithm either deletes the samples that are well
represented, or adds a neuron to the hidden layer to represent
the sample and updates the weights for the entire set of existing
neurons in the network. As the network updates are tailored to
represent the distributions of the distinctive input sample fea-
tures, the network is compact and inherently discriminative [23].
The unsupervised features that are thus learnt, can be mapped
to a set of specific classes via any conventional discriminative
learning.

We first propose the methodology of O-RBM with details
pertaining to the training and evolution of the network for effec-
tive unsupervised feature representations. We then demonstrate
the unique abilities of the O-RBM to represent the distinctive
class distributions of the feature space and to learn in a manner
that is invariant to the training data sequence, through a study
on the standard and well-explored MNIST data set,1 aimed at
recognizing handwritten digits. The sequential invariance is much
like the invariance to permutations in the training set seen with
batch learning algorithms [24]. We then analyze the performance
of O-RBM feature representation based binary classification tasks
with a variety of data sets having a wide spectrum of imbalances

1 http://yann.lecun.com/exdb/mnist/

in the data. It is critical to learn the distribution of a minority
class from a highly imbalanced data set, and O-RBM provides a
premise to efficiently learn the under-represented minority class,
owing to its ability to detect novelty in data. Our results show
that the O-RBM can perform better than several state-of-the-art
networks with lesser network resources than batch methods. The
main contributions of the paper are as follows:

• A fully online learning methodology that includes evolv-
ing architecture for unsupervised feature representation, for
streaming data.

• The adaptive learning algorithm for training sequential data
based on contrastive divergence approach.

• Experimental analysis to demonstrate that the neurons
trained through the unsupervised O-RBM are inherently
discriminative, using MNIST image (hand written numerical
characters) data set.

• Rigorous empirical analysis on a variety of data sets (for
varying applications) to show that the classification accu-
racy and the neuron-to-class label associations of O-RBM are
independent of the sequence in which the training samples
are presented.

The rest of the paper is organized as follows. In Section 2, we
propose and discuss the O-RBM architecture and the associated
learning algorithm. Next, in Section 3, we analyze the behav-
ior of O-RBM using the MNIST dataset for unsupervised feature
representation and the subsequent classification. In Section 4.1
we demonstrate the performance of O-RBM in relation to other
algorithms applied to different applications, that involves class
imbalance scenarios. Finally, some interesting conclusions and
potential future directions are outlined in Section 5.

2. Online Learning Restricted Boltzmann Machine

We describe the Online Restricted Boltzmann Machine (O-
RBM) architecture evolution and the corresponding learning algo-
rithm. Fig. 1 shows the bipartite representation of the proposed
evolving RBM architecture. Specifically, we denote the training
data set as

{(
x1, c1

)
, . . . ,

(
xt , ct

)
, . . .

(
xN , cN

)}
. Here, xt ∈ ℜ

m
=

[xt1, . . . , x
t
j , . . . , x

t
m]

T is an m-dimensional input of the tth sample;
ct ∈ {1, 2, . . . , s} denotes the corresponding class labels or targets
among s classes; and N is the total number of samples. Note
that for unsupervised feature representations, the class labels are
redundant. However, they can be used subsequently to evaluate
the discriminative representation capability of O-RBM. The objec-
tive of the O-RBM is to best represent the input distribution, by
following a fully adaptive and evolving online learning procedure.

In general, a Restricted Boltzmann Machine (RBM) [25] has
visible and hidden layers, connected through symmetric weights.
The number of neurons in the input layer is fixed, and it is based
on the input dimension. In the current scenario, the number of
neurons in the input layer is m (as x = [x1 . . . xm]

T ). The hidden
layer response dictates the feature representation for the input
samples, and for a hidden layer with k neurons (h = [h1 . . . hk]

T ),
the output feature representation belongs to ℜ

k. The feature
representation is derived by learning the symmetrical connecting
weights between the visible and the hidden layers i.e., w1

ij; i =

1, . . . ,m, j = 1, . . . , k, as can be inferred from Fig. 2. The hidden
layer output for a tth input sample can be expressed as:

ht
j = σ (

m∑
i=1

xtiwij + bjh), ∀j = 1, . . . , k, (1)

where σ is the standard sigmoid activation function, and bjh is
the bias associated with the j of the k hidden neurons. It should
be noted that the neurons in the same layer of the RBM are not
inter-connected.
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Fig. 1. The network architecture and the training phases. Online representation
learning is performed in the first phase, wherein the network begins with zero
neurons in the hidden layer, and adds and/or adapts the network learning
progresses to derive a feature representation of the data in an unsupervised
manner. The next phase performs supervised discriminative learning to associate
the feature representation with the class labels.

2.1. Evolving architecture for O-RBM

We now describe the online learning process for feature rep-
resentation at the hidden layer. Initially, the hidden layer has no
neurons. As the data streams in, the online learning algorithm
adds a neuron and/or updates the representations of the existing
neurons depending on the novelty of the sample. The first neuron
in the hidden layer is added based on the first sample x1 in the
training data set.

At a given point during the training process, let the network
comprises k − 1 neurons in the hidden layer, corresponding to
k − 1 novel samples out of a history of t − 1 samples that has
been so far presented to the RBM (with t ≫ k). Then, for the
subsequent tth sample, the reconstruction error of the network
is defined as:

Et
recon =

1
m

m∑
i=1

(xti − x̂ti )
2, (2)

where xti and x̂ti are the ith element of the input xt and the
corresponding reconstructed (backward path) input element, re-
spectively. Similar to the hidden layer representations (Eq. (1)),

the reconstructed input can be expressed as:

x̂ti = σ (
k∑

j=1

ht
jwij + bix), ∀i = 1, . . . ,m, (3)

where bix is the bias associated with the ith input neuron.
The reconstruction error (Et

recon) is then compared to two pre-
defined thresholds, namely the novelty threshold (En) and the
marginal representation threshold (Em). Based on this compari-
son, the algorithm chooses one of the following steps for the tth
sample:

• Add a Representative Neuron: If (Et
recon > En), the sample

is deemed novel and a kth neuron is added to the hidden
layer of the network. The initial input weights connecting
the kth hidden neuron and the neurons in the input layer
are obtained as a function of the inputs g

(
xt

)
. Here, g (.) can

be any function such that wk
= [w1 · · · wm]

T
∈ ℜ

m and each
element of wk belongs to [0, 1), so as to confine within the
operating regions of the network. In this work, as the inputs
are normalized in [0,1), we initializewk

= 0.01∗xt to ensure
that the weights are initialized in [0,1). The network weights
of all the neurons, including the new neuron, are then col-
lectively updated according to the algorithm discussed next
in Section 2.2.

• Adapt Existing Network: If En > Et
recon > Em, the net-

work weight matrix is adapted (as detailed in Section 2.2)
such that the probability distribution approximated by the
hidden neurons includes the representation of the current
training sample.

• Ignore Sample: If Et
recon < Em, then the current tth sample

is sufficiently represented by the existing network and does
not warrant a network or weight matrix update.

Overall, the O-RBM architecture ensures that the neurons in the
hidden layer of the network are adaptively added and updated
to obtain a compact network structure that is sufficient to yield
a strong feature representation for the given set of data. Having
discussed the evolving strategy followed by O-RBM, we will now
proceed to discuss the online learning algorithm for O-RBM.

2.2. Online contrastive divergence algorithm for O-RBM

The training algorithm for O-RBM is a subtle variation of
the contrastive divergence approach proposed for conventional
RBM [26]. For sake of completeness and clarity, the inherent
details of the algorithm for O-RBM are discussed here. Assuming
k is the number of hidden neurons at the current instance of
training, the energy function E(x,h) can be defined as

E(x,h) = −xTWh − xTbx − hTbh, (4)

Fig. 2. The overall block diagram for the proposed online restricted Boltzmann machine (O-RBM).
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where x ∈ ℜ
m is the current training sample (with superscript

removed for ease of representation), W ∈ ℜ
m×k is the weight

matrix between the m inputs and k neurons, h ∈ ℜ
k is the

response of the k hidden neurons, bx ∈ ℜ
m and bh ∈ ℜ

k, are
the biases for the m input neurons and the k hidden neurons,
respectively. The probability distribution corresponding to the
energy function in Eq. (4) can be expressed as

P(x,h) =
exp(−E(x,h))

Z
, (5)

where Z is the intractable partition function that is obtained
by averaging exp(−E(x,h)) over all possible values of x and h,
so that the probability distribution P(x,h) sums to one. Sub-
sequently, the marginal probability of inputs x vector can be
obtained from P(x,h) by summing over all possible hidden layer
configurations, i.e.,

P(x) =
1
Z

∑
h

exp(−E(x,h)). (6)

The purpose of a training algorithm is then to maximize the
expectation of log P(x), for any given x. However, maximiza-
tion over the probability function involves the computation of
expectation over the entire distribution. Hence, the contrastive
divergence (CD) approach that approximates the original dis-
tribution with a sample point estimation is being employed.
However, unlike conventional backpropagation, CD employs back
projection (reconstruction) and Gibbs sampling procedures to
estimate the weights. Mathematically, CD considers maximizing
the following optimization problem:

arg max
W

E[log P(x)]. (7)

Then, for a training sample P(x), the CD algorithm aims to com-
pute the conditional probabilities of the hidden units as fol-
lows (as the hidden units are not inter connected and hence
independent of each other):

P(h|x) =

k∏
i=1

P(hi|x), (8)

where the individual conditional probabilities P(hi|x) are com-
puted using sigmoidal activations (Eq. (1)). We then sample a
hidden feature vector h based on the obtained distribution. Using
the current hidden feature vector h, a reconstruction of x, namely
x̂ (Eq. (3))is obtained by sampling the following distribution (as
the input nodes are not inter connected and hence independent
of each other):

P (̂x|h) =

m∏
i=1

P(x̂i|h). (9)

Again, we compute the hidden nodes’ conditional probabilities
P(h|̂x) based on the reconstructed x̂, by following Eq. (8), and
perform Gibbs sampling to sample an hidden feature vector ĥ.
Then, the element-wise weights between the input and hidden
layers of the network are updated according to:

wji = w′

ji + α ∗ (xj ∗ hi − x̂j ∗ ĥi), (10)

wherein α denotes a pre-specified learning rate. Also, the re-
spective biases of the input and hidden nodes can be updated
as:

bx =α ∗ (x − x̂) (11)

bh =α ∗ (h − ĥ). (12)

We have opted for a single-step CD approach wherein the
sampling (input and hidden feature representations) is done only

once (in both the visible layer and hidden layer) per update [27].
It should be noted that while the dimension of x remains the
same throughout the training, the dimension of h keep varying
according to the number of hidden neurons at the current in-
stance of training. The weight and bias update should be done
for each training sample instance if the constraints stipulated
in Section 2.1 are met. The entire online learning procedure for
O-RBM training is summarized in Algorithm 1.

Algorithm 1 Online Learning of RBM

Step 0: Given A streaming train data set,
{
x1, . . . , xt , . . . xN

}
, For

each sample xi in the training set, do the following:
Step 1: Choose an optimal value for the novelty threshold En, and

the marginal representation threshold Em.
Step 2: Obtain a sample hidden vector representation by sam-

pling the distribution obtained by Eq. (8).
Step 3: Back project the sampled h to obtain a sample of the

reconstructed input distribution x̂, as given by Eq. (9).
Step 4: Compute the reconstruction error between x and x̂, as

given by Eq. (2). If a new hidden neuron need to be added
and / or the hidden neurons need to be updated, go to Step
5, else go to the next sample.

Step 5: For x̂, compute the hidden vector distribution by fol-
lowing Eq. (8) and perform Gibb’s sampling (once) to get
ĥ.

Step 6: The resultant gradient computation and the element-
wise weight update can be done by following the gradient
ascent given by Eq. (10). The corresponding bias update is
given by Eq. (11).

Step 7: Repeat Step 1 to Step 6 sequentially until all the training
samples are considered.

2.3. Discriminative training

Next, we briefly discuss the discriminative training, where the
feature representation learned during the online generative phase
is mapped to the conditional class distributions in a supervised
fashion.

The responses of the K neurons in the hidden layer are as
below:

h = [h1 . . . hk]T (13)

This feature representation is then used in a supervised dis-
criminative training phase to learn the conditional probability
distribution P(ct |xt ). The class labels ct are encoded in yt =

[yt1, . . . , yts], as below:

yti =

{
1 if ct = i,
0 otherwise. i = 1, . . . , s; (14)

The objective of discriminative training is to minimize the log
probability

min
w2

ki

1
N

∑
n∈N

Ldisc
(
yn|xn

)
, (15)

where Ldisc (yn|xn) is a measure of error between yn and ŷn, and
w2

ki are the weights connecting the kth output neuron and the ith
hidden neuron. Here, we perform discriminative training through
10 epochs of supervised training using a Multi-Layer Perceptron
(MLP) with sigmoidal activation function.

3. Demonstration of O-RBM learning

We now demonstrate the progression of learning within the
proposed O-RBM approach, and make some observations about
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Fig. 3. MNIST: Reconstruction error and addition of neurons to the generative
RBM network through the online learning.

the algorithm. We characterize the algorithm on the MNIST data
set [28], as it is a large well-explored multi-category dataset
(60,000 training samples, 10 categories). The network is trained
in an online fashion, using the training data set. The validity of
the trained network is established independently on the test set
(10,000 samples, 10 categories) in an offline fashion.

Figs. 3(a) and 3(b) show the evolution of reconstruction er-
ror and network architecture, as samples stream in for training.

Fig. 3(a) shows that the reconstruction error is high for the initial
samples. This is because the model is at infancy and is beginning
to learn. Hence, most samples are novel to the network, resulting
in neurons being added (see Fig. 3(b)). However, as training
progresses, the network learns a sufficient representation of the
data and the reconstruction error reduces progressively, resulting
in fewer neurons being added to the network. It is evident from
Figs. 3(a) and 3(b) that the online generative phase converges to a
stable, concise network architecture, and the generative training
is complete in about 26 min. It is also evident from Fig. 3(b)
that 90% of the neurons in the stable network are added for the
first 10% of the training samples (i.e., the first 5000 samples).
The remaining 90% of the training samples (i.e., the latter 55000
samples) contribute only about 10% of the neurons in the stable
network. Next, we conduct a study on the choice of the novelty
threshold (En). We do this by training the network using the
training data set, varying the novelty threshold from 0.1 to 0.5.
We hold a validation data set of 1000 samples, by sampling
100 samples from each class in the testing data set. With the
addition of each neuron, the reconstruction error of a subset of
the testing data set is computed. It can be observed from Fig. 4
that the choice of En affects the convergence, especially, because
the network learns in a single pass. Setting a high threshold for En
results in too few neurons, and vice-versa, with poor learning in
either case. On the other hand, setting En in the range of 0.25−0.3
results in an optimal architecture, and optimal learning.

We next validate the effect of the sequence in which the train-
ing data is presented, on the performance of the algorithm. We
train the O-RBM independently for 50 randomly constructed se-
quences of the MNIST training samples. In each case, we present
different sequences of the training data set to train the network.
Across the 50 training trials, the classification accuracy on the
testing data set is 97 ± 2%, and the final number of neurons
was 403 ± 26. Thus, changing the sequence of presentation of
training samples does not change the accuracy or the network
architecture significantly, showing that the network is able to
generalize well with a concise network architecture.

To evaluate the discriminative potential of the feature repre-
sentation learned during the online generative training phase, we
relate the number of ‘novel’ samples (where Et

recon > En) to their
corresponding class labels ct for each of the 50 trials. Fig. 5 shows

Fig. 4. Choice of threshold En of O-RBM for MNIST data set.
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Fig. 5. MNIST Classification: Average number of hidden layer neurons associated with each class of the MNIST dataset, with the standard deviation across 50 trials.

Fig. 6. MNIST Classification: Reconstruction of the handwritten digits using the online generative network. The odd numbered rows represent the original image,
while the even numbered rows are the images reconstructed by the RBM network, trained with the O-RBM.

the average number of hidden layer neurons associated with each
class of the MNIST dataset, with the standard deviation across
the 50 trials. These results show that the individual neurons in
the trained network are inherently and collectively discrimina-
tive to the class labels, despite the unsupervised nature of the
training. Further, we observe that the variability across trials is
a small proportion of the average number of neurons in each
class, suggesting that the neuron-to-class associations are largely
independent of the sequence of training data samples.

To demonstrate the accuracy of reconstructions, we present a
subset of the reconstructed image, in comparison to the original
image of the MNIST data sets in Fig. 6. It can be observed from
the Figure that despite single pass learning, the O-RBM is capable
of accurate reconstructions.

4. Experimental performance analysis

As online learning algorithms are particularly suitable for
streaming data applications with evolving stream of data, we ana-
lyze the performance of the Online Restricted Boltzmann Machine
with those of batch learning and online learning techniques for

single hidden layer neural networks. Specifically, we evaluate the
performances of O-RBM on two problems, namely, the problem
of credit scoring of borrowers and for a predictive maintenance of
an aircraft component using time series sensor data. We compare
the various classifiers on the two problems based on the network
size and the performance measures such as the overall efficiency
(ηO), the average efficiency (ηA), True Positive Rate (TPR), True
Negative Rate (TNR), and Geometric mean accuracy (Gmean)
defined as:

ηO =

∑s
i=1 qii
N

X100% (16)

ηA =
1
s

s∑
i=1

qii
Ni

X100% (17)

TPR =
Number of TP

Number of TP + Number of FN
(18)

TNR =
Number of TN

Number of TN + Number of FP
(19)

Gmean =
√
TPR × TNR (20)
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Table 1
Description of the credit scoring data sets.
Data set Input features Size of Data set I.F .

UCI German 24 1000 0.4
UCI AUS 14 690 0.1101
KAGGLE GMSC 10 150000 0.86632

Here, qii is the number of correctly classified samples in class i and
denotes the diagonal elements of the Confusion matrix Q ∈ ℜ

s×s

of s classes. The number of samples in class i is denoted by Ni.

4.1. Performance analysis on benchmark data sets: Credit fraud
analytics

Credit scoring is the problem of estimating the probability that
borrower might default and/or exhibit undesirable behavior in
the future. Credit patterns of individual borrowers are (a) bound
to evolve over time, with huge inter-personal variability across
borrowers, and (b) often characterized by severe imbalances in
the data, as the defaulters are few and between. Online Restricted
Boltzmann Machine provides a better premise to represent such
evolving time series data with severe class imbalances, owing to
its ability to detect novel samples better.

Several studies have employed batch machine learning tech-
niques for credit scoring [3,29–31]. We perform analogous evalu-
ations to benchmark our online learning algorithm in relation to
these batch learning techniques. Specifically, we perform credit
fraud prediction using three publicly available data sets, namely,
the UCI German credit data set (UCI German), the UCI Australian
credit data set (UCI AUS), and the KAGGLE ’Give me some credit’
data set (KAGGLE GMSC). We evaluate the O-RBM classifier, in
comparison with the Support Vector Machine classifier (SVM), the
Multi-layer Perceptron Neural Network (NN) classifier, the Classi-
fication Restricted Boltzmann Machine classifier (ClassRBM) [32]

and the Scoring Table (ST) method on the three credit data sets
(listed in Table 1) in Table 2.

Table 1 details the public credit scoring data sets, along with
the number of classes, the number of training and testing sam-
ples, and their imbalance factors (I.F .):

I.F . = 1 −
s
N

min
i=1···s

Ni, (21)

where s is the total number of classes and Ni is the number
of samples in class i. It is evident that the 3 public datasets
have varying degrees of class-imbalance. While the UCI AUS is
mildly imbalanced, the UCI German is partially imbalanced and
the KAGGLE GMSC has very high imbalance across classes. This
varying degree of class-imbalance provides a unique opportu-
nity to characterize the neuron distribution across classes in the
online learning framework. We filled in the missing values in
the Kaggle ’Give me some credit’ data set by averaging across
similar participants in the population, grouped according to ages
in intervals of 10.

We now present the results of O-RBM in relation to the batch
learning and the state-of-the-art online learning techniques for
a single hidden layer network in Table 2. For batch learning
techniques, we compare the performances of O-RBM with those
of Support Vector Machines, Neural Networks and Classification
Restricted Boltzmann Machines [3]. On the other hand, the on-
line learning performance of O-RBM is benchmarked against the
Projection Based Learning algorithm of a Radial Basis Function
Network (PBL-RBFN). We reproduce previously obtained batch
learning results using the SVM, NN, ClassRBM and ST classi-
fiers from [3]. Although the ClassRBM results in [3] are reported
with fixed architecture of 100 neurons with a batch size of
100 and learning rate of 0.0001, the architecture of the other
classifiers is not specified. Further, the training accuracies of
the classifiers have also not been reported. Hence, we perform

Table 2
Performance analysis on benchmark data sets: Credit scoring.
Data set Classifier K Training Testing

ηO ηA ηO ηA TPR TNR Gmean

UCI
German

SVM 534 76.429 66.679 74.667 61.378 0.3255 0.8878 0.54
SVMa – – – – – 0.484 0.867 0.65
NN 60 98.571 97.573 72.333 65.105 0.4574 0.8446 0.62
NNa – – – – – 0.517 0.814 0.65
ClassRBM 80 77.428 63.346 74.000 56.738 0.4418 0.8271 0.60
ClassRBMa 100 – – – – 0.479 0.872 0.65
STa – – – – – 0.67 0.68 0.68
PBL-McRBFN 100 80.14 81.78 67.33 69.11 0.65 0.73 0.69
O-RBM 48 79 74.2 76.5 71.69 0.60 0.83 0.71

(32:16)

UCI
AUS

SVM 192 85.507 86.263 85.507 86.048 0.7946 0.9263 0.8579
SVMa – – – – – 0.913 0.71 0.850
NN 60 94.824 94.767 84.058 83.727 0.7917 0.8828 0.836
NNa – – – – – 0.850 0.857 0.854
ClassRBM 50 86.128 86.391 85.507 86.021 0.8953 0.8264 0.8602
ClassRBMa 100 – – – – 0.880 0.847 0.863
STa – – – – – 0.828 0.805 0.816
PBL-McRBFN 34 85.71 86.26 81.40 80.60 0.851 0.761 0.80
O-RBM 38 86.68 86.8 88.49 89 0.92 0.86 0.89

(20:18)

KAGGLE
GMSC

SVM 6340 69.970 59.430 72.240 60.018 0.5771 0.8982 0.72
SVMa – – – – – 0.114 0.994 0.336
NN 60 63.896 62.287 74.200 63.017 0.6165 0.8792 0.7363
NNa – – – – – 0.229 0.986 0.475
ClassRBM 100 75.687 74.048 86.160 74.789 0.6 0.8975 0.73
ClassRBMa 100 – – – – 0.182 0.991 0.424
STa – – – – – 0.515 0.622 0.566
PBL-McRBFN 11 57.04 53.31 80.52 53.18 0.22 0.85 0.43
O-RBM 13 76.08 74.49 86.25 75.22 0.63 0.88 0.74

(3:10)

aReproduced from [3].
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Table 3
Statistics of flights data used.
Failure event Event 1 Event 2 Event 3 Event 4 Event 5

No. of flights 1 58 215 28 8
No. of samples 84 2936 11580 1920 584
I.R. (%) 0.90 0.95 0.90 0.78 0.79

independent evaluations using SVM, NN, and ClassRBM classi-
fiers, to report an additional performance validation beyond the
previously reported results.

From the table, we can observe that the online learning al-
gorithms require fewer neurons, in general, compared to the
batch learning techniques. This can be attributed to the ability of
online learning algorithms to evolve their network architecture
depending on the novelty of samples in the data. Further, the
online learning algorithms are capable of generalizing well with
better performance on the testing data, compared with the other
algorithms. Thus, although the training accuracies of the O-RBM
is comparable to those of the batch learning techniques, they
have better ability to generalize on a held-out test set. The ability
of the O-RBM to represent the minority class is exemplary, in
comparison to the batch learning techniques, especially, on the
very highly imbalanced KAGGLE GMSC data set. It is encouraging
to observe that in general, the O-RBM is better than the state-of-
the-art single hidden layer neural network with batch learning
algorithm by at least 2%.

4.2. Performance analysis on a real-world application: Predictive
maintenance of an aircraft component

Although predictive maintenance solutions for aircraft engine
is quite well-established [33,34], there are ongoing efforts in
predicting failures of other components that are critical to the op-
eration of the aircraft. In this work, we leverage on data acquired
from sensors on the aircraft and recorded in the Quick Access
Recorder, to develop predictive maintenance solution for an air-
craft Component. In this analysis, we leverage on the operational
QAR data from an aircraft fleet, over a period of 2 months pivoted
around 5 recorded failure events. In doing so, we dismiss data
during manual shutdown of the component within the 2 month
period.

The problem of predicting the health of the aircraft component
is cast as a predictive maintenance problem, where the O-RBM is
employed to represent the distinctions between signal patterns
of the component in healthy and failure mode. Table 3 presents
the number of flights considered in each event, the number of
samples from each event, and the imbalance ratio of the samples
in each event. The following observations can be made about the
data from the table:

• Event 3 has the highest number of flights and samples.
This event alone contributes to more than twice the sum of
flights (and samples) of all the other events.

• Although Event 1 has only one flight, it contributes to 84
samples.

• The imbalance ratio of the data in each of these events is
very high, with event 2 having the highest imbalance. It
must be noted that the valve was manually shutdown when
a failure was reported, thus, limiting the volume of usable
data in failure mode.

We perform 5 fold Cross Validation (CV), with each of the failure
events reported in Table 3 in the test set, and the data from
the other failure events in the training data set. We present
the results of the O-RBM in comparison with state-of-the-art
batch learning single hidden layer networks on this 5-fold cross

validation study in Table 4. From the table, it can be observed
that although the training accuracies of all the classifiers are
comparable, the O-RBM has better generalization ability than the
other classifiers used in comparison. Further, the O-RBM requires
fewer neurons than the other single hidden layer classifiers, to
represent and classify the same imbalanced data set. On the
highly imbalanced data set obtained from event 2, the O-RBM has
substantially higher testing accuracies than the remaining classi-
fiers. This high testing accuracies can be attributed to the ability
of the O-RBM to detect novel samples and represent them accu-
rately. Thus, we observe that on the two sets of problems, namely
the credit scoring and the predictive maintenance of aircraft
components, O-RBM performs substantially better than state-
of-the-art batch learning algorithms, and requires only fewer
network resources to represent the data.

Generally, we could make the following inferences from the
performance study results on the various problems:

• Network Size: Overall, the O-RBM network uses fewer neu-
rons than the other single hidden layer classifiers used in
comparison. This is because the O-RBM uses the most novel
samples to add neurons to the network, and the neurons are
well-representative of the data set.

• Performance Measures: Despite having a compact archi-
tecture, the proposed O-RBM performs better than all the
classifiers used in comparison. This could be attributed to
the fact that the learnt distributions represent the data very
well. Moreover, while the other algorithms learn the data
in batches, and updates gradients in batches, the O-RBM
updates gradients based on every sample in the data set.

• Neuron Distribution Per Class: Unlike the batch learning
algorithms that need a priori assumption of the architecture,
the O-RBM builds the network as learning progresses. This
helps us to infer the number of neurons per class that may
help to characterize the distribution of the samples in each
class.

• Effect of Class-Imbalance: Classes with fewer samples re-
quire more neurons for sufficient feature representation.
As the class imbalance increases, a greater proportion of
the hidden layer neurons is associated with less prevalent
classes. This adaptation is a natural consequence of the on-
line learning process, and differentiates our approach from
the batch learning algorithms.

5. Conclusion

We introduced a novel Online Restricted Boltzmann Machines
(O-RBM) framework that evolves a network architecture in a fully
bottom-up online manner as data streams in. We demonstrated
that the algorithm converges to a stable compact network archi-
tecture wherein (a) hidden layer neurons are implicitly associated
with class labels (despite unsupervised training), and (b) classifi-
cation performance are invariant to the sequence in which the
training data samples are presented. Further, O-RBM performed
better than batch techniques in credit score classification with
streaming data — specifically online learning achieved better
accuracy with fewer neurons and showed the unique ability to
adapt to class imbalance. Designing online learning frameworks
for multilayered deep belief network is currently under inves-
tigation. We believe that this work will foster online learning
researches in areas that include Convolutional Neural Network
(CNN) based supervised and unsupervised learning, generative
and interpretable models.
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Table 4
Performance study: Predictive maintenance of an aircraft component.
Data set Classifier K Training Testing

ηO ηA ηO ηA TNR TPR Gmean

Event 1

SVM 7879 90.63 90.49 98.81 99.34 100 98.68 0.99
NN 200 96.63 87.05 100 100 100 100 1
ClassRBM 80 97.00 89.02 100 100 100 100 1
PBL-McRBFN 8 89.46 78.76 100 100 100 100 1
O-RBM 15 96.95 88.86 100 100 100 100 1

Event 2

SVM 6740 91.62 91.52 91.55 78.64 93.12 64.15 0.77
NN 200 97.16 91.70 95.40 76.52 97.69 55.35 0.74
ClassRBM 180 97.26 91.00 95.33 75.89 97.70 54.09 0.73
PBL-McRBFN 6 91.76 85.18 93.21 84.23 95.48 72.98 0.83
O-RBM 15 97.18 91.8 94.55 82.59 96.00 69.18 0.82

Event 3

SVM 1906 96.66 96.70 86.80 79.56 88.62 70.50 0.79
NN 120 98.19 95.38 88.78 77.01 91.75 62.26 0.76
ClassRBM 70 98.46 97.27 83.35 79.05 84.43 73.67 0.79
PBL-McRBFN 250 90.13 88.96 93.64 82.76 96.39 69.13 0.82
O-RBM 11 98.38 96.98 85.96 79.81 87.50 72.13 0.79

Event 4

SVM 7109 89.52 89.03 94.27 87.96 99.27 76.65 0.87
NN 120 96.91 88.43 95.31 89.56 99.87 82.35 0.80
ClassRBM 70 96.75 88.19 95.37 89.84 99.73 79.25 0.89
PBL-McRBFN 69 94.75 77.40 99.12 98.76 99.4 98.11 0.98
O-RBM 41 96.71 87.31 95.68 96.74 96.75 96.72 0.97

Event 4

SVM 7741 90.33 90.13 96.75 94.89 93.07 96.72 0.95
NN 120 97.06 88.08 96.92 96.24 97.40 95.08 0.96
ClassRBM 80 96.36 83.95 96.91 96.24 97.4 95.08 0.96
PBL-McRBFN 7 94.19 80.28 96.75 96.74 96.75 96.72 0.96
O-RBM 35 96.98 88.28 97.26 97.06 97.4 96.72 0.97
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