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ARTICLE INFO ABSTRACT

Adaptive traffic signal control (ATSC) systems improve traffic efficiency, but their impacts on traffic safety vary
among different implementations. To improve the traffic safety pro-actively, this study proposes a safety-or-
iented ATSC algorithm to optimize traffic efficiency and safety simultaneously. A multi-objective deep re-
inforcement learning framework is utilized as the backend algorithm. The proposed algorithm was trained and
evaluated on a simulated isolated intersection built based on real-world traffic data. A real-time crash prediction
model was calibrated to provide the safety measure. The performance of the algorithm was evaluated by the real-
world signal timing provided by the local jurisdiction. The results showed that the algorithm improves both
traffic efficiency and safety compared with the benchmark. A control policy analysis of the proposed ATSC
revealed that the abstracted control rules could help the traditional signal controllers to improve traffic safety,
which might be beneficial if the infrastructure is not ready to adopt ATSCs. A hybrid controller is also proposed
to provide further traffic safety improvement if necessary. To the best of the authors’ knowledge, the proposed
algorithm is the first successful attempt in developing adaptive traffic signal system optimizing traffic safety.
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1. Introduction

As one of the most important Active Traffic Management (ATM)
strategies, Adaptive Traffic Signal Control (ATSC) helps improve traffic
efficiency of signalized arterials and urban roads by adjusting the signal
timing in response to the dynamic traffic demand. However, the safety
effects of state-of-practice ATSCs are not consistent. Some studies show
that the installation of ATSCs reduces the number of crashes (Ma et al.,
2016; Khattak et al., 2018). While another study concludes that the
crash frequency before and after the implementation of ATSCs is not
significantly different (Fink et al., 2016). A study on traffic conflicts,
which is one of the surrogate safety measures, even found that there is a
considerable increase in both frequency and severity of conflicts fol-
lowing the installation of the ATSC (Tageldin et al., 2014). The mixed
evidence raises the concern of ATSC’s safety impact.

This study advocates designing an ATSC that is able to ensure or
improve traffic safety, i.e. a safety-oriented ATSC. Several recent studies
have found that signal timing is related to the crash occurrence at
signalized arterials and intersections (Yuan et al., 2019, 2018; Yuan and
Abdel-Aty, 2018). By applying the models developed by the afore-
mentioned studies, the safety-oriented ATSC is able to reduce the crash
occurrence by dynamically optimizing its signal timing in response to
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different traffic conditions. Moreover, the proposed safety-oriented
ATSC could also serve as a strategy of pro-active traffic safety man-
agement to improve traffic safety of arterials and urban roads like other
ATM strategies (e.g. Ramp Metering and Variable Speed Limits) do for
freeways (Abdel-Aty et al., 2006; Wang et al., 2017; Yu and Abdel-Aty,
2014).

Although the safety-oriented ATSC aims at optimizing traffic safety,
it should not be detriment to efficiency. Therefore, we proposed an
ATSC system that utilizes a multi-objective framework to simulta-
neously optimize traffic efficiency and safety. A real-time crash risk
model (Abdel-Aty et al., 2004) is applied to generate the indicator of
near-future crash likelihood. The multi-objective reinforcement
learning algorithm is used for optimization. The proposed algorithm
was tested in a simulated real-world isolated intersection. Its perfor-
mance in terms of delay and crash risk reduction was compared with a
replicated field controller and an ordinary ATSC optimizing only traffic
efficiency. A discussion about the control policy of proposed safety-
oriented ATSC and the potential impact of different signal configuration
is also provided.
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2. Related work
2.1. ATCS considering traffic safety

There have been several studies on optimizing signal timing con-
sidering traffic safety (Stevanovic et al., 2015, 2013; Zhu et al., 2019).
Almost all of them employed surrogate safety measures as the safety
indicator and all these studies focused on fixed-timing controllers. The
burden of extending such fixed-timing controllers to safety-oriented
ATSC is that the most modern ATSCs are designed to be pro-active/
predictive. In other words, the ATSC needs to know how the signal
timings affect the future safety condition. Therefore, to use the surro-
gate safety measures (e.g. traffic conflicts) as the safety indicator, a
prediction model of the future surrogate safety measures needs to be
developed.

To the best of the authors’ knowledge, only one published study
(Sabra et al., 2013) developed a non-parametrical traffic conflict pre-
diction model and proposed a safety-oriented ATCS accordingly. The
study developed a four-stage algorithm tuning the cycle length, splits,
offsets, and left-turn phase sequence sequentially. At each stage, the
“predicted” number of traffic conflicts is used to evaluate the signal
timing tuned by the control algorithm. If the “predicted” traffic conflict
of new signal timing is greater than that of the current one, the con-
troller keeps using the current signal timing. Otherwise, the new signal
timing is applied. The proposed algorithm is tested in a simulated real-
life arterial corridor and a simulated real-life grid network. For the
arterial case, although the proposed algorithm reduces the number of
traffic conflicts compared with a coordinated actuated signal optimized
by the authors, it does increase the number of traffic conflicts compared
with the existing field controllers. For the grid network, the algorithm
increases the number of traffic conflicts compared with a coordinated
actuated signal optimized by the authors, and no testing results of ex-
isting field operation are provided. Therefore, the ability of the pro-
posed algorithms in improving traffic safety is not conclusive.

2.2. Multi-objective ATSCs using reinforcement learning

In the past decades, reinforcement learning (RL) algorithms have
been widely applied to develop ATSCs (Yau et al., 2017). Signal control
agents using RL algorithms to learn a policy, which maps the perceived
environment (e.g. traffic condition), i.e. state, to actions taken by the
controller. The rewards received from the environment, which represent
the objective, direct the agents to learn an optimized policy. The dis-
cussion of reinforcement learning will be elaborated on in the next
section.

Some studies have proposed RL-based ATSC with multiple optimi-
zation objectives. Based on the way to achieve the multi-objective op-
timization, they could be classified into three different types.

The first type is an ATSC which is able to switch its objective dy-
namically. Houli et al. (2010) developed an ATSC with three different
backend single-objective RL algorithms with different goals. But only
one algorithm is activated according to the traffic condition. When the
current traffic condition is free flow, the goal of the ATSC is minimizing
the number of stops. When it is under medium traffic condition, the
goal turns to minimize the overall waiting time. When there exists
congestion, the goal is switched to minimize queue length to avoid
queue spillover. This type of ATSC is not suitable for this study as the
safety and efficiency have to be simultaneously optimized.

The second type of algorithms creates a synthetic reward to account
for multiple objectives simultaneously. The most straightforward ap-
proach is using the simple/weighted average of multiple rewards. Each
reward is associated with a policy goal. Khamis and Gomaa (2014)
proposed an ATCS with 7 different objectives. Five of them indicate
different aspects of traffic efficiency, one represents the fuel con-
sumption and the last one is claimed to be “safety reward”. The so-
called safety reward is not any safety measure but essentially the
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average speed of the vehicles. The potential issue of this type of algo-
rithm is that its convergence is not thematically proved since the syn-
thesizing reward is no longer the decomposition of any policy goals. It
should be noted that the reward of several single-objective ATSCs
(Muresan et al., 2018; Van Der Pol and Oliehoek, 2016; Vidhate and
Kulkarni, 2017) could also be the average of several components.

The third type of algorithm is multi-objective RL (MORL). Although
similar to the second type, MORL manipulates the value function rather
than the rewards. Value function represents the expected long-term re-
ward, which implies the goal. In such algorithms, different value func-
tions are learned independently using different rewards, while the
second type of algorithms learns a signal value function by the single
synthetic reward. This is beneficial to the convergence of the algorithm
especially when the objectives are irrelevant. For a multi-objective
ATSC using the aforementioned algorithm, the control agent could ei-
ther choose the action based on the weighted average of multiple value
functions or use one or more of them as the thresholds. The study
conducted by Jin and Ma (2015) utilized the later method to assign
priority to arterials.

According to the review of existing studies, there is still a dearth of
research in developing an effective ATSC optimizing traffic efficiency
and safety. To optimize the two objectives simultaneously, multi-ob-
jective reinforcement learning (MORL) is selected as the backend al-
gorithm.

3. Background
3.1. Real-time crash risk models

The first step of optimizing the signal timing for traffic safety is
understanding how they are correlated. In the pro-active perspective,
the impact of a specific signal timing on the future crash potential needs
to be quantified. Recently, researchers (Yuan et al., 2019, 2018; Yuan
and Abdel-Aty, 2018a) have proposed real-time crash risk models to
examine the relationships between future crash potential and traffic
conditions including signal timing. The basic assumption underlying
real-time crash risk models is that there exist certain conditions that are
relatively more “crash-prone” than the others, which could be called
“crash precursors”. For example, conditions that are just before the
crash occurrence would be regarded as “crash condition”. By comparing
the characteristics of “crash conditions” with “non-crash conditions”,
crash precursors could be identified. Like other binary classification
models, the output of real-time risk models indicates the forecasted
crash potential. It could be the probability of the crash or the odds of
crash versus non-crash. Similar to the efficiency measures like delay,
the forecasted crash potential could be directly employed by “pre-
dictive/pro-active” controllers to assess the future safety effect of a
candidate signal timing in real-time.

3.2. Multi-objective reinforcement learning

RL (Sutton and Barto, 2018) is a goal-oriented machine learning
algorithm. It learns to achieve the goal(s) over discrete time intervals by
interacting with the environment. In each time interval, an RL agent
observes the state s of the environment, takes an action a accordingly
based on its knowledge policy =, receives the feedback reward r (could
also be a penalty) from the environment, which accumulates to the
long-term goal, and transits to the next state s with the state transition
probability P. During the learning process, it keeps updating its policy by
maximizing the expectation of the long-term reward, which is value
function of value-based RL, until it converges to the optimal policy 7".
For the single objective RL problem, the Q value, or action value, refers
to the expected long-term discounted reward for selecting action a at
states following the policy =, is defined as:

Qz (s, a) = E[R/ls; = 5, a, = a] (@)
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And it decomposes into the Bellman equation:

Qels, @)= 3 P(s, 15, O)lr + 73 w(@s)Qx (s, a)]

s,r

(2)

The discount factor y indicates the importance of future rewards. A
higher y means the future reward is more important.

For Q-value-based RL, the optimal policy =" guides the agent to
choose actions that maximize the Q value. Thus, the optimal Q value
function is defined as:
Q(s,a) = mI?XQn' (s,2)

3
And the optimal policy is obtained by:

7 (s) = argmeQ (s, a) )
In the context of Multi-Objective Reinforcement Learning (MORL),
multiple goals are optimized simultaneously. In MORL, each objective
has its associated reward and value function. Thus, Q-values are ex-
pressed as Q vector MQ, (s, a):

MQ (s, @) = Q1 (5.2), Qz (52, QF (5:2) I ©)
Intuitively, the optimal Q vector is defined as

MQ'(s, @) = maxMQ; (s,a)
p (6)
The “maximum operation” of a vector could have different defini-
tions. Generally, there are two ways for MORLs handling the “max-
imum operation”: single-policy MORL approach and multi-policy MORL
approach (Liu et al., 2015). Single policy approaches aim to find the
best single policy representing the preferences or the trade-off among
the objectives. Several different algorithms are developed to determine
and express the preferences or trade-off, such as linear/non-linear
weighted sum approach, W-learning, AHP approach, ranking approach,
and geometric approach, etc. Multi-policy MORL aims at approximating
the Pareto front by a set of policies. The Pareto front is a set of Pareto
non-dominated solutions. If any objective of solution could not be im-
proved without sacrificing at least one other objective, the solution is a
Pareto non-dominated solution.

4. Algorithm

In this study, the control problem is formulated into the MORL
setting: the signal controller acts as an RL agent; it observes the traffic
condition of the intersection and the current signal status as the state; it
directly selects the appropriate phase as its action; the waiting time of
vehicles acts as the efficiency reward while the risk score derived from
the real-time crash risk model acts as the safety reward; and the goals of
the agents are reducing the delay (efficiency) and future crash potential
(safety). Weighted sum approach is selected to develop a single policy
MORL and one of the famous deep reinforcement learning algorithms
Double Dueling Deep Q Network (3DQN) is utilized as the backend
learning algorithm. The details of the algorithm are elaborated on in the
subsections below.

4.1. State

The state used in this study includes two components: a binary
matrix indicating the traffic condition of the intersection and the cur-
rent activated signal phase. For the traffic condition, the proposed al-
gorithm employs a “camera-like” virtual traffic detector to capture the
locations of individual vehicles occupying the intersection approaches.
It provides more heterogeneous travel information than aggregated
traffic parameters. For example, blockage of the left-turning lane could
be captured. In order to simulate the limited detection range of traffic
cameras, the virtual traffic detectors only detect the vehicles within a
certain distance from the stop line. Fig. 1 shows how the traffic
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condition matrix is generated. “Virtual-loop” concept that is widely
used in video detection is applied, which is basically a short segment of
an intersection approach. If a “virtual-loop” is occupied by a vehicle,
the corresponding element in the traffic state matrix turns from 0 to 1.
The length of each virtual loop detectors in this study is 15 feet and the
maximum number of loop detectors for each lane is 20.

The current activated signal phase is also recorded as a part of the
state. The signal phase is defined as the combination of two or more
non-conflicting vehicular movements. Figs. 2,3 shows a typical eight-
phase schema of a four-way intersection. An “interphase” refers to the
clearance time including yellow time and all-red clearance. The current
signal phase is coded as a vector with a length of n+1, where n is the
number of phases of the signal. The last digit indicates whether the
phase is interphase or not.

4.2. Action

The action of the agent is selecting the appropriate signal phase at
each time interval based on the current policy. If a phase changing oc-
curs, the controller will activate the interphase to clear the intersection.

Several other rules are applied to restrict the arbitrary selection of
actions to ensure traffic safety and overcome some fundamental lim-
itations of RL-based ATSC:

1) Ensure minimum green time (g,,;,): the minimum green time con-
cept is used in actuated signal control to satisfy the driver’s expectation
(Arroyo et al., 2015). If a minimum green time is set too low (or even
omitted) and violates the driver’s expectation, there exists a risk of
increased rear-end crashes. Therefore, the controller is configured not
to allow the change phase if the minimum green time is not satisfied.
The values of minimum green times are set to be the same as the ones
used in the field to avoid double investigation. However, if there is no
existing signal control, the values should be set based on the local traffic
signal timing manual.

2) Default phase (p,): If there is no vehicle at the intersection, the-
oretically the RL-based ATSC randomly selects a phase to activate
during the learning stage. This is detrimental to both traffic efficiency
and safety. Therefore, a default phase that represents the major ap-
proach through movements is set to avoid the random phase changes.

3) Maximum allowed waiting time (tmaanaiiing): The benefit of setting a
maximum allowed waiting time is ensuring fair travel rights. Consider
an extreme case. There is only one vehicle waiting on the minor ap-
proach to turn left, while there are one hundred vehicles that are
waiting on the major approach going through. As one of the objectives
of ATSC is reducing the TOTAL delay, the controller would favor
clearing the major approach, which results in excessively long waiting
time for the vehicle on the minor approach. Therefore, a maximum
allowed waiting time is configured to prevent the occurrence of such a
situation.

4.3. Rewards

Two rewards are designed for traffic efficiency and safety. As for the
efficiency, the goal is minimizing the travel time of a vehicle, or the
delay, which theoretically is the difference between the actual and
expected travel time. However, it is not feasible to obtain the travel
time or delay as they are only available when the vehicle reaches its
destination. Thus, the cumulative waiting time of the queued vehicles is
used as the goal indicator. The reward representing the traffic efficiency
is defined as the difference of the current and previous cumulative
waiting time of all vehicles:

te = —(We1 — W) 11

where W,1, W, are the waiting time of step t + 1 and ¢. The reward
could be interpreted as such: when the vehicles are queued, the agent
will be penalized; and when the queued vehicles are discharged, the
agent will be rewarded.
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Fig. 1. Traffic State Representation (Gong et al., 2019, with permission).
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Fig. 2. Eight phases for four-way intersections.
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As for safety, a risk score is utilized to indicate the relative risk level.
The score is calculated using a real time crash risk model calibrated
based on the local historical crashes and traffic data. As the score is site-
specific, its calculation process varies for different kinds of intersec-
tions, different locations, and different interests of the users. Other
surrogate safety measures that imply the future crash risk could also be
used as the “risk score”.

In this study, the reward for safety is defined as the adjusted risk
score by a baseline:

Pooling Layer 1
X/2¥Y/2*16

Traffic State Input
X*Y*1

Convolutional Layer 1
X*Y*16

X: Detectors per lane. Y: Number of lanes. N: Number of phases

riskscore, — riskscorey,s, When riskscore is generated
0 otherwise

rts={

where riskscore, is the risk score at timestamp t and riskscoreys, is a
baseline risk score calculated during the pre-training. It should be noted
that the risk score might not be generated at every control step. In this
case, the risk reward acts as a “delay” reward.

The reward could be interpreted as an “advantage”: when the re-
ward is positive, the safety performance is better than the baseline,
which means that the agent will be rewarded; otherwise, the agent will
be penalized. Defining the reward as an advantage term accelerates the
learning process as it helps the agent to find the direction.

It should be also noted that the rewards for traffic efficiency and
safety are used to direct the training process. Once the control agent is
well-trained, such rewards are no longer needed during the operation.

()]

4.4. Weighted sum approach for single policy MORL

Weighted sum approach (Karlsson, 1997), one of the single policy
MORL algorithms, is selected due to its computational efficiency since
the multi-policy algorithms are computational intractable for the ATSC
problems that require real-time decision making. It computes a linearly
weighted sum of Q-values for all the objectives to obtain a synthetic Q
function:

Convolutional Layer 2 Pooling Layer 2 Fully-connected Layer
X/2¥Y/[2*32 X/4*Y/4*32 1024 +N +1
Value
Advantage
Signal Phase Input N
N+1

Fig. 3. The structure of the neural network used in the learning algorithm (adopted from Gong et al., 2019, with permission).
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the recall phase previous action step
Determine and activate the
step 11 SR
appropriate interphase

Fig. 4. ATSC Algorithm flow chart.

N
SQ(s, @) = Y wiQi(s, a)
i=1 (13)

where SQ(s, a) is the synthetic Q value; Q;(s, a) is the Q value of the ith
objective; w; is the weight, it implies the relative importance of the
specific ith objective. The weights could be pre-configured by the al-
gorithm developers or be determined by the users.

In this study, the synthetic Q value is the weighted sum of the
normalized Q values:

Qe (S’ a) - Qe.min (S, a)
Qe,mux (S, a) - Qe,min (S, a)

w Qs (S, a) - Qs,min (S, (1)
* Qs,max (S, a) - Qs,min (S’ a)
13

where Q(s, a) is the synthetic Q value used to evaluate the actions;
Q. (s, a) and Qs(s, a) is the Q value of traffic efficiency and traffic
safety, respectively. Two Q values are normalized to the same magni-
tude by the min-max method since the rewards and Q values of the two
objectives have a huge difference in terms of the magnitude. Q; uin (s, @)
and Qs uin (S, ), i € [e, s] are the minimum and maximum values of the
two Q values estimated from the pre-learning. w, and w; are the
weights.

Q(s, a) = w,

4.5. Backend learning algorithm

The proposed ATSC utilizes Double Dueling Deep Q Network

(3DQN), one of the advanced Q-value-based deep learning algorithms,
as its backend algorithm. Readers are encouraged to refer to Wang et al.
(2015) for the technical details. 3DQN uses DNNs as its functional ap-
proximator. In this study, the convolutional neural network (CNN), one
of the DNNs widely used in pattern recognition, is employed to con-
struct the functional approximator. The structure of CNN used in the
proposed algorithm is similar to the previous study by the authors
(Gong et al., 2019). The CNN firstly takes the traffic state as the input.
Then the traffic state is processed into a vector and connected with the
signal phase input. Finally, the Q values of all actions are outputs. CNN
takes the state as the input and outputs the Q values of all actions. It
should be noted that the functional approximators of two Q values have
the exact same structure but are trained separately.

4.6. Pre-Training

According to the design of the algorithm, there are two pre-requests
for learning: first, getting the baseline risk score to derive the safety
reward; second, getting the estimated range of the Q values to obtain
normalized Q-values. Therefore, a two-phase pre-training is designed.

The objective of the first phase of the pre-training is to find out the
baseline risk score. Since the risk score is a relative measure and site-
specific, it is impossible to find a “best” risk score. Thus, the hourly-
average risk score of a benchmark scenario, which is used to evaluate
the proposed algorithm, is utilized. It means that the control agent is
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“directed” to perform better than the benchmark signal controller does.

To estimate the range of Q-values, at the second phase of the pre-
training, the control agent is asked to learn the exact policy of the
benchmark signal controller or another reference controller if neces-
sary. During the pre-learning, the agent observes the action taken by
the benchmark controller rather than taking actions based upon its own
policy and update the hyper-parameters of the functional approximator.
The minimum and maximum of Q values generated by functional ap-
proximator during the learning course are recorded to get the estimated
range of the Q values. It should be noted that as the baseline controller
is not exactly the same as the optimal controller, the range of Q values
of those two controllers might have a subtle difference. Therefore, there
exists a dilemma that while it is impossible to know the range of Q
values of the optimal policy before learning, without knowing the range
of the Q values, it is impossible for the MORL agent to learn the optimal
policy. Thus, a compromise could be achieved by using the reference
controller if the baseline controller is not close enough to the optimal
controller.

4.7. Overall algorithm

The flow chart of the proposed algorithm is presented in Fig. 4. Step
1 and 2 are the pre-learning steps to figure out the baseline risk score
and min/max Q values. Step 3 and 4 are the initialization of the algo-
rithm. The control process, which is basically activating the appropriate
phase with certain constraints, is illustrated from step 5 to step 12. And
the rest is the simplified learning process of the standard deep Q net-
work model. The algorithm is coded by Python programming language
using deep learning package Tensorflow (Abadi et al., 2015).

5. Case study

The proposed algorithm was tested in a simulated isolated inter-
section using a commercial traffic simulator Aimsun Next 8.3.0. The
algorithm obtains the information from the simulator and implements
its control policy to the simulated signal controllers. The simulated
MORL agents were trained extensively. The performance of the well-
trained agent is evaluated by the real-world signal timings and com-
pared with an RL based ATSC optimizing only traffic efficiency (ATSC-
SORL).

5.1. Simulation set up

The simulation scenario was built based on a real-world signalized
intersection of North French Avenue (major arterial) and West 1st
Street (minor arterial) in Seminole County, Florida. The intersection is a
typical mid-size four-way intersection with moderate traffic volume.
Fig. 5 shows the lane configuration of the approaches of the intersec-
tion. Right turns are permitted on red after a complete stop at the stop
line, and the left-turns of the east-west approaches are configured as
permitted-protected. In this study, the lane-based counts of all Tues-
days, Wednesdays, and Thursdays from January 2018 to March 2018
were extracted from the Automated Traffic Signal Performance Mea-
sures (ATSPM) system. Then the average counts for every 15 min are
used to approximate the turning movement counts for a “normal
weekday”. Then they serve as the travel demands of the intersection. It
should be noted that for the shared through-right-turning lane, the
percentage of right turning is set as 30 %. As for the eastbound, as there
exists a dedicated right-turning lane, the actual right turning volume is
used.

Fig. 6 shows the 15-minutes counts for all four approaches. It shows
that the

North-South approach is the major approach. The large volume of
eastbound is caused by the right-turning vehicles using the dedicated
right-turning lane.

In the field, the intersection is controlled by a coordinated actuated
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signal controller. In this study, a simulated controller using the signal
timing provided by Seminole County is employed to replicate the field
controller and serves as the benchmark (BC). The up-to-date timing
plan, which was retimed on 03/07/2017, was used based on the travel
demand study period. The benchmark signal timing includes three Time
of Day (TOD) plans for coordination and the signal runs fully actuated
during the nighttime. Fig. 7 shows the splits of TOD plans and max/min
green time when the signal is fully actuated. The yellow time is five
seconds and the all-red clearance time is two seconds. Another ATSC
controller developed using a single objective RL algorithm (ATSC-
SORL) (Gong et al., 2019), which aims at only optimizing traffic effi-
ciency, is also used for comparison.

5.2. Real-time crash risk model

In this study, a real-time crash risk model is developed to forecast
the crash odd in the next 5—10 min. The forecasted crash odds are used
as the “risk score” to generate “safety reward”.

As mentioned earlier, the real-time crash risk model is a binary
classification problem, thus a binary logistic model is naturally pre-
ferred. If a crash occurred under certain conditions, the condition is
classified as “crash” and vice versa. Suppose the “crash” case has the
outcomes ), = 1 and y, = 0 with the respective probabilities of p, and
1-p, i=1,2,..M. M represents the total number of samples. The
binary logistic regression can be expressed as:

% ~ Bernoulli(p;) a4

lOglt(pl) = ﬁO + ﬁl)(li + ﬁzXZi + "'+ﬁKXKi (15)

where §; is the intercept, g = (6, f,, ....B¢) is the coefficients vector,
and X; = (4, %, ...,Xg) is the independent variable vector for the ith
observation.

Similar to the previous study by Yuan et al. (2019), the direct output
of the binary logistic model is the predicted log crash odd of vehicles
entering the intersection from a specific approach. As the number of
crashes that have occurred at the test intersection is not sufficient to
develop the model, crashes that have occurred in Seminole County, the
same jurisdiction as the test intersection, were used. In total, data of
349 crashes from January 2017 to April 2018 were collected from
Signal Four Analytics (S4A). These crashes occurring within the inter-
section area and the at-fault drivers were not under the influence of
alcohol and drugs. Traffic data and signal timing logs of the intersec-
tions where crashes have occurred were extracted from ATSPM for a
period of 10 min (divided into two 5-minutes time slices: slice 1 is
0—5minutes and slice 2 is 5—10min) prior to the crash occurrence.
The data of different approaches were labeled using the same nomen-
clature as a previous study (Yuan and Abdel-Aty, 2018). The predicted
approach is named as “A” approach, which is the traveling approach of
the at-fault driver. “B”, “C” and “D” approaches are labeled following a
clockwise sequence (please refer to Yuan and Abdel-aty, 2018b for
more details). Since the crashes are rare events, the “non-crash” events
are randomly sampled to generate a balanced dataset. In this study,
3215 “non-crash” events and 349 “crash” events were collected to ca-
librate the final model.

Table 1 shows the modeling results. The model estimation results
show that the future crash potential at signalized intersections is af-
fected by various factors that are collected from the four approaches,
including the green ratio from A approach, through volume from C
approach, arrive on green from D approach, etc. These results indicate
that the crash odd is represented by the complicated interactions be-
tween signal timing and vehicle arrivals.

As the value outputted by the model is the predicted “risk score” for
one approach, the final “risk score” of the whole intersection is defined
as the average “risk score” of four approaches.

The risk score is calculated every minute using a rolling horizontal
approach. For example, at 19:00, the model uses data from 18:50 to
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Fig. 5. Lane configuration of the simulated intersection.

230 Table 1
Modeling Results of the Real-Time Crash Risk.
200 A Variable Coefficient  Standard P-Values Nomenclature
Error
]
S 150 | Intercept —2.095 0.410 0.000* Prefix(approach label): A/B/
8 A LT GR S1 1.790 1.048 0.087**  C/D
s A_TH_AOG_S1 0.003 0.002 0.076** Turning Movement
8 1004 ATHGRS2  —2.302 0.702 0.001*  LT: Left turning; TH: Through
2 B_TH_GR_S2 —2.085 0.705 0.003* Variable Type:
< C_LT_AOG_S2 —0.018 0.010 0.068**  AOG: Number of vehicles
C_TH.AOG.S1 0.007 0.002 0.000* arrived at the intersection on
50 1 CTHGRSI  -2167  0.624 0.001%  green
C_TH_GR_S2 2.938 0.720 0.000* GR: Ratio of the green time
DLT AOGS1 0.014 0.007 0.039* within 5-minute
01 S S ——— D_TH_AOG.S1 0.008 0.003 0.007* Suffix(time slice): $1/S2
S5 5.66 6.6.0.6.6 86 .66 DTHGRSl  —2.229 0.972 0.022*  Example: (A. TH _AOG.S1):
@‘%\%\}%&%ﬁ%ﬁ%ﬁ%’V%QS%@?&%%%?&%%QE\'%%%%&%ﬁ%&p DTHGRS2 1786 0.920 0.052%*  Number of through vehicles
time arrived at the intersection on
green of approach A
Fig. 6. 15-minutes counts of all approaches (For interpretation of the references (predicted approach) at the
to colour in this figure legend, the reader is referred to the web version of this time slice 1(0— 5 minutes
article). before the crash occurrence)

FREE

06:30-10:30

10:30-14:00

14:00-21:00

Fig. 7. Benchmark signal timing.
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Table 2
Algorithm Setting.

Parameter  Value Description Note

Number of actions
Minimum green time

N 8
10 (6:30—21:00)
6 s(otherwise)

Number of phases

8min

ty 5s Yellow time Same as benchmark
tar 2s All-red clearance time
Do NT/ST Default phase Major approach
through
Imaxwaiting 180s Maximum allowed
waiting time
We 0.5 Weight of the efficiency
objective
W 0.5 Weight of the safety
objective
Y 0.99 Discount factor
e 0.9999 Ending greedy To avoid oscillation
M 20,000 Replay memory size Roughly tuned
B 64 Minibatch size
Ir 0.00005 Learning rate
train 1s length of training step Same as control step

19:00 to forecast the crash likelihood from 19:05 to 19:10; at 19:01,
data from 18:51 —19:01 is used to forecast the crash likelihood from
19:06 to 19:11. Because the control step is typically several seconds, the
risk score might not change between two control steps. In this case, the
safety reward derived by the risk score act as a “delayed” reward.

5.3. Algorithm setting

Table 2 provides the algorithm setting. In general, the algorithm
imitates the safety-related setting of the benchmark signal as much as
possible. Moreover, the importance of traffic safety and efficiency was
set to be equal.

The first phase of the pre-training was conducted using the bench-
mark signal controller, while the reference controller in the second
phase of the pre-training is the ATSC-SORL controller.

5.4. Results

To evaluate the performance of the proposed multi-objective ATSC
algorithm, the well-trained control agent (ATSC-MORL), the benchmark
controller (BC) and the single objective controller (ATSC-SORL) were
implemented for 30 simulation days. Three kinds of performance
measures were observed: average daily delay per vehicle, average daily
number of stops per vehicle and the average daily intersection crash
risk score. Table 3 shows the average daily performance of the 30 si-
mulated days.

According to the Table 3, compared to the BC controller, ATSC-
MORL controller reduced average daily delay of by 25.93 % (26.395s
versus 19.550s), average daily number of stops by 12.52 % (0.703
versus 0.615) and the average daily crash risk score by 8.89 % (0.045
versus 0.041). Compared with the ATSC-SORL controller, the ATSC-
MORL did improve traffic safety and reduced the number of stops while
increasing travel time. Interestingly, while the ATSC-SORL reduces the
delay dramatically (49.1 %) comparing with the benchmark, it does

Table 3

Average Daily Performance of the Controllers.
Controller Efficiency Safety

(Risk Score)
Average Delay (sec) Number of Stops

BC 26.395 0.703 0.045
ATSC-SORL 13.434 0.691 0.072
ATSC-MORL 19.550 0.615 0.041

Accident Analysis and Prevention 144 (2020) 105655

increase the crash likelihood.

The performance of the three controllers at different times of day
was also investigated. Fig. 8 shows the change of performance measures
in 15-min aggregation intervals. Although ATSC-MORL performs well
in most situations, there exist certain conditions that ATSC-MORL
performs worse than the benchmark. First, ATSC-MORL tends to in-
crease the average delay per vehicle dramatically when the traffic de-
mand is extremely low (23:00—06:00, please refer to Fig. 3 for the
demand). However, ATSC-MORL is able to reduce the delay when the
traffic demand is medium to high. This is completely opposite to the
benchmark controller. It is not supersizing as the goal of the RL-based
ATSC is optimizing the total delay throughout the day; therefore, in-
creasing the delay of a small number of vehicles while reducing the
delay of a large number of increases the average number of stops per
vehicle when the traffic demand is low.

Second, the ATSC-MORL failed to reduce the crash likelihood when
the volume is close to zero (01:30 —04:30). While admittedly, its ob-
jective is optimizing the risk score throughout the day, the causation
needs to be further investigated.

In conclusion, the proposed ATSC-MORL based ATSC is bale to
improve both traffic efficiency and safety compared with the existing
field controller. As traffic safety and efficiency are likely to be com-
peting objectives, if the ATSC does not consider traffic safety, it might
lead to potential safety issues.

6. Discussion
6.1. Control policy analysis: opening the “Black Box”

Machine learning algorithms are criticized for their lack of inter-
pretability, which is often referred to as the “Black Box” metaphor.
While the vast majority of studies on RL-based ATSC showed their su-
perior performance than traditional signal controllers, little attention
has been given to illustrate how they achieve it. We would like to open
the “Black Box” by analyzing the “optimal policy” of RL-based con-
trollers on the test intersection. Especially there exist certain conditions
that RL-based ATSC performs worse than the benchmark in terms of
traffic safety. The analysis might not be comprehensive, but rather
provides some insights for researchers and practitioners.

Several terms were defined to help control policy analysis:

Signal group: The set of turning movements that are controlled by
the same traffic signal indications. For example, in this study, the
northbound through movement and the northbound right-turning
movement are controlled by the same set of signal indications. These
two turning movements belong to the same signal group NT. Each
phase could have a set of non-conflicting signal groups.

Signal group green interval length: The length of the time interval that
the indication of a signal group is green (short for length in Table 4)

Green ratio: Ratio of the total signal group green interval length
within a specific time interval (e.g. 15 min).

Table 4 presents the average length, the average green ratio, and the
activated times of each turning movement. The daily traffic flow per
lane is also provided as a reference. Fig. 9 illustrates the average 15-
minutes-aggregated green ratio for each signal group. In terms of effi-
ciency, RL-based ATSCs (ATSC-SORL and ATSC-MORL) which have
better performance exhibits shorter green intervals. In other words,
they change the phase more frequently. For an isolated intersection,
given that the queue is cleared, shorter green intervals reduce the
waiting times of vehicles on approaches whose signal indications are
red. This might lead to the delay reduction of the RL-based ATSCs.

As for traffic safety, ATSC-MORL and BC whose risk score are less
than that of ATSC-SORL favor the major approach through movement
(NT—ST). More specifically, for ATSC-MORL, the green ratio of the NT
signal group (with the highest flow) is significantly larger while the
green ratio of the SL signal group (with the lowest flow) is significantly
smaller. One possible explanation is that such a policy reduces the
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Fig. 8. 15-minutes aggregated performance measures of the controllers (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

Table 4
Statistics of Green Interval Length, Activated Times and Green Ratio of Signal Groups.
Controller NL NT
Length Activated Times Green Ratio Flow Length Activated Times Green Ratio Flow
(pdpD) (pdpD)
BC 9.55 702 7.8% 3379 45.30 1153 56.8% 6431
ATSC-SORL 8.49 1443 12.4% 17.48 2024 40.9%
ATSC-MORL 6.39 1133 8.2% 37.02 1662 70.5%
Controller SL ST
Length Activated Times Green Ratio Flow Length Activated Times Green Ratio Flow
(pdpD) (pdpD)
BC 7.15 248 2.2% 340 29.68 1272 41.6% 3251
ATSC-SORL 11.63 427 6.8% 7.94 2442 20.9%
ATSC-MORL 6.41 136 1.2% 25.22 1881 52.1%
Controller EL ET
Length Activated Times Green Ratio Flow Length Activated Times Green Ratio Flow
(pdpD) (pdpD)
BC 10.41 655 9.0% 632 9.91 912 10.2% 1614
ATSC-SORL 8.21 1137 9.0% 7.90 1178 8.5%
ATSC-MORL 7.12 730 6.6% 6.27 851 6.5%
Controller WL WT
Length Activated Times Green Ratio Flow Length Activated Times Green Ratio Flow
(pdpD) (pdpD)
BC 8.49 521 5.5% 532 8.66 763 7.6% 787
ATSC-SORL 10.38 1567 17.6% 10.26 1540 17.7%
ATSC-MORL 7.20 725 7.6% 6.96 752 6.5%
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Table 5 Table 6

Average Daily Performance of the Adjusted Controller. Average Daily Performance of the Other Tested Controllers.

Controller Efficiency Safety Controller Efficiency Safety
(Risk Score) (Risk Score)

Average Delay (sec) Number of Stops Average Delay (sec) Number of Stops
BC 26.395 0.703 0.045 BC 26.395 0.703 0.045
ATSC-MORL 19.550 0.615 0.041 ATSC-MORL 19.550 0.615 0.041
AD 31.423 0.648 0.039 HAC 20.045 0.729 0.051
ATSC-MORLP 28.068 0.672 0.040°

probability of the occurrence of conflicts with the least sacrificing of
traffic efficiency. Consider an extreme case. If the southbound left-
turning is completely prohibited, the conflict points with northbound
through movement and east-west approaches are eliminated. Since the
flow of southbound left-turning is lowest among eight signal groups,
prohibiting it would not lead to a huge increase of delay. However, a
legal turning movement could not be prohibited if there exists demand,
therefore, a compromise is achieved by reducing the activation of the
SL signal group. The assumption could also reveal the reason why the
ATSC-MORL performs worse when the volume is close to zero. In such
conditions, the green ratio of ATSC-MORL is actually less than that of
the benchmark.

To support the assumption, a hypothetical coordinated actuated
signal controller (AD) is created by adjusting the benchmark controller.
From 6:30 to 21:00, the length of SL phase was reduced to the minimum
green time (six seconds) while the length of NT phase was increased
accordingly. Table 5 shows the average daily performance of the AD
controller during 30 test simulated days. It is not surprising that the
average delay is higher than the BC as the southbound left-turning
movement was intentionally delayed without the remedy of ATSC. This
might also imply that traffic safety and efficiency are competing ob-
jectives. The risk score is significantly less than the BC controller and
even a little bit less than the ATSC-MORL controller. The green ratio of
SL signal group of AD controller is actually 1.1 %, which is less than
that of ATSC-MORL controller. Therefore, the aforementioned as-
sumption could be regarded as the abstracted knowledge learned by the
RL-agent and it could be transferable to a different type of signal con-
troller.

The result of the control policy analysis of simulated RL-based
ATSCs could also serve as a reference for improving the existing signal
control system if the infrastructure in the field is not ready to adopt RL-
based ATSCs or the practitioners are concerned with their acyclic
nature. However, as the proposed RL-based ATSCs are site-specific, if it
is transferred to other locations, it is recommended to re-train it in a
traffic simulation that replicates local traffic conditions.

6.2. Other considerations of the signal settings

ATSCs improve traffic efficiency and/or safety by dynamically ad-
justing the signal timings. However, other signal settings beyond the
timing parameters are also known to have impact on either efficiency or
safety. Two tests were conducted to investigate how these factors in-
fluence traffic efficiency and/or safety.

6.2.1. Coordinated versus non-coordinated

As there are no universally accepted rules to select the bench-
marking controller, this study chooses to use a signal controller that
replicates the field one. One might find that the field controller is de-
signed for coordination, yet this study focuses on an isolated intersec-
tion. Therefore, the performance of another hypothetical controller
(HAC) that runs fully actuated throughout the day was compared with
BC and ATSC-MORL (Table 6). The timing of the HAC was set as the
same as BC when it runs fully actuated to avoid reevaluating safety-
related timing parameters (such as minimum green time and passage
time). According to Table 6, the performance of ATSC-MORL is better
than HAC in terms of both traffic efficiency and safety, which further

@ A paired T-test was conducted using the data of 30 simulated days to in-
vestigate whether the average risk scores are statistically significantly different
between ATSC-MORL controlled scenarios and ATSC-MORLP controlled sce-
narios. The results showed that the difference is statistically significant at
0.0001 level.

confirms the superiority of ATSC-MORL. Compared with coordinated
BC, HAC reduces delay yet increases the number of stops. It is expected
as the objective of coordination is to reduce the stops of the major
approach through movement.

6.2.2. Permissive versus protected left-turn

It is well known that the protected left-turning is safer than per-
missive/permissive-protected left-turning yet is more detrimental to
traffic efficiency. An interesting test scenario was developed to in-
vestigate the outcome if the permissive-protected left-turning of the
east-west approach was changed to protected. Another multi-objective
RL-agent (ATSC-MORLP) was trained under such conditions. According
to Table 6, ATSC-MORLP created excessive delay as it prohibits per-
missive left-tuning. However, it did reduce the risk score comparing
with ATSC-MORL (see also Fig. 10), especially when the risk score is
relatively high (from 15:00 —19:00). This might imply that if the cur-
rent crash risk is high, prohibiting permissive left-turning temporarily
might be a potential solution.

6.3. Hybrid controller: a better solution

For any practical problems, there is always a trade-off between
computational efficiency and algorithm’s performance. While the
weighted sum approach used in this study is computationally in-
expensive, it is not guaranteed to be Pareto-optimal (Vamplew et al.,
2008). Specifically, the ATSC-MORL controller performs worse than the
BC controller does when the travel volume is extremely low. Therefore,
a hybrid controller that changes its backend algorithm based on the
traffic volume might have better performance.

—— Benchmark
— MORL Protected Left-turn
—— MORL

0.055 A

0.050 -

0.045 -

0.040 -

Crash Risk

0.035 A

0.030 -

Fig. 10. 15-minutes aggregated risk score of the controllers (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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Table 7
Average Daily Performance of the Hybrid Controller Compared with the
Benchmark and ATSC-MORL Controller.

Controller Efficiency Safety
(Risk Score)
Average Delay (sec) Number of Stops
BC 26.395 0.703 0.045
ATSC-MORL 19.550 0.615 0.041
HS 18.538 0.615° 0.040°

@ A paired T-test was conducted using the data of 30 simulated days to in-
vestigate whether the number of stops and average safety scores are statistically
significantly different between ATSC-MORL controlled scenarios and HS con-
trolled scenarios. The results showed that the difference of number of the
number stops is not statistically significant but the difference of average safety
scores is statistically significant at 0.0001 level.

A simple hybrid controller (HS) was proposed based on the local
condition to test the feasibility of aforementioned concept. When the
sum of 15-minute-flow-rates of all turning movements are below 150
vehicles per hour per lane, HS employs BC algorithm. Otherwise, HS
employs ATSC-MORL algorithm. This eventually leads to a time-of-day-
plan-like controller. From 0:00 to 5:00, BC is activated while ATSC-
MORL is activated from 5:00 — 24:00. Table 7 shows the performance of
HS controller compared with BC and ATSC-MORL controller. The HS
controller slightly reduces the delay by 5.1 % and reduces the average
risk score by 2.5 % compared with ATSC-MORL. The 15-minutes per-
formance curve is not provided as the performance curve of HS is
identical to the activated backend algorithm.

Other types of hybrid controller such as the hybrid of ATSC-MORL
and ATSC-MORLP could also be employed to improve traffic safety if
necessary.

7. Summary and conclusions

To improve the traffic safety of the signalized intersection, this
study proposes a safety-oriented adaptive signal control algorithm to
simultaneously optimize traffic efficiency and safety. The control agent
takes high-resolution real-time traffic data as its input and selects ap-
propriate signal phases every second to reduce vehicles’ delay and the
crash risk of the intersection. A multi-objective reinforcement learning
framework using double dueling deep neural network is utilized as the
backend algorithm to solve the discrete optimization problem. The
weighted sum approach, one of the single policy multi-objective re-
inforcement learning algorithms, is employed to deal with the trade-off
between traffic safety and efficiency.

The proposed algorithm was trained and evaluated in a simulated
isolated intersection in Seminole County, Florida, built based on field
observed traffic data. A real-time crash prediction model is calibrated
using local crash data to provide the crash risk in the near future. The
performance of the well-trained algorithm was evaluated by the real-
world signal timings provided by the local jurisdiction. The evaluation
results showed that the algorithm improves both traffic efficiency and
safety compared with the benchmark. In addition, compared with an
adaptive traffic signal optimizing only traffic efficiency, it did improve
traffic safety significantly but with a slight deterioration of traffic ef-
ficiency. This might imply the traffic safety and efficiency are two
competing objectives. Practitioners should take the trade-off into con-
sideration.

A brief analysis of control policies of different signal controller re-
veals how the RL-based ATSCs are able to improve traffic efficiency and
safety. The abstracted control rules from the analysis could serve as a
reference for improving existing signal control systems if the infra-
structure in the field is not ready to adopt RL-based ATSCs or the
practitioners were concerned with their acyclic nature. However, as the
proposed RL-based ATSCs are site-specific, it is recommended to train
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the RL-based ATSC in a traffic simulation that replicates the local
condition. A hybrid controller that changes its backend algorithm based
on traffic volume is also proposed to improve the performance of MORL
controlling algorithm if the well-trained MORL is not Pareto-optimal.

Admittedly, there are several limitations. As the weighted sum ap-
proach is not guaranteed to be Pareto-optimal, the study could be im-
proved by calculating the Pareto-front using more computationally ef-
ficient algorithms. Meanwhile, other kinds of safety measures such as
traffic conflicts could be tested as the safety objective using the pro-
posed algorithm. Moreover, as vehicles’ operation speeds are correlated
with both efficiency and safety, controlling vehicles’ speed directly may
provide additional safety and operational benefits (Li et al., 2018; Ma
et al., 2017; Qu et al., 2020; Zhou et al., 2020). With the rapid devel-
opment of the connected and automated vehicles (CAV), a safety-or-
iented control system that jointly controls of traffic signals and CAV
would be a valuable future research direction.
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