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A B S T R A C T

Autonomous mobile robots (AMRs) are increasingly being used to enable efficient material flow in dynamic
production environments. Dispatching transport orders in such environments is difficult due to the complex-
ity arising from the rapid changes in the environment as well as due to a tight coupling between dispatching,
path planning, and route execution. For order dispatching, an approach is proposed that uses multi-agent
reinforcement learning, where AMR agents learn to bid on orders based on their individual observations. The
approach is investigated in a robot simulation environment. The results show a more efficient order alloca-
tion compared to commonly used dispatching rules.
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1. Introduction

To respond promptly to the constantly increasing market require-
ments, modern production systems are becoming increasingly
dynamic and complex [1]. In order to cope with the resulting require-
ments for the material flow in these systems, internal logistics opera-
tions are commonly performed by mobile material transport
systems, whose operations are closely coupled to the production pro-
cesses in plants. Consequently, coordination and control of the trans-
port system have to cope with a high degree of uncertainty while
handling unexpected events such as breakdowns, delays, rush orders,
etc.

The mobile material transport systems typically consist of auton-
omous guided vehicles (AGVs) � driverless mobile vehicles capable
of following predefined transport routes. These routes are usually
defined by a magnetic tape that is placed on the floor. Recently,
however, a more advanced type of vehicles called autonomous
mobile robots (AMRs) is becoming increasingly utilised [2]. AMRs
differ from AGVs in their navigation capabilities. They are equipped
with various sensors that detect static and dynamic objects in their
surroundings and thus enable autonomous localisation and naviga-
tion. Their paths are generated based on static and dynamic
obstacles in real time enabling AMRs to move around freely, without
predefined routes.

While the flexibility of the system is improved, real-time path
generation brings additional challenges that must be met by the fleet
management system (FMS), which performs activities such as trans-
port order dispatching, vehicle routing, and task execution schedul-
ing. In the case of AMRs, these can be closely coupled, which leads to
high computational complexity of the overall system. For example,
even assigning a few transport orders to a couple of AMRs suffers
from a combinatorial explosion when all possible AMR paths and
time windows for their execution are considered. Therefore, central-
ised AMR fleet management and order execution optimisation often
fail to perform in real time.

This can be addressed by decoupling the FMS activities and con-
sidering them separately. For example, in order to consider dispatch-
ing separately, routing and scheduling have to be excluded from the
problem formulation. From the perspective of dispatching, an AMR
only needs to be able to move from point A (e.g. pick-up location) to
point B (e.g. drop-off location). Which route it takes, how it avoids
obstacles, etc., is left to be solved autonomously by the AMR. Then, a
centralised approach is usually used, where simple rules (heuristics)
define the assignment of the orders to the AMRs. These rules usually
do not take into account problem-specific settings, such as the plant
layout or individual AMR capabilities, and may lead to suboptimal
solutions or even to unstable behaviour of the system as a whole, e.g.
due to deadlocks.

Instead, the paper proposes a distributed approach to real-time
order dispatching that uses multi-agent reinforcement learning (RL).
The approach enables the adaptation of dispatching to specific situa-
tions that arise as a result of the plant layout and the dynamics of the
transport order arrivals. AMRs are represented by agents that learn
to bid on individual transport orders based on their individual obser-
vations of the environment. The approach is validated using a phys-
ics-based AMR simulation. The results are compared with the
commonly used real-time dispatching rules.

2. Order dispatching for mobile transport systems

In job shops, transport orders can be diverse, and their arrivals
can be hard to predict in advance, making long-term planning dif-
ficult. Due to the above-mentioned computational complexity, it
is often better to make dispatching decisions in real time, i.e. to
match an order with a vehicle as soon as a new order appears,
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Fig. 1. RL framework architecture.
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using simple rules. The search for a suitable match can be initi-
ated on the order side, where an appropriate vehicle from the
fleet has to be selected for the order, or on the vehicle side, where
the most appropriate order is selected and assigned to the indi-
vidual vehicle [3].

Single-attribute dispatching rules are divided into three catego-
ries: (1) distance-based, which take into account travel distances, (2)
workload-based, which take into account the workstation queue
occupancy, and (3) time-based rules, which take into account the
order of arrival of the transport orders [4]. Evaluations using dis-
crete-event simulations have shown that the performance of differ-
ent dispatching rules is strongly influenced by various factors such as
plant layout, order inter-arrival time, the ratio of AGV travel time to
assembly time, etc. [5].

Selection of the best rule is not straightforward. In [6], in order to
improve the efficiency of dispatching, the performance of various dis-
patching rules is analysed using machine learning. The selection of
the dispatching rule can be even more difficult when considering
freely moving robot vehicles with higher variability of travel times. In
addition, a well-functioning dispatching rule applied in a dynamic
and changing environment may become inadequate after a reconfig-
uration of the system.

Alternatively, dispatching can be approached as a distributed
problem where agents [7] interact through a bidding process to
assign delivery tasks or develop policies for dispatching through
multi-agent reinforcement learning. Since most of the computation is
distributed amongst individual agents, the benefits of this approach
include better scalability and faster response to changes, without the
need for system-wide re-computation. Distributed systems can also
be more robust, but on the other hand, they can exhibit unpredictable
emerging behaviour. However, with the development of new frame-
works and learning algorithms, the capabilities of distributed
approaches are rapidly increasing.

3. Multi-agent reinforcement learning

In reinforcement learning (RL), agents learn by trial-and-error,
observing the environment, selecting and executing actions, and col-
lecting rewards. Their goal is to learn to act in a way that maximizes
the collected reward.

The single-agent RL problem is commonly represented as a sys-
tem agent-environment, modelled as a stochastic process with the
Markov property that the future state of the system depends only on
the current state and not on the past states. The environment is rep-
resented as a set of states S and the agent has a set of available actions
A in each state. For every action a 2 A that the agent can take in a state
s 2 S, there exists a probability of transition of the environment from
the state s to a next state s': P(s'|s, a). After each action taken, the
agent receives feedback in the form of a reward R(s', s). The cumula-
tive reward collected over m consecutive steps

Pm
k¼0 rk measures the

performance of the agent’s decision making. The action selection
function in RL is represented by a policy p, which is a mapping from
states to actions.

The expected value of the future reward, also called the value
function, is used to evaluate the policy by assigning a numerical
value to individual states or state-action pairs. A discount factor is
usually used to assign a higher importance to the rewards in the
near future compared to the rewards received later, which prevents
infinite function values in decision problems with infinite planning
horizons, thus ensuring convergence of learning. Compared to the
state value function V(s), the Q-value function Q(s, a) defines the
value of every action in every state and therefore works even if the
probability of transitions between the states is unknown. The draw-
back, however, is that with large state and action spaces, Q-values
are difficult to estimate accurately and usually require more obser-
vations by the agent.

An approach that solves the problems of large state spaces is to
operate directly on policies. In this case, a policy is approximated
with a differentiable parametrised function, e.g. a neural network [8],
and evaluated with a performance measure J(p), e.g. the cumulative
discounted reward. The optimisation update of the policy follows the
principle of stochastic gradient ascent [8]. In a set of RL methods,
called actor-critic, both a value function (critic) and a policy (actor)
are approximated. The value function is used for estimation of the
policy gradient to update the policy and contributes to faster and
more stable learning of the policy [9].

Single agent RL algorithms have shown prominent results in
games with large state spaces, such as chess, Go, and Atari games
[10]. RL has also been applied to real world problems, like produc-
tion order dispatching [11] and global production schedule optimi-
sation [12].

When multiple agents act in their shared environment, agents are
often able to only partially observe the whole state of the environ-
ment and have policies to select actions based only on their own
observations. The learning problem is then formulated as the decen-
tralised partially observable Markov decision process (MDP) M [13],
and is represented as a tuple in Eq. (1), where I is the set of agents, S
is the state space, {Ai} is a set of individual agent actions, {Oi} is a set
of agents’ partial observations, P represents the transition probabili-
ties, i.e. the environment model, R is a set of individual rewards, and
g is the discount factor.

M ¼ h I; S; Aif g; Oif g; P;R; g i ð1Þ

Since multiple agents act in parallel in the same environment, the
observations and the rewards received by one of the agents are not
necessarily the consequence of the actions performed by that agent but
are a collective result of all the actions of the agents. Hence, it is more
difficult to infer the causality between actions and rewards. When mul-
tiple agents learn concurrently, each is adapting its own policy, result-
ing in a nonstationary environment for the other agents [14]. For the
learning process, this can lead to an increase in the number of steps
needed for the policies to stabilise or can prevent the convergence of
the policies entirely. Furthermore, since other agents are a part of any
one agent’s environment, the problem space is much larger than in
case of single-agent RL problems. It is therefore important to carefully
define the learning problem, taking these effects into account.
4. Real-time order dispatching using multi-agent RL

To apply RL to real-time order dispatching, defining the state
space together with the transitions between the states is challenging
because a poor definition can suffer from a large state space or from
the delay between actions and rewards that blurs causal relation-
ships. The latter is a key issue in dispatching settings since rewards
or penalties are only awarded after a transport order has been
completely executed, which may be long after it has been dispatched.
This issue has to be taken into account when formulating the dis-
patching problem.

Order dispatching is modelled as a multi-agent RL problem, where
learning agents are decision-making units representing AMR vehicles
and interacting with the learning environment, as shown in Fig. 1.



Fig. 2. Simulation framework architecture.
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The learning environment collects information about new orders,
the current locations of AMR vehicles and the status of orders already
assigned. This data is used to form observations for the agents and to
calculate and distribute rewards. Each agent receives its own obser-
vation and reward, and then responds back to the learning environ-
ment with its selected action. Based on the actions of the agents,
movement destinations are passed to the AMRs, which, in turn, per-
form the transports.

A transport order T is described by the tuple, shown in Eq. (2),
where xT and yT represent the x and y coordinates of the order’s start
locations, x0T and y0T represent the x and the y coordinates of the
order’s end locations, and dT is the due time, expressed in absolute
time.

T ¼ h xT ; yT ; x0T ; y0T ; dT i ð2Þ
The observation oi of the agent i is a tuple, presented in Eq. (3),

where xT and yT are the coordinates of the start location of the cur-
rently offered transport order, and xi and yi are the coordinates of the
agent’s current location. ni is the number of orders currently assigned
to the agent. x0i and y0i are the coordinates of the end location of the
agent’s last assigned transport order, in case the agent has any orders
assigned (ni> 0), or the agent’s current location, otherwise.

oi ¼ h xT ; yT ; xi; yi;ni; x0 i; y0 i i ð3Þ
An agent’s observation is a partial representation of the global

state. Each agent has its own policy which is a mapping from obser-
vations to actions. The agent’s actions are bid values that the agent
proposes to the environment for the observed order. When the agent
receives its observation, it selects the bid value, which is a continuous
value a between 0 and 1, and passes it back to the learning environ-
ment. The offered order is assigned to the AMR of the agent, which
bids the highest value amongst agents with less than two currently
assigned orders. It is only allowed for the agent to have one order
that is being executed and one that will be executed immediately
afterwards, due to real-time dispatching constraints. As the order is
assigned to the agent, it is added to the agent’s assigned orders and
carried out autonomously by the corresponding AMR vehicle in a
first-in-first-out manner.

After the AMR has completed the transport order, the order is
removed from the agent’s assigned orders and the actions are evalu-
ated by the learning environment. The reward mechanism needs to
be designed so that it encourages cooperation between the agents.
Therefore, all AMR agents receive the same rewards or penalties for
each completed order. If an order is completed in time, all agents
receive a positive constant reward, otherwise, they receive a penalty
that increases quadratically with tardiness.

The problem of delayed rewards is addressed as follows. The
observations are given to the agents only when an order is ready for
despatch. In other words, a transition between the MDP states occurs
only once per dispatched order. This significantly reduces the delay
(number of state transitions) between dispatching and rewarding,
which in turn permits the agents to have shorter memory for learn-
ing. A drawback of this approach is that the rewards are also given at
the time of despatch, which means that they have to be accumulated
in the meantime. Therefore, the agent cannot explicitly learn how it
was awarded for a particular action. Another drawback is that the
state transitions do not occur at regular time intervals, which can
lead to smaller or larger accumulations of awards or penalties. Never-
theless, within the proposed setting, the agents will be able to assess
whether their actions have led to a positive or a negative net result
for the system as a whole and can still use this information to
improve their policies.

For policy improvement, using a state-of-the-art RL algorithm is
proposed. The Twin Delayed Deep Deterministic (TD3) policy gradi-
ent algorithm [14] is suggested. TD3 is an actor-critic algorithm for
continuous action space, that concurrently approximates two Q-func-
tions and a policy using neural networks. It is an upgrade of the DDPG
algorithm [9], which has shown great performance in environments
with continuous action spaces but is sometimes sensitive to hyper-
parameters and other kinds of tuning, making its application difficult
in some cases.

The proposed RL framework learns to assign arriving orders to
AMRs based on order and AMR locations, and AMR immediate plans.
It is therefore expected that it will learn to take the layout into
account. This is validated by simulation experiments.

5. Simulation experiments

The RL framework was implemented using the RLlib library [15],
which enables implementation of RL with distributed and scalable
computation, tuning of learning parameters, and use of RL algorithms
for multi-agent applications. The architecture of the simulation of the
AMR fleet is presented in Fig. 2.
Two simulation frameworks were developed: a fast, but physically
inaccurate one for data generation and learning, written in Python,
and a computationally more intensive physics-based simulation
framework for validation of the learned policies, developed using
Robot Operating System (ROS) and the Gazebo simulator. In both
cases, the simulation with two main components, transport order
generation process and transport order execution, is controlled by
the simulation wrapper which communicates directly with the learn-
ing environment.

Transport order arrivals are modelled as a Poisson process with
arrival rate λ. The due time of the order was set in proportion to the
Euclidian distance between the start and the end locations of the
order. A fleet of five AMRs was simulated. The layout was rectangular
with a wall that partially divides the upper and lower halves, allow-
ing free movement on one side of the layout but restricting the pas-
sage on the other, as illustrated in Fig. 2. This simple layout does not
promote the issues of deadlock and congestion to emerge, however,
evasive manoeuvring still occurs regularly. The TD3 learning algo-
rithm was used, with neural networks using two hidden layers with
400 neurons each. Each episode ran until 10 random transport orders
were completed. The fast simulation took several hours to complete
one million orders on a high-end PC, while the extensive simulation
was approximately 100 times more computationally intensive.
6. Results

The results of the simulation experiments are shown in Fig. 3. In
Fig. 3(a) an example of the RL learning curve is presented, showing
how the mean reward per episode increases with the number of deci-
sion steps. Although the value of the reward per episode levels off at
around 10 in about 300,000 steps, the policy is still refined thereafter,
but with little effect.



Fig. 3. (a) Policy training in the fast simulation and (b) policy evaluation in the physics-
based simulation.
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Since, in the proposed setting, the AMR agents bid on each indi-
vidual order when it arrives, dispatching rules are selected for com-
parison and performance evaluation that apply to the same
conditions. The learned policy is compared to the random policy, that
assigns the order to a randomly selected free AMR, and to the clos-
est-first policy, which is the implementation of the nearest-vehicle-
first rule, in Fig. 3(b). It is shown that the learned policy slightly out-
performs the closest-first policy (0.55 vs. 0.49 of maximum possible
reward).

To gain an insight into the learning process, the evolution of the
policy of one of the agents is shown using heatmaps in Fig. 4. The
heatmaps show the value of the agent’s action, i.e. the bid, for an
order with a fixed starting location and every possible current loca-
tion of the agent.
Fig. 4. Policy improvement over time (fast simulation).
After 200,000 steps (Fig. 4(a)), the agent’s bids are on average low,
and only slightly biased towards locations closer to the starting point
of the order. After 300,000 steps, the policy becomes similar to clos-
est-first rule, with the distance between the AMR and the pick-up
point being the defining feature (Fig. 4(b)). After that, the policy
improves slightly as it starts taking the layout features into account
(Figs. 4(c) and (d)).

7. Conclusion

The paper presents how multi-agent RL can be applied to the
problem of order dispatching for an AMR fleet. In the proposed
problem abstraction, agents are given only a simple order specifica-
tion. Based on their location and their immediate plans, they then
learn how to form a bid for the order. With the proposed reward
mechanism, all agents are rewarded for successful order completions
by any single agent, thus rewarding cooperation. The training is car-
ried out using a fast, simplified simulation. The learned policy is then
transferred to a physics-based simulation of the AMR fleet, where the
approach is validated. It is shown that the learned policy outperforms
the closest-first rule by learning to use the features of the layout.

Since the presented approach is shown to successfully form an
individual agent’s policy to take layout into account this implies that
the approach can be scaled to an arbitrary number of AMRs. How-
ever, additional effort is required to apply the approach to more com-
plicated layouts. While the results in the presented simple scenario
are promising, the implications of extending the approach to larger
AMR fleets and more complicated layouts should be further investi-
gated in the future. Extensions of the problem, such as consideration
of orders with additional constraints or fleets of AMRs with different
load-carrying capacities, should be considered.
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