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a b s t r a c t 

Knowledge integration in distributed data mining has received widespread attention that 

aims to integrate inconsistent information locating on distributed sites. Traditional inte- 

gration methods become ineffective since they are unable to generate global knowledge, 

support advanced integration strategy, or make prediction without individual classifiers. In 

this paper, we propose an argumentation based reinforcement learning method to han- 

dle this problem. Inspired by meta-learning, we integrate distributed knowledge and ex- 

tract meta-knowledge that is agreed-upon knowledge consistent to all the agents. Specif- 

ically, two learning stages are introduced: argumentation based learning stage integrates 

and extracts meta-knowledge, and reinforcement learning stage evaluates and refines meta- 

knowledge. The two learning stages run alternately to extract global meta-knowledge base, 

which can be used to make prediction directly. The results from extensive experiments 

demonstrate that our method can extract refined meta-knowledge with a much satisfied 

performance. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the fast development and pervasive applications of data acquisition technologies, we have gain much more informa-

tion than before and entered the era of big data. Traditional data mining techniques cannot handle the challenges of volume,

velocity, variety and veracity (so called “4V”) in big data. As an alternative, distributed data mining (DDM) [5,39,48] has

received widespread attention recently, which aims to use distributed computing technology to extract knowledge from dis-

tributed data sources. With the advantages of better security and powerful computing capability, DDM can deal with data

mining tasks on large-scale datasets. However, there are still some challenging problems in DDM, such as fragmentation,

communication cost, integration and data skewness [20,38,48] , in which the knowledge integration problem is currently a

hotspot. 

Knowledge integration in DDM focuses on integrating distributed inconsistent knowledge to obtain global knowledge

[31,37] . In recent years, a variety of integration methods have been proposed to handle this task, such as meta-learning,

stacking, boosting [18,19,42,46] . According to different strategies, these methods build diverse individual classifiers and com-

bine their results to make the final prediction (which are essentially ensemble methods). However, there are still some lim-

itations: i) most ensemble methods only integrate distributed classification results rather than knowledge; ii) classification
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knowledge is stored dispersedly in individual classifiers without extracting global knowledge; iii) the classification process

requires the participation of all individual classifiers, resulting in a high computational cost. 

Also considering the rapid and continuous growth of data volume (one of the key characteristics of big data), many

data-intensive computing applications require the learning algorithm to be capable of incremental learning from large-scale

dynamic data, and to build up the knowledge base over time to benefit the future learning and decision-making process

[26] . Therefore, in dynamic environment, how to mine high-quality knowledge in real-time and improve the classification

ability, are still challenges in distributed knowledge integration field. 

To tackle the above problems, we need to find a way to cope with distributed knowledge integration and extraction in

large-scale dynamic environment. Inspired by the idea of meta-learning [42] , we extract the global meta-knowledge from

inconsistent distributed knowledge bases. By constructing arguments for and against a hypothesis, argumentation technique

can effectively deal with inconsistent information, making it particularly useful for knowledge presentation, knowledge ex-

traction and reasoning within expert systems [8,12] . Therefore, we introduce argumentation technology to integrate dis-

tributed knowledge from different agents. Through adequate interactions between agents, learning from argumentation can

effectively resolve conflicts and extract meta-knowledge. 

Furthermore, in dynamic data environment, we aim to improve the classification ability of meta-knowledge in real-time.

With the capability of learning from dynamic environment, Reinforcement Learning (RL) [11,41] can accumulate experience

over time, use such knowledge for future learning and thus improve the prediction performance. By learning from trial-

and-error estimation and delayed rewards, reinforcement learning is able to cope with learning problems that are complex

and difficult to be described. Well-understood algorithms with good convergence and consistency properties are available

for solving the single agent reinforcement learning task [11] , where the agent knows the state of environment and the re-

ward function. Therefore, we use reinforcement learning to improve the classification ability of meta-knowledge. By utilizing

feedbacks from environment, reinforcement learning is able to refine meta-knowledge, making it suitable for data analysis

on dynamic data environment. 

In this work, we combine reinforcement learning and argumentation, and propose a novel Argumentation based Rein-

forcement Learning method (ArgRL) to achieve meta-knowledge extraction in distributed data mining. Specifically, ArgRL

framework consists of two learning stages: (1) argumentation based learning stage, implementing meta-knowledge inte-

gration and extraction; and (2) reinforcement learning stage, realizing meta-knowledge optimization. With the analysis on

dynamic data, the above two stages alternate and interrelate, which can achieve global meta-knowledge extraction and

meta-knowledge spiral process [35] . 

In summary, we make the following contributions: 

(1) We design a novel argumentation based reinforcement learning framework to deal with the task of knowledge in-

tegration in distributed data mining, and study how to integrate, in a single framework, the capabilities of argumentation

based learning and reinforcement learning , to realize meta-knowledge extraction. 

(2) We apply the independent meta-knowledge base, which is extracted from distributed data and can be directly applied

to solve the classification task without involving individual classifiers. 

(3) We propose a framework that is flexible to be paired with other argumentation schemes or learning strategies, and

hence, the framework can be used to extract high-quality knowledge in various domains. 

(4) We perform comprehensive experiments over the public datasets. The results demonstrate that our method has good

convergence property, and can extract refined meta-knowledge base with a better classification performance. 

The rest of the paper is organized as follows: We review the existing work in Section 2 , and propose the argumentation

based reinforcement learning framework in Section 3 . Designing and Implementation of ArgRL are presented in Section 4 ,

and the argumentation framework: Arena is introduced in Section 5 . Extensive experimental results are demonstrated and

discussed in Section 6 , followed by conclusion in Section 7 . 

2. Related work 

As a special communication mechanism in MAS (Multi-Agent System), argumentation technology is with powerful de-

scription, rigorous reasoning abilities and other advantages [13] . A wide range of argumentation frameworks have been

proposed in recent years, such as Dung’s argumentation framework [16] , preference-based argumentation framework [1] ,

value-based argumentation framework [7] and so on. A comprehensive review of argumentation techniques for multi-agent

systems can be found in [13] . 

Conventional argumentation techniques focus on knowledge representation and logical reasoning, which used to handle

inconsistent information [2,28] . In recent years, researchers propose to combine machine learning techniques with concepts

of argumentation technology, mainly for the following purposes. 

(1) Generating and using arguments. Mozina et al. [33] try to integrate arguments into machine learning framework,

which assumes the arguments as the input of the learning process. While Ontañón and Plaza [36] present an argumentation

approach to generate arguments by induction and use them to reach agreements among agents. They focus on integrating

the capabilities of three processes: the inductive learning process, the argumentation process and the hypothesis revision

process. 

(2) Applications on classification problems. Amgoud and Serrurier [3,4] focus on the classification problem and propose

a general formal argumentation-based model that constructs arguments for/against each possible classification of an exam-
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ple. By exploiting the idea of active learning, Napierala and Stefanowski [34] introduce an argument based rule induction

algorithm with a specialized classification strategy for imbalanced classification tasks. 

(3) Building expert systems. By using arguments as means for experts to elicit some of their knowledge through expla-

nations of the learning examples, Groznik et al. [23] develop a neurological decision support system to help the neurologists

differentiate between three types of tremors. 

More recently, data mining technology has received widespread attention, making the combination of argumentation

and data mining technology become a new hot topic [24] . Wardeh et al. propose argumentation from experience in [43] ,

which combines the argumentation theory with data mining techniques. By using association rules as arguments in the

knowledge base of agents, PADUA (Protocol for Argumentation Dialogue Using Association Rules) argumentation model can

effectively achieve two party argumentation process and resolve uncertainties in classification problems. And then, Wardeh

et al. [45] describe an approach for multi-agent classification using an argumentation from the experience paradigm: PISA

(Pooling Information from Several Agents). The concept of collaborative group of agents is also proposed for arguing from

experience in [44] . 

Both ArgRL and PISA use data mining technology to obtain distributed rule bases for each agent, while our argumentation

strategy in this paper is different from PISA. PISA tries to handle the classification task by using argumentation, while our

method aims to evaluate the distributed local knowledge by argumentation and to extract high-quality meta-knowledge

based on RL. In PISA, the overall argumentation process presents a competitive ensemble approach, whereas the inter-group

decision making procedure is more like a cooperative ensemble approach. In our method, the relationship between agents

is totally cooperative, and the purpose of argumentation is to extract global knowledge, which we believe is more suitable

to solve distributed knowledge integration problem in DDM. 

Researchers also investigate the integration of reinforcement learning and argumentation, but most of them use RL to

optimize the capability of argumentation itself. For instance, Georgila and Traum [21] learn argumentation policies for nego-

tiation by using RL. Monteserin and Amandi [32] apply reinforcement learning to improve the argument selection strategy.

In contrast, the reinforcement learning applied in our model is used to evaluate and refine meta-knowledge, rather than

modifying argument selection or learning appropriate negotiation policy as shown in the previous work. 

3. Argumentation based reinforcement learning 

3.1. The n-Armed Bandit model 

Our method assumes that the dynamic data environment has instant feedback. In dynamic data environment, when the

system selects a rule from the meta knowledge base to classify the current case, the environment will immediately return a

numeric feedback, 1 or 0, representing correct or incorrect classification. The instant feedback is only related to the current

case, and has nothing to do with historical cases. Cases to be classified are independent of each other, i.e., classification of

the current case does not affect the next case to be classified in the environment. 

In our method, we can only get a simple feedback, 1 or 0 to show that the classification result is success or not, rather

than the actual label. For example, in the field of online advertisement serving and evaluation, a website aims to select the

most suitable one from a large number of resources given by advertisers and serves to users who are browsing the website,

in order to increase corresponding advertisement click rate. Depending on whether the user clicked on an advertisement or

not, the website receives a feedback immediately. Through multiple feedbacks from users, the website needs to develop an

optimal strategy for advertisement serving so that users will click on more advertisements. 

In addition, in dynamic environment, the data to be classified is continuously arriving and the scale of data keeps grow-

ing. Therefore, we need an online learning strategy to learn how to select the best rule from the meta knowledge base, to

enhance the classification ability of our model for dynamic data classification tasks. 

In response to the above questions, we use reinforcement learning method to improve the online learning ability. In

the above learning task, once an agent performs a classification action, it can immediately get the environment feedback,

rather than obtaining the feedback after multiple classification actions. As it can be seen, this learning task corresponds to

a one-step, non-episodic reinforcement learning task. 

In fact, one-step reinforcement learning task can be corresponding to the classic theoretical model, n-Armed Bandit. The

problem can be described as follows. Supposing there is an n-armed bandit, and given a limited number of times, each

time the gambler has the option of pulling one arm of the bandit. Each arm spits coins with a certain probability that the

gambler does not know. And n-arms of the bandit are not exactly the same. The goal of the gambler is to learn a strategy

to maximize the reward, i.e., earning the most coins. Inspired by the n-Armed Bandit problem and its corresponding model,

in the process of action selection, we can treat n actions as n arms in the bandit. So the question turns to be, how to select

actions to get the maximum expected reward. 

We denote the true value of action a as Q 

∗( a ), and the estimation value of action a at the t -th time is Q t ( a ). The true

value of an action is the expectation reward received by the action, so a natural way to estimate it is to average the rewards

that the action has received. In other words, if the action a has been selected k a time before the t -th selection, and the

rewards obtained by the action a are r w d 1 , r w d 2 , . . . , r w d k respectively, then the estimation value of the action a can be

a 
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calculated as follows: 

Q t (a ) = 

r w d 1 + r w d 2 + . . . + r w d k a 
k a 

. (1)

After the estimation value of an action is defined, we can design the action selection strategy. The simplest action selec-

tion strategy is to choose the action with the largest estimation value, that is, select the greediest action a ∗ in the t -th time

of selection. The estimation value of the action a ∗ is Q t ( a 
∗) = max a Q t (a ) . This strategy always uses the current knowledge

to maximize immediate rewards and does not take time to explore better behaviors. A better alternative is epsilon greedy

strategy, which is used to select rules from meta knowledge base to make predictions in our method. 

3.2. The Process of ArgRL 

Inspired by the idea of meta-learning, our method (ArgRL) aims to perform meta-level learning based on distributed data

mining to extract global meta-knowledge. 

Our model consists of two learning stages: argumentation based learning stage and reinforcement learning stage. Firstly, on

the basis of distributed data mining, our model uses argumentation technology to extract meta-knowledge from historical

datasets. Then, in dynamic data environment, we apply reinforcement learning technique to evaluate the quality of meta-

knowledge and improve the classification ability of meta-knowledge in real-time. During the application, both of the two

learning stages run alternately to extract and evaluate meta-knowledge in dynamic environment. The framework of ArgRL

is shown in Fig. 1 . 

In reinforcement learning, the data perceived from the external environment (e.g., using the sensor) will be treated as

state [30] . Similarly in ArgRL, for the classification task, the case to be classified can be seen as the data perceived from the

external environment, which is treated as the current context of the classifier. When handling the classification task, all the

cases to be classified are treated as the environment in the reinforcement learning stage of our model. 

Given a context , our model makes prediction on the basis of meta-knowledge base , which stores global knowledge ex-

tracted from local knowledge base, and correspondingly, action refers to predicting a specific case on the basis of meta-

knowledge base. Reward refers to a feedback from environment according to an action behavior. As traditional setting in RL,

environment feedback is a reward signal, 1 or 0, to represent whether the classification is correct or not, rather than the

correct label. 

Given the current context as an input, an action will be selected by meta-knowledge base according to specific strategies.

Then, environment transfers to a new context, and returns a scalar reward signal that evaluates the quality of this action.
Environment

Meta-knowledge base

ActionContextReward

 Arena

triggerupdate

MAS

Local knowledge 
base

agent2

Local knowledge 
base

agent3

Local knowledge 
base

agent4

Local knowledge 
base

agent1

Fig. 1. The framework of ArgRL. 
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Our model records this reward and updates the average reward value of the meta-knowledge. Depending on the reward

value, multi-agent system will decide whether or not to trigger the argumentation based learning process. 

In argumentation based learning stage, multi-agent system performs data mining on distributed historical datasets to

construct independent local knowledge bases. Triggered by the feedback from environment, multi-agent system will start

an argumentation process. In this situation, our model treats the environment context (i.e., the case to be classified) as an

argumentation topic, and delivers it into the multi-agent argumentation framework ( Arena platform). The argumentation

topic perceived from the external environment is an instance that requires to be discussed by participating agents according

to their experiences, that is, a specific case to be classified. 

During the argumentation, agents argue on the current topic, and use local knowledge to construct arguments to com-

municate with other agents. Then the winning rule will be regarded as the optimal meta-knowledge, and added into the

meta-knowledge base to realize meta-knowledge supplement. For a specific topic, the winning rule of argumentation is su-

perior to the local knowledge of each agent. Due to different processes of argumentation, the winning rules on the same

topic may be different. Therefore, the optimal meta-knowledge on a specific topic is not the global optimal solution, and it

can only be regarded as a local optimal solution. 

In order to make classification effectively in dynamic environment, we need to refine the meta-knowledge base. Sim-

ply performing accumulation and de-duplication is not enough, and only considering the overall performance of meta-

knowledge base is also ineffective. Instead, it is necessary to evaluate the classification ability of each rule in the meta-

knowledge base. To this end, in the reinforcement learning stage, our model not only calculates the overall performance

metric, but also records the average reward of each rule in meta-knowledge base. Average reward value represents the clas-

sification ability of a rule to some extent, which can be used to evaluate the meta-knowledge. Then, the meta-knowledge

with lower reward values will be eliminated in application scenario, in order to extract a more refined meta-knowledge

base. 

In the bottom layer, argumentation based learning stage can realize preliminary knowledge extraction from the dis-

tributed historical data and give supplement to meta-knowledge base, which provides support for the reinforcement learning

process in the upper layer. Reinforcement learning evaluates the meta-knowledge extracted from argumentation, and applies

them in dynamic data analysis directly, which achieves meta-knowledge evaluation towards practical applications. With the

analysis of large-scale dynamic data, the two learning stages coordinately accomplish the meta-knowledge integration and

extraction, thus realizing the spiral ascending process of meta-knowledge base. 

4. Implementation 

4.1. Generalization of state space 

Generalization is a technique commonly used in reinforcement learning that makes informed decisions in the states that

have never been met in the past. The states in our model are generalized to share the historical classification experiences

with future classification tasks. 

In the process of rule selection, the best action for classification should be based on the most valuable rules. By gener-

alization, it is possible to use the most valuable rules to make classification based on historical experience in a state that

has never been met before. Since different cases may use the same rule for classification, these cases may be attributed

to the same state type. Therefore, based on this assumption, this model achieves the sharing of historical experiences by

generalizing the state space. The generalization method is defined as follows. 

Definition 1. (Generalization of State Space): Let a state s ′ be a to-be-classified case satisfying the prerequisites of the global

rule gk , and obtain a state-action pair < s ′ , gk > . Due to a large number of satisfied states for gk , multiple state-action pairs

can be generated. Think of satisfied states of gk as a category, that is, generalize states according to their satisfied global

rules. Use s to denote the states that satisfied gk , and then the state-action pair after state generalization is denoted as < s,

gk > . 

From Definition 1 , we can see that after the generalization of state space, different cases to be classified by the same rule

are considered as the same state type. In this way, to a specific state, the classification correctness of rules is not certain,

but a probability distribution. 

4.2. Average reward 

The most popular option among the included studies is the use of rules that explain the arguments, facilitating its un-

derstanding [13] . In our model, rule gk in the meta-knowledge base is defined as the following tuple: Given an environment

state s , rule gk is represented as gk = (at t ri, con, con f, δgk 
s ) , where attri refers to the premises of rule gk; con refers to the

consequent of rule gk , i.e., conclusion; conf refers to the confidence of rule gk ; δgk 
s is the average reward of rule gk until

state s . 

In order to choose the best rules from the meta knowledge base for classification, we need to evaluate the quality of

each global rule in the meta knowledge base. Therefore, in reinforcement learning, we use the average reward δgk as the
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utility value in the learning process, and through the reinforcement learning on dynamic data, we continuously update the

average reward values of global rules to estimate their true qualities. 

In the ArgRL model, we can calculate the average reward of the global rule under state s , i.e., the cumulative reward

of global rule at state s , divided by the number of times the global rule participates in classification. Due to dynamic data

environment, the average reward value of the global rule gk changes with the classification process of dynamic data. 

The reward function is formally defined as follows. According to the classification result, the reward at the i -th classifi-

cation rwd i is: 

r w d i = 

{
1 , cor rectl y _ cl assi f ied 
0 , incor rectl y _ cl assi f ied 

(2)

Let the average reward value of global rule gk be δgk . If global rule gk is used t times during the classification process,

and the obtained rewards are r w d 1 , r w d 2 , . . . , r w d t respectively, then the average reward value δgk is: 

δgk = 

1 

t 

t ∑ 

j=1 

rw d j (3)

In the initial state, the average reward of global rule gk is δgk 
0 

= 0 . 

In the process of reinforcement learning, we use the Monte Carlo method to update the average reward value δgk . As-

suming that global rule gk is used t times in classification, the update of the average reward of global rules gk is as follows.

δgk 
t = δgk 

t−1 
+ 

1 

t 
(rw d t − δgk 

t−1 
) (4)

where t is the number of times that the current global rule gk has participated in the classification, rwd t is the instantaneous

reward obtained by global rule gk selected to make classification in the t -th time, δgk 
t is the average reward value of global

rule gk after participating t times classification, and δgk 
t−1 

is the average reward value of global rule gk after participating t -1

times classification. 

4.3. Action selection strategy 

In this model, a rule that can be selected for classification must satisfy several constraints. Firstly, the global rules for

classification must exist in the meta knowledge base, and moreover, it should match the information of the current case.

Therefore, given a case to be classified, there will be only a small part of the global rules that can be candidates. In this

case, we use the following selection strategy for the set of candidate rules. 

If the candidate rule set is not empty, the model uses ε greedy strategy for rule selection. This strategy achieves explo-

ration with a small probability ε, and achieves exploitation with the probability 1- ε. That is, we select randomly by a certain

probability ε in the candidate rule set; we select the rule with the highest average reward with probability 1- ε . Generally, ε
is chosen as a smaller value, such as 0.1. In our model, ε is chosen dynamically to balance the probability of exploration and

exploitation in different periods, so it can be defined as ε = 

1 √ 

i 
, where i is the number of times of the current classification.

In the above process, if there are multiple rules with the highest average reward at the same time, the global rule with

the highest confidence is selected. This is because the average reward is calculated during the reinforcement learning process

according to the feedback obtained in dynamic data classification, and it represents the classification ability of global rule

in application process. Correspondingly, the confidence of global rule, obtaining from historical data in data mining stage,

represents the quality of global rule in historical experience. Therefore, in the application process, in order to better measure

the quality of global rules, we consider the average reward at first, and make use of confidence to compare different global

rules if multiple average rewards are the same. 

In addition, if the candidate rule set is empty, the classification action will be null, indicating that the model is incapable

of classifying the current case. In this situation, the model will trigger the argumentation process. The current case will be

put into the Arena platform as an argumentation topic, and the meta knowledge suitable for the current case will be ex-

tracted from distributed local knowledge bases to supplement the meta knowledge base. In addition, when the environment

feedback is 0, that is, the current case is incorrectly classified, the system will also trigger the multi-agent argumentation. In

the future learning, the new meta knowledge extracted from argumentation may be chosen to participate in classification,

and to some extent achieve the exploration of knowledge. 

4.4. Algorithm of ArgRL 

The main control algorithm of ArgRL explains how ArgRL choose the best rule from meta knowledge base to handle the

dynamic data classification task. The pseudocode of the algorithm is shown in Algorithm 1 . 
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Algorithm 1 Main control algorithm of ArgRL. 

input: dynamic_dataset E; meta_Knowledge_Base GK; 

output: meta_Knowledge_Base GK; 

1: for each( gk ∈ GK) do 

2: gk.δ = 0 ; /*initialization*/ 

3: gk.count = 0 ; /*record the times of classification*/ 

4: end for i = 0 ; 

5: while E � = ∅ do 

6: e = E [ i ] ; 

7: i + + ; 

8: ε = 

1 √ 

i 
; 

9: GK 

′ = matching ( GK, e ) ; /*Get candidate rules that match the current case e*/ 

10: if GK 

′ = ∅ then 

11: gk = Arena( e ); /*Use Argumentation to supplement global rules*/ 

12: GK = GK ∪ { gk } ; 
13: else 

14: rand = random(); 

15: if rand < ε then 

16: gk is chosen randomly from the candidate rule set GK 

′ ; 
17: else 

18: if there is only one rule with the max δ then 

19: gk = arg max 
gk ∈ GK ′ 

gk .δ; 

20: else 

21: gk = arg max 
gk ∈ { gk | gk .δ= max } 

gk . conf ; 

22: end if 

23: end if 

24: l abel = cl assi f ier ( e, gk ) ; 

25: rwd = percei v e ( label ) ; 

26: gk.count = gk.count + 1 ; 

27: gk.δ = gk.δ + 

1 
gk.count 

(rwd − gk.δ) ; /*Update the average reward*/ 

28: if rwd = 0 then 

29: gk = Arena( e ); /*Use Argumentation to supplement global rules*/ 

30: GK = GK ∪ { gk } ; 
31: end if 

32: end if 

33: end while 

34: return GK; 

 

 

 

 

 

 

 

 

 

 

 

5. Argumentation framework: Arena 

5.1. Definition and structure of Arena 

Arena is a dialectic analysis model for multiparty argument games, which provides a competition platform for partici-

pating agents. Formally the Arena framework can be described as follows: 

Arena = (Re feree, P, L , O, R oles, Rules, H) (5) 

where: (i) Referee refers to the agent that manages the argumentation process according to dialogue rules of Arena; (ii)

P is the set of agents participating in argument game on Arena; (iii) L is the language used in Arena, which includes the

language of content L Content , a set L c of speech acts for administrating match, and a set L A of speech acts for arguing between

Master and Challenger; (iv) O is the Ontology which represents the common knowledge believed in all the participants of

Arena; (v) R oles is the set of roles played by the participating agents in Arena, which consists of Master, Challenger and

Spectator ; (vi) Rules is the set of the game rules abided by all the participating agents in Arena, and (vii) H records the

history of the multiparty dialogues happened in Arena using the grid of dialectic analysis trees. 

The basic structure of Arena is shown in Fig. 2 . 

In Arena, there can be only one Master and one Challenger in an argumentation, while other participants are just Specta-

tors which are not allowed to propose arguments. Therefore, during an argumentation, participating agents need to compete

for Master or Challenger continually to propose their opinions. At the beginning of an argumentation, Referee broadcasts the

discussion topic, and the first agent who proposes an argument about the current topic will be selected as the Master. All
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Fig. 2. The basic structure of Arena model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the other participants whose options are different from the Master can challenge the Master and form the queue of chal-

lengers, and the first participant in the queue will be selected as the Challenger. All the other participant agents except

Master and Challenger are Spectators of Arena. 

Once Master and Challenger are identified, agents will use the speech acts for constructing Master-Challenger dialogues

to perform argumentation in Arena. The whole process of argumentation is stored in dialectic analysis trees. Note that

the argumentation between Master and Challenger only focuses on Master’s opinion and experience, and it has nothing to

do with Challenger’s opinion. That is to say, only Master is entitled to propose his opinion about the current topic, and

Challengers just argue on flaws in the Master’s opinion. 

5.2. Argument scheme 

Supposing that x represents a topic under discussion, agents can produce arguments from their individual knowledge

base. Argument scheme is defined as follows: Premises: l 1 (x ) , l 2 (x ) , . . . , l n (x ) → Conclusion: w ( x ); Confidence: c ; Exceptions:

e 1 , . . . , e k ; Conditions: u 1 (x ) , u 2 (x ) , . . . , u s (x ) ; ¬ v 1 (x ) , ¬ v 2 (x ) , . . . , ¬ v t (x ) . 

Such argument scheme for experience can be read as follows: In my experience, if anything x doesn’t belong to

{ e 1 , . . . , e k } , with features u 1 , u 2 , . . . , u s and not with features v 1 , v 2 , . . . , v t , then x with features l 1 , l 2 , . . . , l n , are w with

probability c . 

5.3. Speech acts 

The speech act is the language of participant to communicate with others in argumentation, which collectively forms

the basic building blocks for constructing Master-Challenger dialogues. In Arena, there are six speech acts: ProposeOpinion,

DistinguishRule, CounterRule, BeInapplicable, BeAnException , and Defeated , which can be divided into three categories according

to the function. 

(1) Applying for Master. 

ProposeOpinion : Agent A i uses this speech act to propose the opinion about the topic t by selecting the rule k which

matches the topic t ( k ∈ AR i ∧ premises ( k ) ⊂ t ) and has the highest confidence from his local knowledge AR i ( con f (k ) =
max { con f (k ′ ) | k ′ ∈ A R i } ). 

(2) Proposing different opinion. 

CounterRule : Agent A i uses this speech act to attack the adversary’s argument k ′ by selecting the rule k with higher

confidence ( k ∈ AR ∧ premises ( k ) ⊂ t ∧ conf ( k ) > conf ( k ′ )). 
i 
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Table 1 

Speech acts in Arena. 

Move Label Next move Attack with new rule 

1 ProposeOpinion 2,3,4,5 yes 

2 CounterRule 3,4,5 yes 

3 DistinguishRule 4,5 yes 

4 BeInapplicable 0 no 

5 BeAnException 0 no 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DistinguishRule : Agent A i uses this speech act to attack the adversary’s argument k ′ , and allows the addition of

some new premise(s) to a previously proposed rule k ′ , so that the confidence of the new rule k is lower than k ′ 
( k ∈ AR i ∧ premises ( k ) ⊂ t ∧ premises ( k ) ⊃premises ( k ′ ) ∧ conf ( k ) < conf ( k ′ )). It means the adversary’s argument k ′ is unreasonable

because of not considering enough information about the topic t . 

BeInapplicable : Agent A i uses this speech act to state that the adversary’s argument k ′ is inapplicable to this topic t , since

the Conditions { u 1 , u 2 , . . . , u s ; 
¬ v 1 , ¬ v 2 , . . . , ¬ v t } of k ′ in his own knowledge base AR i doesn’t satisfy topic t ( ({ u 1 , u 2 , . . . , u s } �⊂ t) ∨ (t ∩ { v 1 , v 2 , . . . , v t } � =

∅ ) ), which means agents have different experience for k ′ . 
BeAnException : Agent A i uses this speech act to state that the topic t is in exception { e 1 , . . . , e k } of adversary’s argument

k ′ with the same Premises and Conclusion in his own knowledge base AR i ( t ∈ { e 1 , . . . , e k } ). 
(3) Conceding defeat. 

Defeated : agent A i uses this speech act to state that he is defeated. 

In Arena, each agent only uses the above speech acts from local knowledge base to attack the adversary according to

Table 1 . 

5.4. Termination condition 

If the Master is defeated by the Challenger, then the Challenger will become the new Master, and he can propose his

opinion about the current topic from his own knowledge base. Then all the other participants decide whether or not to

challenge this new opinion, and form a new challenger queue. Otherwise, if Challenger is defeated, the next participant in

the challenger queue will be selected as the new Challenger, and the argumentation continues. 

Termination conditions of Arena are as follows: If Master can defeat all the challengers, Master wins the argumentation

and Master’s winning rule will be considered as the optimal knowledge for the current topic; if there is no agent applying

for Master, the argumentation is tie. Since the number of arguments produced by participants is finite and the defeated

arguments are not allowed to use repeatedly, the termination of argumentation can be guaranteed. 

5.5. Argument evaluation in reinforcement learning 

In our method, each agent will mine association rules from distributed historical data at first, to get the local association

rule base AR i ( AR i only depends on the historical data, so it will not change with the environment once it has been gen-

erated). In the argumentation process, association rules will be transformed into arguments, and the strength of argument

is defined as the confidence of association rule. Throughout the classification process, the unknown data will be converted

to the environment context (i.e., cases to be classified), and input to the model for prediction. It should be noticed that,

we strictly follow the scenario of reinforcement learning, that is, the environment feedback is a reward signal, 1 or 0, to

represent whether the classification is correct or not, rather than the correct label. 

When meta-knowledge base fails to make correct prediction, the model will trigger the argumentation process to further

evaluate the strength of arguments. At this point, only the attributes of the cases are input into the multi-agent system.

According to arguments in local association rule base AR i , each agent needs to evaluate the strength of arguments by using

specific argument schemes and speech acts. And then, the argument with the highest strength for the current case will be

extracted and supplemented to the meta-knowledge base. 

5.6. Algorithm of Arena 

The pseudopod of Arena is shown in Algorithm 2 . 

6. Experiment 

6.1. Datasets 

In order to empirically evaluate our method, we use seven public machine learning datasets from UCI Machine Learning

Repository [6] (The URL of datasets is http://archive.ics.uci.edu/ml/datasets.html) . Detailed description of the datasets and

specific parameters of our method are shown in Table 2 . 

http://archive.ics.uci.edu/ml/datasets.html)
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Algorithm 2 Algorithm of Arena. 

input: Argumentation topic s ; Agents AS; 

output: winning rule k ; 

1: Broadcast s ; /* s is the topic of argumentation */ 

2: Q p = Generate_Participants( AS, s ); /* Q p is the queue of participants*/ 

3: for each( P i ∈ Q p ) do 

4: Propose_Argument ( P i , s , AR i ); /* AR i is the local knowledge base*/ 

5: if P i == silence then /* P i is defeated*/ 

6: select next participant P i +1 

7: end if 

8: if only P i == active then 

9: P i = winner; 

10: k = Main_Argument( P i ); 

11: return k 

12: end if 

13: end for 

Table 2 

Datasets for experiment. 

Number of attributes Number of instances Number of items Missing values? Support Confidence 

Balance-Scale 4 625 23 No 10% 70% 

Tic-Tac-Toe 9 958 29 No 5% 50% 

Nursery 8 12,960 31 No 2% 50% 

Voting 16 435 34 Yes 40% 70% 

Lymph 18 148 63 No 35% 60% 

Breast-Cancer 9 286 43 Yes 10% 70% 

Bank-Marketing 16 45,211 78 Yes 70% 90% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 2 , two datasets ( Breast-Cancer and Voting ) contain missing values. In order to avoid the impact of missing values

on experimental results, we remove the instances with missing values in Breast-Cancer and Voting . In addition, we preform

discretization on the numeric attributes for the Bank-Marketing dataset. 

In the experiment, we use 4 agents to demonstrate the knowledge integration process in distributed data mining. Firstly,

the training set is divided into 4 parts equally for each agent. Then agents will use Apriori-TFP algorithm [15] to generate

association rules on their own datasets, which are used as local knowledge to argue with each other. The confidence and

support threshold in Apriori-TFP algorithm are shown in Table 2 , which are selected according to the dimensions of different

datasets. For the dataset with a higher dimension, we set a relative higher support threshold, and vice versa. 

In association rule mining, item is a common term to represent the attribute value of instances, so the rules can be de-

scribed as some items that is associated to another set of items. The number of items represents the number of attribute

values the dataset contains. Therefore, the number of items has a direct impact on the computation complexity of associa-

tion rule mining. 

6.2. Convergence analysis 

In reinforcement learning, convergence to equilibria is a basic stability requirement [22] . It means the agents’ strategies

should eventually converge to a coordinated equilibrium [11] . In this section we analyze the convergence of reinforcement

learning process of ArgRL. To demonstrate it more clearly, we compared ArgRL with the offline joint learning model AMAJL

[47] . Both of them extract meta knowledge from the training data through the argumentation technique and use meta

knowledge base to make classification. The difference is that in the application process, ArgRL combines with reinforcement

learning technology, and uses the environmental feedback information to optimize meta knowledge base. In addition, ArgRL

complements new knowledge by triggering the argumentation according to environmental feedbacks. In contrast, AMAJL,

after obtaining meta knowledge base, only uses its knowledge to classify the unknown data. In addition, the meta knowledge

base of ArgRL is dynamically changing whereas the meta knowledge base of AMAJL is fixed during testing. 

In the following experiment, we evaluate our method with the Tic-Tac-Toe dataset. First, randomly selecting 50% of the

original data set as training data for underlying distributed data mining and argumentation to get an initial meta knowledge

base. On this basis, the remaining 50% is taken as the test data, and every continuous 15 test cases will be treated as a

group to be input into the two models. As it can be seen, each test case eventually gets used exactly once. We record the

classification accuracy for each group to compare the convergence process in dynamic data environment, which are shown

in Fig. 3 . The horizontal axis represents the group number of the test data, and the vertical axis represents the classification

accuracy. 
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Fig. 3. The convergence process of classification accuracy on Tic-Tac-Toe dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen from Fig. 3 , both ArgRL and AMAJL fluctuate to some extent with the input of the test data, while there

is a clear difference between the two models. ArgRL fluctuates significantly in the early stage. With the continuous input of

test cases, the fluctuation range of ArgRL tends to decrease and there is a clear upward trend. The classification performance

of ArgRL starts to surpass AMAJL completely in the later stage until it converges. In contrast, the classification performance

of AMAJL has more significant fluctuations. And as the classification process continues, there is no obvious upward trend.

Therefore, although its performance is similar to that of ArgRL at the initial stage, the classification performance at the later

stage is significantly weaker than that of ArgRL. 

The above process clearly demonstrates the convergence of reinforcement learning in ArgRL. ArgRL has the same meta

knowledge base as AMAJL at the beginning of the test. With dynamic input of test cases, reinforcement learning in ArgRL

continuously optimizes meta knowledge base according to environmental feedbacks, ensuring its continuous learning abil-

ity and improvement of classification performance. With the learning process on large amounts of data, the classification

performance of meta knowledge base will eventually reach the convergence state. 

6.3. Classification performance 

In order to validate the performance of our method, we compare ArgRL with multiple representative baseline methods,

including three powerful ensemble learning methods: Bagging [40] , AdaBoost [17,19] and RandomForest [9] , and five widely

used single classifiers: CBA (Classification Based on Associations) [29] , SVM [14] (linear, radial), NaiveBayes [27] , and CART

(Classification Regression Trees) [10] . All these baseline methods are implemented on the data mining software WEKA [25] ,

and Bagging and AdaBoost choose the CBA algorithm as the individual classifier. For better comparison, we use the same

confidence and support threshold in Table 2 for baseline methods based on association rule (CBA, Bagging and AdaBoost).

The resting baseline methods choose the default parameters in WEKA. 

In this experiment, we randomly select 50% of the original data as the training data, the remaining 50% as the test data.

As mentioned earlier, in ArgRL, the training data are used to build the initial meta knowledge base. The remaining 50% of

the data serve as dynamic data (the test data) during the reinforcement learning process. In contrast, other comparisons

simply generate classification models based on the training data and classify the test data. Each classification process is

repeated 50 times, and the average performance (accuracy and standard deviation) is reported in Table 3 . 

Our method uses association rules as the underlying classification knowledge scheme, so we also focus on four rule-based

classifiers that use association rules for classification: AMAJL, CBA, Bagging and Adaboost. It can be seen from Table 3 that,

our method has shown satisfied performance over all the seven datasets. 

Compared to all the rule-based classifiers, ArgRL significantly outperforms AMAJL, CBA, Adaboost and Bagging on Balance-

Scale , and outperforms AMAJL, CBA and Bagging on Voting, Lymph and Bank-Marketing , and has similar performance with that

of AMAJL, CBA and Bagging on Nursery . 

Furthermore, on Tic-Tac-Toe dataset, our method can achieve significantly higher performance than NavieBayes and SVM-r.

On Breast-Cancer dataset, our method significantly achieves comparable performance with SVM-l, CART and RandomForest. 

As it can be seen, ArgRL shows good classification performance on multiple data sets. This is because that ArgRL can

effectively extract high-quality meta knowledge from distributed historical data on the one hand. On the other hand, the re-

inforcement learning process can dynamically update and optimize meta knowledge and finally get satisfactory classification

performance. 

Moreover, in the above classification process, we also record the average number of rules in meta-knowledge base after

convergence, and the number of association rules mined by all the agents, which are shown in Table 4 . 

It can be seen from Table 4 , compared with the number of association rules obtained by distributed mining, the number

of rules in the meta knowledge base finally obtained by ArgRL is much less. For example, in Nursery dataset, ArgRL extracts
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Table 3 

Accuracy of ArgRL and baseline methods. 

ArgRL AMAJL CBA Bagging Adaboost NavieBayes SVM-r SVM-l CART RandomForest 

Balance-Scale 0.75 ± 0.015 0.735 ± 0.036 0.679 ± 0.058 0.722 ± 0.043 0.708 ± 0.040 0.887 ± 0.014 0.891 ± 0.013 0.901 ± 0.015 0.774 ± 0.024 0.827 ± 0.023 

Tic-Tac-Toe 0.877 ± 0.051 0.797 ± 0.043 1.000 ± 0.002 0.999 ± 0.002 0.989 ± 0.006 0.703 ± 0.017 0.795 ± 0.022 0.983 ± 0.004 0.911 ± 0.024 0.915 ± 0.014 

Nursery 0.906 ± 0.008 0.905 ± 0.006 0.906 ± 0.005 0.904 ± 0.005 0.951 ± 0.006 0.903 ± 0.004 0.955 ± 0.002 0.930 ± 0.002 0.988 ± 0.002 0.974 ± 0.003 

Voting 0.939 ± 0.02 0.928 ± 0.034 0.896 ± 0.016 0.902 ± 0.017 0.942 ± 0.018 0.901 ± 0.015 0.954 ± 0.009 0.955 ± 0.011 0.955 ± 0.011 0.960 ± 0.011 

Lymph 0.707 ± 0.092 0.673 ± 0.117 0.704 ± 0.062 0.674 ± 0.086 0.727 ± 0.074 0.830 ± 0.040 0.806 ± 0.031 0.812 ± 0.034 0.744 ± 0.039 0.805 ± 0.040 

Breast-Cancer 0.682 ± 0.031 0.655 ± 0.041 0.710 ± 0.029 0.715 ± 0.020 0.687 ± 0.032 0.722 ± 0.024 0.706 ± 0.008 0.689 ± 0.024 0.697 ± 0.025 0.687 ± 0.032 

Bank-Marketing 0.884 ± 0.001 0.876 ± 0.009 0.883 ± 0.002 0.883 ± 0.002 0.883 ± 0.002 0.879 ± 0.001 0.887 ± 0.001 0.888 ± 0.002 0.896 ± 0.113 0.885 ± 0.001 
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Table 4 

Average number of rules in meta-knowledge base. 

ArgRL AMAJL Num_of_Association_Rules 

Balance-Scale 13.5 13.3 28.72 

Tic-Tac-Toe 92.5 91.4 2997.64 

Nursery 101.6 99.8 2263.94 

Voting 7.5 7 3454.28 

Lymph 10.7 9.4 1097.44 

Breast-Cancer 36.1 33.1 1241.72 

Bank-Marketing 15.3 15.3 244 

Table 5 

Average running time (millisecond) on test data. 

ArgRL CBA Bagging Adaboost NavieBayes SVM-r SVM-l CART RandomForest 

Balance-Scale 8833.45 1.96 2.3 0.42 0.51 12.03 5.27 0.27 8.99 

Tic-Tac-Toe 4298.4 1.34 9.25 9.12 0.29 28.04 27.24 0.31 8.43 

Nursery 482441.4 9.39 70.09 9.79 5.84 1934.38 844.28 5.44 232.05 

Voting 2350.35 0.43 3.11 0.71 0.17 5.17 4.12 0.07 3.72 

Lymph 8920 0.16 1.32 0.43 0.11 2.45 2.11 0.04 1.01 

Breast-Cancer 8879 0.21 1.39 0.18 0.09 3.64 3.34 0.05 2.13 

Bank-Marketing 2327609.6 40.197 135.165 137.836 73.320 3837.599 1728.480 13.873 1333.808 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101.6 global rules from 2263.94 local association rules to achieve the 90.6% classification accuracy. This shows that ArgRL

can effectively extract high-quality knowledge and deal with the application of dynamic data scenarios efficiently. 

In addition, we also compare the number of rules between ArgRL and AMAJL. At the beginning of the test, both models

have the same knowledge base, and as the classification process continues, ArgRL evaluates the global rules through rein-

forcement learning and complements new rules with argumentation techniques, so the size of its meta knowledge base is

dynamically increasing. Thus as it can be seen from Table 4 , ArgRL gets more rules than AMAJL. However, a closer compar-

ison shows that the difference between the two models is not obvious. Rules of ArgRL is only slightly more than AMAJL,

but its classification performance is obviously higher, as shown in Table 3 . This further illustrates the effectiveness of the

reinforcement learning process in ArgRL. 

In addition, we also record the running time of ArgRL and baseline methods in the above classification process, and the

average results for predicting the test set are shown in Table 5 . 

It is seen from Table 5 that the efficiency of ArgRL is acceptable, but weaker than that of the baseline methods. The

reasons mainly lie in the following aspects. 

1. Baseline methods are implemented on weka software, where the related data is stored in memory, and thus, in the clas-

sification process they do not need to read the external storage; on the contrary, the data of our program is stored in the

database, it requires frequent connections and access to the database during association rule mining and argumentation,

and thus, consuming substantial amount of I/O time. 

2. Without reinforcement learning mechanism, baseline methods do not learn new knowledge in application process, i.e.,

they make prediction for the test data directly; on the contrary, our method has a stronger learning ability. In order to

handle the unknown environment, argumentation process will be triggered frequently during the prediction process, and

thus, taking more time. 

3. Baseline methods do not have the knowledge integration process for distributed datasets; our method aims to deal

with the distributed knowledge integration problem. Thus, to extract globally consistent knowledge, a large number of

interactions between agents need to be conducted during integration, which requires more time. 

4. Baseline methods are implemented on weka, which has been made a lot of optimizations, and thus, they run much

faster; we use java program language to implement ArgRL by ourselves, so there are a lot of operations (e.g., loop calcu-

lation, database connection and multi-table query) to be further optimized. 

In future research, instead of using database, we may change the program framework, so that it can manipulate many op-

erations in-memory, e.g., mining association rules, constructing arguments and performing argumentation, to further reduce 

the time cost. 

7. Conclusion 

In order to handle the knowledge integration task in distributed data mining, we propose an argumentation based re-

inforcement learning method, which consists of two learning stages. In argumentation based learning stage, agents use

distributed local knowledge as arguments to communicate and negotiate with each other, which achieves distributed knowl-

edge integration and meta-knowledge extraction effectively. In reinforcement learning stage, we design a unique meta-

knowledge evaluation and elimination mechanism, which greatly compresses the knowledge scale and obtains a refined
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meta-knowledge base. The two learning stages alternate and interrelate to realize the spiral process of the meta-knowledge

base. Experimental results show that our method has good convergence property, and outperforms the state-of-art baseline

methods over multiple public datasets. 

The argumentation technology can handle the inconsistent information effectively. However, most argumentation based

approaches use rules as arguments. In future research, it is necessary to integrate other knowledge representation schemes

into the argumentation framework. Moreover, we are also interested in designing more speech acts to make the fullest use

of the local knowledge. In the reinforcement learning process, we may introduce more strategies to make further evaluation

of the meta-knowledge, and conduct more efficient knowledge extraction. 
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