
Information Sciences 520 (2020) 1–14 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

An end-to-end inverse reinforcement learning by a boosting 

approach with relative entropy 

Tao Zhang 

a , Ying Liu 

a , Maxwell Hwang 

b , Kao-Shing Hwang 

c , ∗, ChunYan Ma 

a , 
Jing Cheng 

d 

a School of Software, Northwestern Polytechnical University, Shaanxi 710072, China 
b School of Medicine, Zhejiang University, Hangzhou, China 
c Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan 
d School of Computer Science and Engineering, Xi’an Technological University, Shaanxi 710021, China 

a r t i c l e i n f o 

Article history: 

Received 17 October 2019 

Revised 13 January 2020 

Accepted 16 January 2020 

Available online 17 January 2020 

Keywords: 

Inverse reinforcement learning 

Imitation learning 

State encoding 

Adaboost 

Relative entropy 

a b s t r a c t 

Inverse reinforcement learning (IRL) involves imitating expert behaviors by recovering re- 

ward functions from demonstrations. This study proposes a model-free IRL algorithm to 

solve the dilemma of predicting the unknown reward function. The proposed end-to-end 

model comprises a dual structure of autoencoders in parallel. The model uses a state 

encoding method to reduce the computational complexity for high-dimensional environ- 

ments and utilizes an Adaboost classifier to determine the difference between the pre- 

dicted and demonstrated reward functions. Relative entropy is used as a metric to measure 

the difference between the demonstrated and the imitated behavior. The simulation exper- 

iments demonstrate the effectiveness of the proposed method in terms of the number of 

iterations that are required for the estimation. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Manually programming the behavior of robots is time-consuming and difficult. For experts, demonstrating the desired

behavior is easier than manually programming. The process of learning from demonstrations is called imitation learning

[4,20] , whereby only samples of trajectories are provided to learners. 

A Markov Decision Process (MDP) [7,19] is eminently suited for reinforcement learning (RL) [26] . However, for some

complex tasks or environments, manually adjusting the reward function is a generically expensive and time-consuming

process, which limits the applicability of RL. If an agent is designed for desired behaviors, inverse reinforcement learning

[2,17] allows the reward function to be adjusted, instead of specifying a bespoke reward function. Hence, no explicit reward

function is founded. IRL also provides a framework to estimate the reward function for determining an optimal policy.

However, IRL methods encounter challenges in practical applications. One major problem involves learning an unknown

reward function that best supports a given policy or observed behavior. 

Many IRL models have been proposed in recent years. These models are classified as model-based or model-free

IRL. Most are model-based and assume that the expert is optimally acting within a MDP or that the behavior can be
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accurately learned using the demonstrated trajectories. Abbeel and Ng [1] determined an unknown reward function using

inverse reinforcement learning by assuming that some vectors for the features [27,29] and that the reward function can be

expressed as a linear combination of these features. However, it is difficult to update the reward function and the learning

policy. Choi and Kim [5] extended this approach by building logical conjunctions of those component features that are rel-

evant to the sample policy. To allow potentially complex situations, nonlinear reward functions [14,23] and multiple reward

functions [10] have also been used. These functions respectively represent the reward function as a nonlinear combination

and a nonparametric Bayesian problem with multiple reward functions. However, determining a solution using these meth-

ods is considerably complex. To use IRL in large state space, a Bellman Optimality Equation was used in a previous study

[16] . However, this study assumed that the transition model and the action set remain unchanged for the subject. In recent

years, entropy has been used to resolve the ambiguity in choosing a distribution over decisions. Ziebart et al. [30] proposed

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL), and based on this work, Maximum deep Entropy Inverse

Reinforcement Learning (DeepEnt IRL) was proposed [25] . Although DeepEnt IRL is sufficient for real robots, its limitations

are that it repeatedly solves the MDP and assumes that the dynamics are known. 

Model-free IRL algorithms have been proposed to address the problem that assumptions are often unsatisfied in a large,

continuous state space. Boularias et al. [3] proposed a relative entropy IRL method inspired by MaxEnt IRL [30] . Relative

entropy was used to measure the gap between the empirical distribution of the state-action trajectories and the learned

policy [28] , which is minimized by stochastic gradient descent. However, the features must be selected manually, which is

difficult for real application. Choi et al. [6] proposed a model-free density-based IRL algorithm that does not require model

dynamics. The method first computes the empirical state action distribution for an expert and then determines the reward

function that matches the density function. However, the features for these methods are high-dimensional, which is not

suitable for complex tasks. Herman et al. [11] presented a gradient-based IRL approach that simultaneously estimates the

system’s dynamics. The bias of the demonstrations is taken into account, but only the fully observed MDP case was stud-

ied. To address the need for informative features and effective regularization, Finn et al. [8] presented an algorithm that

learns arbitrary nonlinear cost functions. To address the difficulty of identifying the cost function for unknown dynamics,

an efficient sample-based approximation was formulated. However, when pre-training is complex, this method limits fur-

ther learning of the reward function, which can create other problems. Most of these methods also often use sampling to

compute the reward function, which is time-consuming. 

In this study, the dilemma of predicting the unknown reward function in IRL is solved. This study uses Adaboost to in-

crease the discrimination capability for IRL and to adapt the weights of the reward function, which is a linear combination

of weak classifiers [13] . Relative entropy is used to determine the difference between an expert’s trajectory and an agent’s

imitation of this trajectory. The proposed IRL method minimizes the relative entropy between demonstrated behaviors and

predicted trajectories. The proposed method, which is named Ada-entropy IRL, uses a state encoding method to simplify the

definition and extraction of state space. An Adaboost classifier is used to determine the optimal reward function. The pro-

posed method estimates an implicit reward function by comparing the trajectories between the behaviors to allow imitation

learning in large, complex environments. 

The main contributions of the paper can be concluded as: 

(1) A novel model-free IRL is introduced for end-to-end scenarios [24] where images of the demonstrations are observed

to directly derive the predictions of the reward function. 

(2) The proposed Ada-entropy algorithm simply resolves the sub-gradients of the min-max problem in IRL [18,30] accu-

rately so that imitation learning can be achieved. 

(3) The proposed method allows learning in complex environments because an autoencoder is used for state encoding

for feature representations of the environment so as to avoid the curse of dimensionality problem. 

The remainder of this paper is organized as follows: Section 2 introduces the framework for the Adaboost, and re-

views Maximum Entropy IRL and Maximum Entropy Deep IRL, both of which use a similar approach to the proposed

method. Section 3 uses the proposed Ada-entropy IRL method to determine the reward function. Section 4 describes the

simulated experiments. The results demonstrate the effectiveness and superiority of the Ada-entropy IRL algorithm. Finally,

Section 5 draws conclusions. 

2. Preliminaries 

2.1. Adaboost classifier 

Adaboost is a boosting-based classification algorithm. An Adaboost classifier is a strong classifier comprising multi-

ple basic classifiers with different adaptive weights. The weight of each basic classifier is adjusted, depending on the

error rate for data classification to allow adaptive classification for a limited class of samples. In each iteration, it calls

a base learner that returns a classifier, and assigns a weight coefficient to it. The final classification is decided using a

weighted “vote” by the base classifiers. The smaller the error in the base classifier, the greater is its weight in the final 

vote. 

For a set of two classifier training data T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } , where x i ∈ X ⊆R n , hence, each x i belongs to a

domain or instance space X and each label y i belongs to a label set Y , thus Y = { −1 , +1 } is assumed. 
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The error rate for a basic classifier G m 

( x ) is denoted as e m 

. Error rate is the ratio of incorrect classified training data,

which is defined as: 

e m 

= 

N ∑ 

i =1 

P ( G m 

( x i ) � = y i ) 

= ω mi I( G m 

( x i ) � = y i ) 

= 

∑ 

G m ( x i ) � = y i 
ω mi (1)

where ω mi denotes the weight of sample i in the m th iteration, and 

∑ N 
i =1 ω mi = 1 . P ( G m 

( x i ) � = y i ) is the probability of

G m 

( x i ) � = y i . The indicator function is denoted as I , when G m 

( x i ) � = y i , I( G m 

( x i ) � = y i ) = 1 and vice versa. 

The weight distribution D m +1 and the sample weight ω m +1 , i are then updated as: 

D m +1 = ( ω m +1 , 1 , . . . , ω m +1 ,i , . . . , ω m +1 ,N ) (2)

ω m +1 ,i = 

ω mi 

Z m 

exp (−αm 

y i G m 

( x i )) 

= 

⎧ ⎨ 

⎩ 

ω mi 

Z m 

e −αm , G m 

( x i ) = y i 

ω mi 

Z m 

e αm , G m 

( x i ) � = y i 

(3)

where the coefficient of the basic classifier G m 

( x ) is denoted as αm 

, and the normalization factor is Z m 

: 

Z m 

= 

N ∑ 

i =1 

ω mi exp (−αm 

y i G m 

( x i )) (4)

Finally, the linear combination of the basic classifier is constructed as: 

f (x ) = 

M ∑ 

m =1 

αm 

G m 

(x ) (5)

The output G( x ) is the final strong classifier, which is a combination of weighted basic classifiers. 

G (x ) = sign ( f (x )) = sign ( 
M ∑ 

m =1 

αm 

G m 

(x )) (6)

2.2. Maximum entropy inverse reinforcement learning 

To address ambiguity in a structured way, maximum entropy is utilized to match feature counts. Maximum entropy is

the optimum issue, and the problem is transformed as: 

max − p log p 

s.t. 
∑ 

path ζi 

P ( ζi ) f ζi 
= ̃

 f ∑ 

P = 1 

(7)

where f represents the feature expectation for the agent. Using a Lagrange multiplier, the problem is transformed as: 

min L = 

∑ 

ζi 

p log p −
n ∑ 

j=1 

λ j (p f j − ˜ f j ) − λ0 ( 
∑ 

p − 1) (8)

After a differential operation, the probability of maximum entropy is calculated as: 

p = 

exp ( 
∑ n 

j=1 λ j f j ) 

exp (1 − λ0 ) 
= 

1 

Z 
exp ( 

n ∑ 

j=1 

λ j f j ) (9)

where the parameter λj is the parameter for the reward function, which is calculated using the Maximum Likelihood

Method. However, the likelihood function for the demonstrations can be calculated only when the transition function T

is known. Although relative entropy resolves the ambiguity in choosing a distribution over a decision, applying in real ap-

plications is difficult. During the process of learning the reward function, the features must be selected manually. 
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2.3. Maximum entropy deep inverse reinforcement learning 

For Maximum Entropy Deep IRL, a network architecture is used to approximate the reward function. The state reward is

defined as: 

r ≈ g( f, θ1 , θ2 , . . . , θn ) 

= g 1 ( g 2 ( · · · ( g n ( f, θn ) , . . . ) , θ2 , θ1 ) (10) 

where the network parameter is denoted as θ1 , 2 , ... , n . 

The problem is then defined as maximizing the joint posterior distribution of the observed expert demonstrations D : 

L (θ ) = logP (D, θ | r) = logP (D, θ | r) ︸ ︷︷ ︸ 
LD 

+ logP (D, θ | r) ︸ ︷︷ ︸ 
Lθ

(11) 

The complete gradient is calculated as: 

∂L 

∂θ
= 

∂ L D 
∂θ

+ 

∂ L θ
∂θ

(12) 

The expected value is defined as: 

E[ μ] = 

∑ 

ς : { s,a }∈ ς 
P (ς | r) (13) 

However, when a wider convolutional filter is used for Maximum Entropy Deep IRL, the demand for expert demonstra-

tions is increased. In these model-based methods, the MDP must be repeatedly solved, and the dynamics are assumed to be

known. 

To address the above problems, this study proposes a novel model-free method for inverse reinforcement learning,

whereby the feature vector is encoded to simplify the state space. An Adaboost classifier with a set of basic classifiers

that have different adaptive weights is used to adjust the weight of the reward. Adjusting the weight of the reward function

minimizes the relative entropy between the expert’s feature vector and the agent’s feature vector. 

3. The proposed method 

The proposed Ada-entropy IRL algorithm uses an Adaboost algorithm and relative entropy to define a reward func-

tion that allows so-called end-to-end inverse reinforcement learning. The proposed algorithm calculates the combination

of parameters for the relative entropy between the sampled sequential training images and the agent’s using the Adaboost

method. The conceptual end-to-end structure of the proposed method is shown in Fig. 1 . The input is a screenshot image of

the demonstration and the imitated trajectory and the output of the proposed in-parallel dual structure of autoencoders is

the predicted reward function. The dual model accommodates the sequential images of the demonstrations and the current

trajectory, each pair of which is handled respectively, by the corresponding autoencoder pair between the demonstration

and the imitation for feature representations. 

Fig. 1 presents how the proposed method works during the m th iteration. For each action in a sequence that is denoted

by the numbered boxes in the trajectories in the upper and lower part of the figure, a feature is encoded by an autoencoder
Fig. 1. The architecture of the proposed Ada-entropy IRL method; in this illustrative example, the m th iteration consists of N frames (actions) which are 

used for calculating of the combination of the reward function R = −ω(ϕ + δ) = 

∑ N 
i=1 R mi = 

∑ N 
i=1 −ω mi ( ϕ mi + δ) . 



T. Zhang, Y. Liu and M. Hwang et al. / Information Sciences 520 (2020) 1–14 5 

Fig. 2. An example of state encoding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the difference between those for the demonstration and imitation is defined as the baseline ϕmi . Since in an extreme

case, the reward function R mi is null when all ϕ mi = 0 , such a negative small scalar bias δ is introduced. The added results

multiplies with the reward weight ω mi , the final output R mi is attainable, which is explained in Eq. (23) in detail. 

3.1. State encoding 

Most previous studies manually or empirically selected the designed feature vectors, such as feature expectation [1] ,

which produces a state space that is massive and complex. The definition of features is also ambiguous. When a task is

decomposed into lower-level behaviors, the dimensionality of the state space becomes so extensive that it inhibits the exe-

cution of IRL. 

This study uses the state-encoding method to discretize and simplify the state space [12] . An autoencoder is used to

simplify the high dimension state space. An autoencoder [15,21] is composed of two main parts: an encoder and a decoder,

which maps input into the code and maps the code to reconstruct the original input respectively. This study uses only the

encoder part to simplify the state space. The input for the end-to-end model is the screenshot of the trajectories and the

output is the predicted reward function. The characteristics of each action are expressed in the form of an image to a vector

and the dimension of the feature vectors is significantly reduced. An example of state encoding is shown in Fig. 2 . 

Fig. 2 displays the extraction of the feature vector for a simulation screenshot in a maze environment using an au-

toencoder. The screenshot firstly undergoes gray processing to decrease the number of features. After encoding, the middle

hidden layer outputs the feature vector for this action, whose dimension significantly decreased compared with the input.

Feature vector extraction allows further comparison and evaluation of imitation learning. 

3.2. The weights of basic classifier 

When certain rewards constantly misleads an agent to learn the unexpected policy, the value of the reward function

should be changed with a large ratio. That is, the larger the error rate is, the larger ratio the value changes. The thought

corresponds to the Adaboost algorithm, and the concept of adjusting the weight value of AdaBoost is used on the scale

(reward weight) that each element must be updated. 

The proposed method represents the comparison of trajectories in IRL as a classification problem to allow a fast and

flexible approach to adjust the weight of the approximated reward function. After m − 1 iterations, using Eq. (5) , the basic

classifier is expressed as: 

f m −1 (x ) = f m −2 (x ) + αm −1 G m −1 (x ) (14)

Then f m 

( x ) is obtained from Eq. (14) : 

f m 

(x ) = f m −1 (x ) + αm 

G m 

(x ) (15)
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To minimize the exponential loss of training datasets in the highest rate, αm 

and G m 

( x ) are given as: 

( αm 

, G m 

(x )) = arg min 

α,G 

N ∑ 

i =1 

exp [ −y i ( f m −1 ( x i ) + αG ( x i ))] 

= arg min 

α,G 

N ∑ 

i =1 

ω mi exp [ −y i αG ( x i )] (16) 

where ω mi = exp [ −y i f m −1 ( x i )] . Given that ω mi is independent of αm 

and G m 

( x ), it is not considered for minimality. 

αm 

and G m 

( x ) are respectively denoted as α∗
m 

and G 

∗
m 

(x ) to minimize Eq. (16) . For any α > 0, G 

∗
m 

(x ) is calculated as: 

G 

∗
m 

(x ) = arg min 

G 

N ∑ 

m =1 

ω mi I( y i � = G ( x i )) (17) 

The classifier G 

∗
m 

(x ) is the basic classifier G m 

( x ) for Adaboost because it minimizes the error rate for training data in the

m 

th iteration. 

According to Eq. (3) , in Eq. (16) : 

N ∑ 

i =1 

ω mi exp [ −y i αG ( x i )] = 

∑ 

y i = G m ( x i ) 
ω mi e 

−α + 

∑ 

y i � = G m ( x i ) 
ω mi e 

α

= ( e α − e −α) 
N ∑ 

i =1 

ω mi I( y i � = G ( x i )) + e −α
N ∑ 

i =1 

ω mi (18) 

Substituting G 

∗
m 

(x ) into Eq. (18) for α equal to 0, the result is: 

α∗
m 

= 

1 

2 

log 
1 − e m 

e m 

(19) 

where αm 

represents the importance of the basic classifier G m 

( x ) in the final strong classifier. If e m 

≤ 1 
2 , αm 

≥ 0, and αm 

is inversely proportional to e m 

, then the lower the error rate, the more important the basic classifier is in the final strong

classifier. That is, for the combination of basic classifiers, the lower the error rate for the basic classifier, the greater is its

role in the vote. 

3.3. Obtaining reward using relative entropy 

For IRL, given an MDP, the unknown reward function R ( s ) is defined as: 

R (s ) = ω 

T φ(s ) (20) 

where φ( s ) is a vector of features: S → [0, 1] k , and ω ∈ R 

k . 

For an Ada-entropy IRL algorithm, the repeatedly estimated reward R ( s ) varies over iterations in accordance with the dif-

ference between the demonstrated and the imitated trajectories. Therefore, relative entropy [9] is used to measure similarity.

The higher the relative entropy KL ( agent || expert ) mi , the worse is the imitation and the agent receives a negative reward, and

vice versa. 

The relative entropy KL ( agent || expert ) mi is defined as: 

KL (agent || expert ) mi = 

N ∑ 

i =1 

a i log 
a i 
b i 

(21) 

where a i belongs to the feature vector for the agent φmi = { a 1 , a 2 , . . . , a N } and b i belongs to the feature vector for the expert

φ′ 
mi 

= { b 1 , b 2 , . . . , b N } . 
Eq. (21) measures the difference between the two trajectories in terms of the relative entropy between the feature vec-

tors. KL ( agent || expert ) mi is denoted as ϕmi , which is used as the base to update the expected reward function. The reward

function R mi for the sample i in the m 

th iteration is updated as the linear combination of ω mi , ϕmi : 

R mi = −ω mi · ( ϕ mi + δ) (22) 

and for the whole trajectory in the vector form is: 

R = −ω(ϕ + δ) = 

N ∑ 

i=1 

R mi = 

N ∑ 

i=1 

−ω mi ( ϕ mi + δ) (23) 

Then Q-Learning for neural networks, such as Neural Fitted Q Iteration (NFQ) [22] , is employed to compute an optimal

policy π i using the current predicted reward function. If the imitated trajectory is the same as the expert trajectory in

sample k , then ϕ mi = 0 , and vice versa. δ is a negative small value that prevents reward R mi from being equal to 0 when

ϕ mi = 0 . If the agent fails to emulate the behavior of the expert, then the agent receives a negative reward. If the imitated

behavior the is same as the demonstration, then the agent receives a positive reward, which is close to 0. The objective
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of inverse reinforcement learning is to minimize the distance between the feature expectations of the expert and the fea-

ture expectation of the agent. IRL determines a reward function that produces the trajectory that is closest to the expert’s

demonstration. The agent obtains a maximum reward and avoids previous errors. 

ϕmi is the basis of the linear combination of the approximated reward function and is used to determine an appropriate

weight for the reward. The weight of the reward ω m +1 ,i is updated as: 

ω m +1 ,i = ω i + D m +1 ,i · ϕ m +1 ,i · γ i (24)

where γ is the discount factor that ensures the convergence of the value of ω mi . The weight of the reward ω mi is incre-

mentally updated over many iterations. Therefore, if the imitated behavior is inaccurate after a long period, then the weight

of the reward ω mi increases over those iterations, the incorrect classified dataset receives additional attention for the next

iteration and the agent receives a negative reward with a large absolute value. The propsed Ada-entropy IRL algorithm is

shown in Algorithm 1 . 

Algorithm 1 Ada-entropy IRL. 

tep 1: Initializing 

1.1 ω 1 ,i randomly with non-zero value for all s ∈ S. 

1.2 D 0 i = 

1 
M 

, M is the number of the features. 

1.3 i ← 0 , m ← 0 . 

tep 2: Obtaining feature vector φ′ 
mi 

for the expert’s indexed action image frame from the autoencoder. 

tep 3: Repeat (for each iteration): 

3.1 m ← m + 1 

3.2 i ← i + 1 

3.3 e m 

← 

∑ 

ϕ mi � =0 

D mi 

3.4 αm 

= 

1 
2 ln 

1 −e m 
e m 

3.5 D m +1 ,i = D mi ·
{

1 if ϕ mi � = 0 

e −αm if ϕ mi = 0 

3.6 Normalizing D m +1 ,i 

3.7 ω m +1 ,i = ω i + D m +1 ,i · ϕ m,i +1 · γ i 

3.8 Obtaining reward R mi = −ω mi · ( ϕ mi + δ) 

3.9 Using Q-Learning for neural networks, such as Neural Fitted Q Iteration (NFQ) [22], to compute an optimal

policy πi employing the current predicted reward function. 

3.10 Obtaining feature vector of agent φmi 

3.11 Computing the relative entropy ϕ m +1 , i according to Eq. (21) 

3.12 Until 
N ∑ 

i =1 

ϕ mi = 0 

There are two significant advantages of the Ada-entropy IRL algorithm: the agent does not need to use an MDP model;

and the proposed IRL method is applicable to an end-to-end RL scenario. The simulation results for the proposed method

are shown in the next section, and the proposed algorithm is detailed below. 

4. Simulations 

Three sets of simulations are used to determine the performance of the Ada-entropy IRL. The first domain is a maze

world, the second is a car simulation, and the third uses the Atari game, Flappy Bird. The scenarios vary from simple to

complicated. The performance of the three different common IRL methods - maximum entropy IRL (MaxEnt) [30] , maximum

entropy deep IRL (DeepEnt) [25] , and function approximation IRL with a neural network (FunNN) [16] - are determined by

comparing the reward map. The vertical dimension of the reward map is the Y label, and the horizontal dimension is the

X label of the position. The depth of color for each position represents the reward for each position. If the color is lighter,

then the reward is greater. 

4.1. Maze environment 

Fig. 3 shows a maze with a size of 10 grids × 10 grids that is used for the simulation. The rectangular red spot is

the starting point, and the goal is the yellow circle in the upper-left corner of the map. The reward function is unknown to

the agent. To reach the goal in the maze, the trajectory that is demonstrated by an expert is sampled. This example uses a

twenty-step demonstration trajectory. The agent can perform four actions: up, down, left and right. If it hits the wall, then

the session ends. The learning rate is 0.8, and the exploration rate ε= 0.1. To avoid a local optimum, the discount factor γ is

set to 0.8, and the bias value δ is -0.0 0 01. 

The reward map after 300 iterations is illustrated in Fig. 4 . Fig. 4 (a) shows the trajectory of the expert. Figs. 4 (b), (c), (d)

and (e) respectively show the reward for Ada-entropy IRL, MaxEnt, DeepEnt and FunNN respectively. 
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Fig. 3. The expert’s demonstration for the maze. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

Fig. 4. Trajectories in the maze: The color of each grid represents the reward for each position. The vertical bar on the right-hand side is the scale for the 

reward values. A lighter color represents a greater reward. 
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Fig. 5. Error rate for a maze. 

Fig. 6. Car simulation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All of the algorithms produce trajectories that are similar to the demonstration, but the trajectory of the proposed Ada-

entropy method is clear. Additional tests are performed to compare the results of imitation learning by using these methods.

If the action of the agent is the same as that of the expert at the same time step, the action is deemed to be correct, and

vice versa. Fig. 5 displays shows the error rate for imitation learning. The error rate is the incorrect action accounts for the

proportion of all actions. 

The proposed method significantly performs better than the others, in terms of learning speed and convergence. The

average error rate for the Ada-entropy IRL drops to 0.1 in the 35th episode. The value for δ is set to 0.1, hence 10% random-

ness are observed in each action, and the error rate for the proposed method cannot reach 0. The error rate for MaxEnt IRL

falls to 0.5 in the 290th episode and the error rate for DeepEnt IRL decreases to 0.5 in the 170th episode. The error rate for

FunNN IRL decreases to 0.9 in the 250th episode. The following simulations involve additional complicated scenarios. 

4.2. Car simulation 

The second simulation uses a simplified car driving simulator. The four algorithms are used to simulate an expert’s

demonstration. Fig. 6 shows a screenshot for the simulation. The agent (the red rectangle) drives on a four-lane road. Other

cars (black rectangles) drive in the opposite direction, hence the agent must take one of two actions: moving left or right

to avoid a collision. The expert gives a 260-step demonstration for approximately one minute. If the agent’s car fails to

prevent accidents, then the new session starts again. The learning rate for this simulation is 0.8 and the discount rate is

0.98, including 10% for random actions. The discount factor γ for the Ada-entropy IRL algorithm is 0.8 and the bias value δ
is -0.0 0 01. 

The expert trajectory is presented in Fig. 7 (a). Fig. 7 (b), (c) and –(d) respectively show the reward maps after 300 itera-

tions of Ada-entropy IRL, MaxEnt, DeepEnt and FunNN respectively. 
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Fig. 7. Trajectories in car simulation: The x-label denotes the order of the sequence and the y-label denotes the position of agent: a value of 0–1 denotes 

that the agent is driving in the far left lane, whereas a value of 1–2 denotes that the agent is driving in the second lane from the left. The color of each 

grid represents the reward for each position. The vertical bar on the right-hand side is the scale for the reward values. A lighter color represents a greater 

reward. 

 

 

 

 

 

 

 

In this simulation, the state space is large, hence the FunNN IRL with neural network is especially sensitive to the value

of the MDP transition probability P , which is challenging to model. Therefore, updating the reward is difficult. For this

simulation, agent moves left or right to avoid a crash. This state is defined as “survived”. If the agent hits other cars, the

state of the agent is defined as “dead”. The survival rate is defined as the ratio of “survived” states to the number of expert

demonstrations. The average survival rate and the error rate for these methods are respectively shown in Fig. 8 (a) and 8 (b).

The x-axis indicates the number of iterations, and the y-axis indicates the survival rate or the error rate. 

In a more complex environment, a more significant difference is observed in the results of these methods. High-

dimensional environments render challenges for agents to learn using these methods because it is difficult to determine
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Fig. 8. Survival rate and error rate in car simulation. 

Fig. 9. Flappy Bird. 

Fig. 10. Trajectories in Flappy Bird: The y-axis represents the time-step in the sequence and the x-axis represents the relative height of the bird. The 

color of each grid represents the reward for each position. The vertical bar on the right-hand side shows the scale for the reward values. A lighter color 

represents a greater reward. 
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Fig. 11. Trajectories in Flappy Bird for 15 steps. 

 

 

 

 

 

 

 

the transition probability for these model-based methods. The FunNN IRL is most sensitive to the value of P . Therefore,

the gradient barely descends in this environment, and this method entails the worst results. A comparison of the results

in Fig. 8 shows that the proposed method converges at approximately the 120th iteration and the two other methods re-

spectively converge at the 150th and 160th iterations. The Ada-entropy IRL learns and converges faster than the three other

methods. 

4.3. Flappy bird 

The Atari game, FlappyBird, involves a bird flying forward at a constant speed and the game players control the flight’s

altitude. If the player relaxes his or her fingers, then the bird rapidly descends under the influence of gravity. Thus the

player must maintain the bird’s height, and avoid random pillars. If the bird hits the pillars, then it dies and a new round
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Fig. 12. Survival rate and error rate in Flappy Bird. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

begins. The bird moves at high speed and the distance between pillars varies randomly. Hence, attaining a high score is

difficult. The interface of the game is shown in Fig. 9 . To allow the game to be automatically played by the agent, one

minute’s demonstration involving 280 actions is given by the expert for demonstrating how to avoid pillars. The learning

rate is 0.8, the discount rate is 0.98 and the bias value δ is -0.0 0 01. For each movement, 10% randomness are observed to

avoid becoming trapped in a local optimum. 

The 2D reward map after 300 iterations is displayed in Fig. 10 . The demonstration by the expert is shown in Fig. 10 (a)

and the imitated trajectory using the proposed method is exhibited in Fig. 10 (b). The reward for the proposed method is

very close to the trajectory demonstrated by the expert. 

The state space for this simulation is extremely vast. Each demonstration involves 150 states and a total of 230 successive

actions results in 34,500 state-action pairs. The state space is extensively large for the three algorithms that are compared:

MaxEnt IRL, DeepEnt IRL and FunNN IRL. To simplify the state space, the first 15-step demonstrations are selected as the

expert’s trajectory. A comparison of the reward for the first 15 steps after 50 iterations of these algorithms is exhibited in

Fig. 11 (a), (b), (c), (d) and –(e) respectively show the reward for the demonstration, Ada-entropy IRL, MaxEnt, DeepEnt and

FunNN. Where the y-axis represents the time-step in the sequence and the x-axis represents the relative height of bird. 

In this very complex environment, updating the reward function for the three other methods is tough. The average error

rates and the survival rates are compared in Fig. 12 (a) and (b). 

The environment is extremely large and complex. Therefore, it is challenging to determine a value for the MDP transition

probability, especially if the flight path describes a parabola. The methods that are compared poorly perform in terms of the

survival rate and the error rate, which do not converge for this complex environment. The proposed method is applicable in

a large and high dimension state space. 

5. Conclusions 

This study proposes a model-free IRL to allow imitation learning, without requiring an MDP model or bespoke selection

of features. The Ada-entropy IRL algorithm is an end-to-end approach that uses a state encoding method to simplify the

problem for complex and high-dimensional environments. An Adaboost classifier is used as a two-class classifier to adap-

tively assign the weight for a reward. Relative entropy is employed to measure the difference between the demonstrated

and imitated trajectories. Using the approximated reward function, an agent learns the policy to perform behaviors that are

similar to those demonstrated by an expert. The experimental results show the effectiveness and superiority of this method,

especially for complex environments, where the methods that are compared work poorly. Future studies will determine how

to assign multiple reward functions for various demonstrations in more complex tasks. 
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