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Abstract

Dynamic Multi-objective Optimization Problem (DMOP) is emerging in re-

cent years as a major real-world optimization problem receiving considerable

attention. Tracking the movement of Pareto front efficiently and effective-

ly over time has been a central issue in solving DMOPs. In this paper, a

reinforcement learning-based dynamic multi-objective evolutionary algorithm,

called RL-DMOEA, which seamlessly integrates reinforcement learning frame-

work and three change response mechanisms, is proposed for solving DMOPs.

The proposed algorithm relocates the individuals based on the severity degree of

environmental changes, which is estimated through the corresponding changes

in the objective space of their decision variables. When identifying different

severity degree of environmental changes, the proposed RL-DMOEA approach

can learn better evolutionary behaviors from environment information, based on

which apply the appropriate response mechanisms. Specifically, these change

response mechanisms including the knee-based prediction, center-based predic-

tion and indicator-based local search, are devised to promote both convergence

and diversity of the algorithm under different severity of environmental changes.
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To verify this idea, the proposed RL-DMOEA is evaluated on CEC 2015 test

problems involving various problem characteristics. Empirical studies on chosen

state-of-the-art designs validate that the proposed RL-DMOEA is effective in

addressing the DMOPs.

Keywords: Dynamic multi-objective optimization, severity degree,

reinforcement learning, prediction

1. Introduction

Many dynamic multi-objective optimization problems (DMOPs) are derived

from real-world problems, involving multiple, conflicting time-dependent ob-

jectives or constraints [11]. Such scenarios arise from practical disciplines in

fault tolerant control, priority scheduling and vehicle routing [9]. They pose5

a challenge to address DMOPs since their objective functions, constraints and

parameters will vary over time. Owing to its inherent dynamism nature, the

goal of solving DMOPs is to facilitate the tracking capability of the algorithm

after detecting the environmental changes. Therefore, the research has focused

on the active design of effectively solving DMOPs in the past few years.10

In recent decades, many researchers have recognized that a variety of multi-

objective evolutionary algorithms (MOEAs) are efficient tools to solve DMOP-

s. These methods including diversity enhancement strategies [20], prediction

mechanisms [45], and memory methods [4],roughly constitute the techniques for

handling dynamisms of DMOPs. In particular, the prediction methods, which15

have shown competitive performances, aims to predict the changing Pareto op-

timal set (POS) or Pareto optimal front (POF) through built prediction models

based on historical and existing information. These prediction-based models,

either utilizing machine learning technologies (e.g., autoregressive models [44],

the transfer learning model [14], and the Kalman Filter-based model [23]) or20

capturing the historic movement of the POS center [24] to relocate the individ-

uals in the population, are considered state-of-the-art solutions.

As demonstrated in the literature, these prediction methods mainly reinitial-
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ize the population based on learned historical information, so that the algorith-

m can respond to these changes in advance after detecting the environmental25

changes. However, the prediction strategy has been plagued by various deficien-

cies in solving the DMOPs. Most existing prediction-based methods only apply

the predicted response mechanisms at the instance of changes without con-

sidering the suitability of these mechanisms for these environmental changes,

leading to the waste of valuable environmental information. If a dynamic multi-30

objective evolutionary algorithm (DMOEA) could observe the severity of de-

tected changes, it can effectively adapt to the changing environment in time

and guide the population to move towards the POF during whole evolution.

Meanwhile, it is critical to develop an algorithm framework which can de-

termine the reasonable response mechanism to achieve a dynamism adjustment35

based on the environmental feedback. However, most current approaches lack

learning or feedback mechanisms which can be assessed through environment

information to guide the search directions. The information interacted with

the dynamic environment is very valuable, helping to ensure the correct mov-

ing direction after detecting the environmental changes. In particular, different40

environmental conditions may require different search operations to track the

moving POF more effectively. Therefore, it is expected that a more ideal D-

MOEA can address a variety of challenges in solving DMOPs.

To address the above issue, the interaction between machine learning and

MOEAs has received considerable attention in evolutionary computation com-45

munity. Among these machine learning algorithms, reinforcement learning (RL)

is considered as a classic representative due to its sequential decision making

characteristics under the stochastic environment [41]. Especially, RL algorithm

requires the agent to find an optimal strategy which optimizes multiple objec-

tives and achieves a trade-off among the conflicting objectives [36].50

In the literature, RL techniques have been used in evolutionary computation

to enhance the algorithm performance and to solve the real-world problems.

Hussein et al. [27] utilized a reinforcement learning-based memetic particle

swarm optimization (RLMPSO) approach during whole search process. Liao
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et al. [19] proposed a novel algorithm, named multi-objective optimization by55

reinforcement learning (MORL), to solve the real-world application in the power

system. These researchers believe that reinforcement learning techniques can

facilitate the evolutionary process of the algorithm by means of using previous

information and Markov decision process (MDP).

However, RL still leaves much room for a better design of prediction-based60

algorithms combined with dynamic environment characteristics when dealing

with DMOPs. As expected, integrating reinforcement learning methods into D-

MOEAs is still considered in its infancy. The distribution of POF in DMOPs at

different time is mutually related to the dynamic environments, whose severity

of changes is not exactly the same. Obviously, the reinforcement learning algo-65

rithms which exploit environmental information could contribute significantly

to the DMOEA.

The motivation of this study is that RL is an effective method to learn the

optimal behavior by interactions between an agent and dynamic environments,

which is therefore suitable to address DMOPs with dynamic environment char-70

acteristics. First, the RL method is equipped with the ability to learn the envi-

ronmental characteristics and then utilize the environment information to guide

the population evolution in time-varying environments. Second, the RL method

has the ability to alleviate the probability of inaccurate prediction, thereby en-

hancing the algorithm’s tracking ability through the reasonable change response75

mechanisms. It estimates the severity degree of the environmental changes (e.g.,

slight-severity, medium-severity and high-severity changes) and applies the ap-

propriate response mechanism to adapt to the environmental changes, which is

particularly useful in DMOPs in terms of searching optimal solutions.

Some researchers utilize a multi-objective two-archive memetic algorithm80

based on Q-learning (MOTAMAQ) to solve the dynamic software project schedul-

ing problems [31]. In spite of adopting a similar Q-learning framework, specific

definitions of dynamic environments and individual representations are fairly

different. Our proposed RL-DMOEA perceives severity degree of environmen-

tal changes which are estimated within the objective space of the continuous85
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decision variables. Afterwards, three distinct, yet complement, prediction-based

mechanisms which relocate the individuals are ensembled based on Q-learning

framework according to the location correlations of optimal solutions at differ-

ent time. On the other hand, MOTAMAQ employs discrete binary encoding

and its environmental changes are mainly affected by the number of available90

tasks and available employees. MOTAMAQ exploits the appropriate global and

local search operators of the memetic algorithm to generate non-dominated so-

lutions. Due to its own characteristics, MOTAMAQ may not be appropriate for

implementing the prediction-based strategies.

Motivated by the dynamism nature of DMOPs, a computationally efficient95

RL framework is proposed, in which the knee-based prediction, center-based

prediction and indicator-based local search are employed due to following rea-

sons. As demonstrated in [7], the global knee solution contains valuable in-

formation for guiding the predicted evolutionary direction, which reflects the

optimal solution accurately. It should be noted that it is effective to track the100

movement of POF via evolution direction of the global knee solution, because

higher severity of change demands greater exploration capability. Therefore, the

knee-based prediction mechanism, which is computed through computationally

efficient minimum Manhattan distance (MMD) approach [7], predicts the new

locations to respond to high-severity environmental changes quickly. Referring105

to [45], it is worth noting that the population centers provide efficient historical

optimal information at different time instances, guiding the promising evolu-

tionary direction. The center-based prediction is adopted to relocate individu-

als when detecting the medium-severity changes from the empirical perspective.

The indicator-based local search mechanism [46], on the other hand, shows great110

promise in facilitating convergence when confronting with the slight-severity en-

vironmental changes. They collectively generate high quality solutions in the

close neighborhood of POS and provide a faster convergence, which makes the

algorithm well suited for responding to varying degrees of the environmental

changes. The proposed algorithm, termed RL-DMOEA, is evaluated on CEC115

2015 benchmark problems to verify its effective performance in solving DMOPs.
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Intuitively, the main contributions of this paper are given as follows:

(1) We devise a reinforcement learning-based framework (in short for RL-DMOEA),

which predicts and relocates the POS more adaptively by incorporating RL-

based Q-learning into the evolutionary process.120

(2) Based on different severity degree of environmental changes, the knee-based

prediction, the center-based prediction, and the indicator-based local search

prediction methods are synergistically integrated to predict the location of

non-dominated solutions in the new environment.

(3) According to the dynamism correlations of decision space at different time,125

our proposed algorithm can learn valuable information from the dynamic

environment, based on which to determine the appropriate prediction-based

strategy to adapt to the environmental changes.

The remainder of the paper is structured as follows. We describe some relat-

ed approaches and preliminaries in Section 2. The technical details of proposed130

RL-DMOEA are presented step by step in Section 3. Section 4 overviews the

benchmark problems, performance metrics adopted and shows the empirical re-

sults and discussions. We summarize the paper and discuss the future research

direction in Section 5.

2. Preliminaries and related works135

Firstly, we introduce the concepts of DMOPs investigated in this section.

Next, a detailed description of the related works for DMOPs is briefly intro-

duced. Then, an introduction of Q-learning is given, which is regarded as the

most well-known reinforcement learning algorithm.

2.1. Concepts of Dynamic Multi-Objective Optimization140

The characteristic of DMOPs is that their objective functions change over

time. Generally, a typical DMOP is formulated as follows [14].

Minimize f(x, t) = [f1(x, t), f2(x, t), ..., fM (x, t)]

subject to x ∈ Ω
(1)
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In the definition, x = (x1, x2, ..., xn) represents a decision vector, and Ω

indicates the feasible decision space. fi(x, t) : Ω → R(i = 1, 2, ...,M). Ω =

[L1, U1] × [L2, U2] × · · · × [Ln, Un]. The function f(x, t) denotes the objective

vector with M objectives, which changes over time t. Li and Ui denote the

lower and upper bounds of the ith decision vector, respectively.145

Definition 1. Dynamic Pareto domination: Assume that x1 and x2

are two decision vectors, and x1 dominates x2 (x1 ≺t x2) at time t implies the

following relationship:

fi(x1, t) ≤ fi(x2, t) ∀i = 1, ...,M

fj(x1, t) < fj(x2, t) ∃j = 1, ...,M
(2)

Definition 2. Dynamic Pareto optimal set: Two decision vectors x∗

and x are given. In the decision space, x∗ is said to be non-dominated if there

is no other solution x dominate x∗ at time t. The Dynamic Pareto optimal set

(DPOS) is formed by all the Pareto optimal solutions at time t.

DPOS = {x∗ | ¬∃x ∈ Ω : x ≺t x
∗} (3)

Definition 3. Dynamic Pareto optimal front: At time t, the Dynam-

ic Pareto optimal front (DPOF) is composed by the corresponding objective

vectors of the DPOS.

DPOF = {f(x∗, t) = (f1(x
∗, t), f2(x

∗, t), ..., fM (x∗, t)) | x∗ ∈ DPOS} (4)

2.2. Related Works

Literatures related to DMOPs field are thoroughly reviewed and numerous

representative approaches are mainly divided into three categories, which are

diversity-based mechanisms, memory-based mechanisms, and prediction-based

mechanisms.150

The diversity-based mechanism aims to maintain or preserve the population

diversity using a kind of technique when the dynamic changes are detected.

Liu et al. devised the hypermutation strategies to tackle DMOPs [22]. Coel-

lo Coello et al. [1] suggested a novel diversity enhancement mechanism that
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promotes and adapts to the environmental changes. Woldesenbet and Yen [39]155

introduced a novel evolutionary algorithm. This algorithm relocates the solu-

tions according to the average sensitivities of their decision variables in changing

environment to solve DMOPs. Kwong et al. [18] suggested a minimum span-

ning tree algorithm to address the difficulties of DMOPs. Goh and Tan [12]

proposed a multi-population strategy for maintaining the diversity of popula-160

tion when solving DMOPs. Deb and Karthik [10] introduced two versions of

DNSGA-II when handling dynamic optimization problems. Camara et al. [5]

utilized some Pareto optimal solutions and crowding mechanisms to effectively

handle dynamic changes in DMOPs.

The memory mechanism records the past information and reuses the histori-165

cal information in order to enhance the performance of DMOEAs when dynamic

changes are detected. In [8], the authors proposed a PSO algorithm with an ex-

ternal repository, and the exploratory capabilities of the algorithm are enriched.

Wang and Li [37] devised a memory-based algorithm to address DMOPs. In this

method, the restart, explicit memory, local search memory and hybrid memory170

are incorporated to improve the searching ability of their proposed algorith-

m. Peng et al. [24] utilized an evolutionary environment model which helps

to adapt to the changing environment to solve DMOPs. Azzouz et al. [2] p-

resented a memory management strategy to address environment dynamicity

effectively. The authors used memory, local search and random strategies when175

the environmental changes are detected.

The prediction-based mechanisms have drawn much attention to handle D-

MOPs in recent decades. The strategy is combined with a prediction model and

predicts the population based on better expected knowledge. Zhou et al. [44]

presented the population prediction strategy (PPS) which uses previous center180

points and the previous manifolds to predict the next center point and next

manifold, respectively. Wu et al. [40] proposed a special directed search strat-

egy (DSS). This method uses predicted direction of movement to reinitialize

new population for solving DMOPs. Koo et al. [16] devised the method which

predicts the moving direction and magnitude of POS when solving DMOPs.185
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Jiang et al. [14] developed a Tr-DMOEA algorithm, which adopts the transfer

component analysis method to relocate the individuals in population and speed

up evolutionary process. Muruganantham et al. [23] proposed an algorithm

through utilizing a Kalman filter (KF) technique to estimate the moving direc-

tion in state of the system when solving DMOPs. Ruan et al. [25] developed a190

hybrid algorithm to predict the distribution of the Pareto front accurately. The

prediction-based method can predict the individuals which are close to the new

POF by observing the movement direction of the center points.

Recently, some works exploit new research directions in evolutionary com-

putation. Liu et al. [21] developed a novel algorithm which uses the co-195

evolutionary optimizer to address DMOPs. Jiang and Yang [15] presented a

novel method to handle DMOPs. This method integrates the steady-state track-

ing ability and preserves a good diversity. Shang et al. [30] devised a quantum

immune clone co-evolutionary algorithm (QICCA) which adopts entire cloning

to solve DMOPs. Chen et al. [6] attempted to tackle the DMOPs which have200

a changing number of objectives. They designed two archives which maintain

two co-evolving populations to overcome the difficulty.

2.3. Q-learning

In a RL algorithm, an agent aims to learn feedback by interacting with a

dynamic environment [35]. In other words, RL focuses on how the agent de-205

termines the action in the environment to achieve maximum cumulative reward

[34]. Generally, the researchers usually formulate this kind of sequential decision

process as a Markov decision process (MDP) [38].

Q-learning is one of breakthroughs in RL and derives from machine learning

community. Known as a model-free reinforcement learning method, Q-learning

is an off-policy temporal-difference (TD) algorithm to estimate the accumulative

rewards of performing an action in a given state [33]. Its key components consist

of an agent, environment, states, actions, and rewards. The main purpose of

combining Q-learning algorithm with MOEAs is to identify the optimal policy

for maximizing the overall rewards [29]. S = [s1, s2, ..., sn] denotes a set of states
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for the learning agent, and A = [a1, a2, ..., an] denotes a set of actions performed

by the agent, rt+1 is the immediate reward for executing action a. Afterwards,

the learned action-value function of Q-learning at time t is given as follows:

Q(st, at) = (1− α)Q(st, at) + α[rt+1 + γmax
a∈A

Q(st+1, a)] (5)

where the discount rate γ is to control the convergence. In addition, the learned

action value function Q prompts the early convergence proof [26]. As reported210

in [35], the procedures of Q-learning are shown in Algorithm 1.

Algorithm 1 Procedure of Q-learning

1: Initialize Q(st, at) arbitrarily and parameters

2: Loop for each episode

3: Initialize st

4: Loop for each step of episode

5: Choose at from st using policy derived from Q-learning

6: Take action at and observe rt+1 and st+1

7: Adjust Q value Q(st, at) = (1 − α)Q(st, at) + α[rt+1 +

γmaxa∈A Q(st+1, a)]

8: st = st+1

9: Until st is terminal

3. The RL-DMOEA

The proposed reinforcement learning-based dynamic multi-objective evolu-

tionary algorithm (in short for RL-DMOEA) is presented in this section. Firstly,

the general framework of RL-DMOEA is outlined. Then the main innovative215

component, the Q-learning algorithm to implement RL framework is illustrat-

ed in details. Afterwards, three change response mechanisms of dealing with

environment changes are depicted. At last, we analyze the computational com-

plexity of proposed RL-DMOEA.
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3.1. General framework of RL-DMOEA220

The major components of overall RL-DMOEA framework are illustrated in

Algorithm 2. As depicted in Fig. 1, the agent learns information from dynamic

environment changes, and then determines which action to be taken in the new

environment. The actions involve the knee-based prediction, the center-based

prediction and indicator-based local search methods in RL-DMOEA approach.225

The environment for performing Q-learning is considered as the entire searching

space in the given DMOP. The RL-DMOEA approach follows the decisions of

the agent. After generating non-dominated solutions, an agent evaluates reward

of the selected action and updates the Q values accordingly. Figure 2 is used to

illustrate the proposed algorithm clearly.230

Fig. 1. Major components in the proposed RL framework.

To be specific, the overall RL-DMOEA calls the following steps. RL-DMOEA

initializes the population and parameters. In the main loop, RL-DMOEA de-

tects environment changes and evolves the population. If no change is detected,

the stationary MOP is optimized with the MOEA. When detecting the envi-

ronmental change, a change severity detection operation is adopted to estimate235

the severity of changes which is handled by Q-learning procedure. After that,

the selection policy operation is applied to determine which prediction strategy

should be used to guide the population evolution. Positive rewards are updated

according to HV value which is computed through the non-dominated solutions.

Then, the next state is observed and Q-table is updated. The overall framework240

of proposed RL-DMOEA is presented in Algorithm 2.
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Fig. 2. Diagram of the proposed RL-DMOEA algorithm.

3.2. Change severity detection operation

This subsection introduces a change severity detection strategy, which can

help the agent learn the severity of environment change and make an appro-

priate decision about selecting response mechanisms to be taken in the new245

environment. The POFs usually change over time. Therefore, an agent should

be able to detect and observe the environmental changes in time. To detect

environment changes effectively, the change severity detection is designed. This

operation identifies the severity degree of the environmental change by comput-

ing the deviation of the detectors at different time instances. The definition of250

the state (severity of environmental change) is the deviation between the ob-

jective values at time step t-1 and time step t. Based on the archive mk, the

12



Algorithm 2 Framework of RL-DMOEA

Input: the maximum generation number, Gmax; generation index, g = 0;

learning rate α;discount factor γ;

Output: approximated POS;

1: Initialize sets of Q values Q(s, a) as empty sets for each (s, a) pair;

2: Initialize average reward vector R(s, a) as zero for each (s, a) pair;

3: Randomly generate an initial population P ;

4: while stopping criteria are not satisfied (g < Gmax) do

5: if change is detected then

6: Observe current state s according to the change severity detection op-

erator;

7: Select an action a from (a1, a2, a3) through the selection policy;

8: Calculate the reward (HV value of the non-dominated solutions), up-

date R(s, a) and observe next state s
′

;

9: Update the Q values Q(s, a) according to update of the Q-value;

10: else

11: Optimize the MOP with NSGA-II-DE;

12: end if

13: g = g + 1;

14: end while
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objective values of all detectors are stored. To implement this method, we check

the environmental changes as follows:

εt =

∑

j∈mk
|
fm(xj,t)−fm(xj,t−1)

R(t)−U(t) |

|mk|
m = 1, 2, ...,M (6)

where εt is a pre-defined threshold. R(t) and U(t) represent the nadir point255

and utopia point varying over time, respectively. The objective value at time t,

denoted as fm(xj,t) , is compared with that at time t−1, denoted as fm(xj,t−1),

to compute the severity degree.

3.3. Actions of RL-DMOEA

When the environment changes are detected, the change response mecha-260

nism should equip with a good tracking ability in the dynamically changing

environment. The severity degree of the environment change should be identi-

fied, and then the agent applies suitable corresponding response strategies. The

knee-based prediction, center-based prediction and indicator-based local search

mechanisms are regarded as different actions.265

3.3.1. Knee-based prediction mechanism (KBP)

In the dynamic environment, it has been an active research direction to

track the POF, the distribution of which has been confirmed to show inherent

laws of DMOPs [3]. Meanwhile, the knee solution [42] could reflect the optimal

solution accurately, showing a unique significance in addressing multi-objective270

optimization problems (MOPs). Thus, we can utilize knee information to track

the movement of the POF when a high-severity environmental change is detect-

ed.

The knee-based prediction (KBP) can predict the new locations of non-

dominated solutions through searching for the knee solution. In order to reduce275

the impact of inaccurate prediction, the updated population which consist of

some existing solutions and random solutions, is generated by KBP mecha-

nism. Referring to [7], the Minimum Manhattan Distance (MMD) method is

adopted, which determines the global knee point discriminately. Identifying the

14



knee point is important to improve the searching capability of RL-DMOEA.280

Compared to other mechanisms, the MMD knee selection mechanism shows it-

s superiority in searching for the global knee solution, especially in exploiting

geometrical knowledge and performance measure. Based on these reasons men-

tioned above, we choose MMD knee selection as a basic construction for the

proposed knee-based prediction design. Algorithm 3 shows the detailed steps285

which selects MMD knee solution from a given non-dominated set.

Algorithm 3 MMD knee selection

Input: the non-dominated solutions set A;

Output: MMD knee solution set, Q;

1: for m = 1 to M do

2: Identify minimum value fMin
m in objective m from A;

3: Identify maximum value fMax
m in objective m from A;

4: for i = 1 to |A| do

5: Disti = Disti +
fi
m−fMin

m

fMax
m −fMin

m

6: end for

7: end for

8: Select the MMD knee solution with minimum value of Disti;

9: Copy the the MMD knee solution into set Q

If the environmental changes are detected, it is critical to generate the indi-

viduals based on the correct direction of movement. Therefore, as shown in Fig.

3, the global knee is obtained to compute the moving direction. Kt represents

the knee solution calculated through MMD method at time t. The movement290

step-size Dt can be computed as follows:

Dt = ‖Kt −Kt−1‖ (7)

where Dt refers to the Euclidean distance which is computed between the global

kneesKt andKt−1. In this way, the direction of movement is calculated through

the global knee solutions.
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Fig. 3. Prediction method by MMD knee point.

The new individuals can be reinitialized based on the direction of movement

and current location. The new location of individuals in the search space is

predicted in the following way [15]:

xt+1 = xt +Dt + εt (8)

where εt ∼ N(0, d) is a Gaussian perturbation which has a mean value of zero295

and standard deviation of d. In the new environment, the algorithm utilizes the

global knee solution to reinitialize the population. The details are presented in

Algorithm 4.

The knee-based prediction strategy contributes to accelerating the conver-

gence speed of the algorithm. To effectively address DMOPs, maintaining di-300

versity should not be ignored. Since random solutions help to preserve the

diversity, we adopt the random strategy to reinitialize a portion of individuals

in the new population. The detailed procedure is shown in Algorithm 5. The

Pareto optimal front predicted by the knee-based strategy, and random solu-

tions constitute the population in the new environment, which maintains the305

well-distributed and well-converged POS. Afterwards, the population is updated

with NSGA-II-DE [17].

It is worth noting that, although the knee-guided prediction approach [48] in
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KPEA shares a similar calculation as Equation (8), they are different in essence.

The knee-guided prediction approach uses the knee solution to predict the mov-310

ing direction, and then update the boundary solutions and global knee solution

accordingly in the new environment. KPEA aims to search the neighborhoods

surrounding the knee solution, because it solely concentrates on searching for

the updated knee solution when detecting environmental changes. In contrast,

although the knee-based prediction mechanism in RL-DMOEA calculates the315

moving direction via the knee solution as well, it updates the POS at time t by

using the obtained moving direction and the POS at time t− 1. In addition, in

order to enhance the diversity, these updated POS and some random solutions

are incorporated into the population, which in turn facilitate to reinitialize the

population.320

Algorithm 4 Knee-based prediction

Input: the POSt at time t;the size of population NP ;previous POSt−1 at

time t− 1;

Output: approximated POS;

1: Calculate the knee solution Kt of POSt and Kt−1 of POSt−1 according to

Minimum Manhattan Distance (MMD) method (Algorithm 2);

2: Generate new individuals using POSt using Equation (7) and (8) , then

check the boundary;

3: Copy them into Pknee and identify Nknee (the size of Pknee);

4: Generate Prandom with the size Nr = NP −Nknee using Algorithm 5;

5: Get the new population Pg = Pknee + Prandom;

6: Optimize Pg with NSGA-II-DE ;

Algorithm 5 Random strategy

Input: the size of population Nr;

Output: random generated population Prandom;

1: Randomly generate Nr individuals and check the boundary constraints;

2: Copy them into Prandom and get the random generated population;

17



3.3.2. Indicator-based Local search mechanism (ILS)

The indicator-based local search mechanism (ILS) is believed to generate

high quality solutions around POS and accelerate the convergence speed. When

slight-severity environmental changes are detected, this kind of local search

process could lead the population towards new promising search directions [46].325

Thus, we propose this mechanism which is able to search for promising solutions

in the neighborhood of the updated population.

In addition, the method adopts the quality indicator Iε+ as a selection prin-

ciple for fitness assignment in [46]. During the selection process, it calculates

the quality of comparison of two Pareto sets with respect to each other [46].

Generally, the indicator is stated in the following way:

Iε+(A,B) = min(∀x2 ∈ B, ∃x1 ∈ A : fi(x1)− ε ≤ fi(x2))

i = 1, ...,M (9)

Fit(x) = I(P\{x}, x) =
∑

z∈P\{x}

−e−Iε+(z,x)/w

where P is the population, and w is usually set to 0.05.

To construct the new population, the obtained better quality neighborhood

solutions are introduced into the new population. During evolutionary itera-330

tions, an individual which has smallest fitness is eliminated. When detecting

the slight environment changes, some individuals are generated by the indicator-

based local search which can inadvertently promote the convergence [32]. Some

random individuals are generated to maintain the population diversity. Finally,

the population is updated using NSGA-II-DE [17].335

3.3.3. Center-based prediction mechanism (CBP)

For medium-severity environmental changes, a center-based prediction (CBP)

mechanism is proposed to redistribute individuals to the regions close to the

POF. The center-based prediction method [45] aims to predict the new popu-

lation based on previous information. Traditional prediction-based approaches

[45] execute the process by using Equation (10), maybe leading to prediction
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Algorithm 6 Indicator-based local search

Input: the POSt at time t, individual x, fitness indicator Fit(x),

Num(number of neighborhood trials), index k = 0;

Output: approximated POS;

1: Evaluate the fitness values of each individual x in POSt;

2: Fit(x) = I(POSt\{x}, x);

3: for each x ∈ POSt do

4: while (k < Num) do

5: x1=mutation(x);

6: Compute fitness of x1,Fit(x1) = I(POSt\{x}, x1);

7: if (Fit(x1) > Fit(x)) then

8: x = x1

9: Update the fitness values of individuals;

10: Break;

11: else

12: k = k + 1

13: end if

14: end while

15: k = 0

16: end for

17: Copy POSt into Plocal and identify Nlocal (the size of Plocal);

18: Generate Prandom with the size Nr = NP −Nlocal using Algorithm 5;

19: Get the new population Pg = Plocal + Prandom;

20: Optimize Pg with NSGA-II-DE ;
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errors. To address this issue, CBP makes the predicted solutions and random

solutions constitute the population in the new environment, in order to reduce

the impact of inaccurate prediction.

Ct =
1

|POSt|

∑

xt∈POSt

xt (10)

The prediction mechanism used in this paper is defined as Equation (11):

xt+1 = xt+ ‖ Ct − Ct−1 ‖ +εt (11)

where Ct and Ct−1 are the center points at t and t-1 time steps, respectively.

xt+1 represent the predicted individual at t+1 time step. The detailed process

is illustrated in Algorithm 7.

Algorithm 7 Center-based prediction

Input: the POSt at time t;the size of population NP ;previous POSt−1 at

time t− 1;

Output: approximated POS;

1: Calculate the knee solution Ct of POSt and Ct−1 of POSt−1 according to

Equation (10);

2: Generate new individuals using POSt using Equation (11) , then check the

boundary;

3: Copy them into Pcenter and identify Ncenter (the size of Pcenter);

4: Generate Prandom with the size Nr = NP −Ncenter using Algorithm 5;

5: Get the new population Pg = Pcenter + Prandom;

6: Optimize Pg with NSGA-II-DE ;

3.4. State-action table340

From the empirical perspective, we use the following state-action table (Ta-

ble 1) to reflect the suitability of the change response strategies. Q-learning

utilizes this Q-table to determine which action to be applied for the given s-

tate explained in subsection 3.2. The Q values are updated as described in

subsections 3.5, 3.6, and 3.7. The RL-DMOEA approach follows the agent’s345
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instructions. When detecting environmental changes, signals are sent to the

agent. Then, the agent selects the appropriate action based on the severity of

environment changes and provides the algorithm with learned information. An

agent evaluates the rewards of the selected operation and updates the corre-

sponding Q value. Meanwhile, RL-DMOEA executes the action from the agent350

and relocates the individuals to areas near the new POF.

These actions are introduced in subsection 3.3. We classify the environmen-

tal changes into three severity levels, including slight (s1), medium (s2) and high

(s3)-severity environmental changes. The proposed RL-DMOEA could retrieve

the best action from the Q-table in the current state, which has the maximum355

Q-value.

Table 1: State-action Table(Q-Table)

State Action

a1(KBP ) a2(ILS) a3(CBP )

s1(0 ≤ εt ≤ 0.001) Q(s1, a1) Q(s1, a2) Q(s1, a3)

s2(0.001 ≤ εt ≤ 0.003) Q(s2, a1) Q(s2, a2) Q(s2, a3)

s3(εt > 0.003) Q(s3, a1) Q(s3, a2) Q(s3, a3)

3.5. Action selection policy

For the state st, an agent uses a selection policy π to select an action. For

each candidate action ai, the selection probability Pr(st, ai) is computed by the

Equation (12) in the Q-table. The softmax function utilizes the selection prob-

ability, which is identified through using a Boltzmann distribution [35] ranking

the value-function estimates: where τ refers to a positive parameter. We define

τ as the maxQ(st, ai). K is the number of candidate actions.

π(ai|st) = Pr{ai = a|st = s} =
e

Q(st,ai)

τ

∑K
i=1 e

Q(st,ai)
τ

(12)

τ = maxQ(st, ai)
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3.6. Reward of an action

After an action a is performed, a reward value r is used to evaluate the perfor-

mance of a and update the Q(s,a) value. The hypervolume (HV) is a commonly360

used performance metric in DMOPs [14]. In this paper, HV is regarded as the

reward r for executing the action a. The reference point is computed through

the worst value for each objective in the current state s.

3.7. Update of the Q-value

The Q -value of Q(st, at) is computed as follows:

Q(st, at) = Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (13)

where the learning rate α is to control the learning speed.365

3.8. Computational complexity

This subsection analyzed the computational complexity of the proposed RL-

DMOEA. Here, M is the number of objectives and K refers to the number

of non-dominated solutions in POF. N represents the population size. Con-

sidering the computational complexity, the overall complexity of the proposed370

RL-DMOEA is mainly affected by the three change response mechanisms and

NSGA-II-DE. The time complexity of knee-based prediction includes two parts,

MMD knee selection and prediction. The MMD knee selection takes O(MK)

computational complexity. And the computational complexity of prediction

is O(N). The indicator-based local search requires O(MK2) computational375

complexity. The center-based prediction, on the other hand, consumes O(N)

computational complexity. In addition, the theoretical time complexity of DE-

NSGA-II is O(MN2). Obviously, O(MN2) > O(MK2) and O(MN2) > O(N).

Therefore, the proposed RL-DMOEA takes O(MN2) computational complexity.

4. Experimental study380

4.1. Test instances

To solve DMOPs, the proposed RL-DMOEA is tested on twelve IEEE CEC

2015 [13] test problems, including four FDA instances, one DIMP instance, three
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HE instances and four DMOP instances. The classification and properties of

the benchmark function are depicted in Table 2. In the table, Type I test func-385

tions mean that POS changes, but POF remains fixed. Type II test functions

illustrate that POF and POS both change. Type III test functions illustrate

that POF changes, but POS remains unchanged. To be specific, FDA4, FDA5

and its variants refer to three-objective test functions, while the remaining test

functions are two-objective ones. In the definition, t refers to t = (1/nt)⌊(τ/τt)⌋.390

In addition, τt, nt and τ means the frequency of change, the severity of change,

and maximum number of iterations respectively.

Table 2: Summary of Benchmark Functions

Type Function

TYPE I FDA4, DIMP2, DMOP3

TYPE II
FDA5, FDA5iso, FDA5dec, DMOP2,

DMOP2iso, DMOP2dec

TYPE III HE2, HE7, HE9

4.2. Performance indicators

The commonly used performance metrics [47] are adopted in the experiment

study, such as a variant of modified inverted generational distance (VMIGD),395

a variant of modified hypervolume (VMHV), and Schott’s spacing metric (SP).

These performance indicators are considered to measure the convergence and

diversity.

4.2.1. A variant of modified inverted generational distance (VMIGD)

The inverted generational distance (IGD) [43] is adopted to evaluate the

performance of the algorithm, including the both convergence and distribution.

POFt is a uniformly distributed true POF and POF ∗
t is the POF obtained by

the underlying algorithm at time t. The definition of IGD is shown as Equation

23



(14),

IGD(POFt, POF ∗
t ) =

∑

v∈POFt
minu∈POF∗

t
‖ v − u ‖

|POFt|
(14)

MIGD metric, given by Equation (15), is the average IGD values over some

time steps for a given run [14]. T represents a set of discrete time instances over

a run and |T | is the cardinality of T.

MIGD =
1

|T |

∑

t∈T

IGD(POFt, POF ∗
t ) (15)

VMIGD evaluates those algorithms under different (τt, nt) configurations,

and the definition of the VMIGD is as follows:

VMIGD =
1

|E|

∑

C∈E

MIGD(POFt, POF ∗
t , C) (16)

where |E| is the number of different (τt, nt) configurations. There are three400

configurations and |E| is set as three. The smaller VMIGD value indicates a

better performance of the algorithm.

4.2.2. A variant of modified hypervolume (VMHV)

The hypervolume (HV) [14] measures the volume enclosed by the obtained

POF. Let POF ∗
t be obtained POF through the algorithm at time t. MHV takes

the average of HV values in some time steps for a given run [14].

MHV =
1

|T |

∑

t∈T

HV (POF ∗
t ) (17)

In the definition, HV(POF ∗
t ) means the hypervolume of POF ∗

t . T represents

a set of discrete time instances over a run, and |T | is the cardinality of T. Under

each environment, the reference point is (z1+0.2, z2+0.2, ..., zm+0.2) according

to the empirical experiments, where zj is the maximum value of the jth objective

of the true POF and m is the number of objectives.

VMHV =
1

|E|

∑

C∈E

MHV (POF ∗
t , C) (18)

VMHV is similar to VMIGD. The larger VMHV value indicates a better per-

formance of the algorithm.405
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4.2.3. Schott’s spacing metric (SP)

The performance indicator is proposed in [28] to evaluate the distribution of

obtained POF. The definition of SP is shown as follows:

SP =

√

√

√

√

1

|POF ∗
t | − 1

POF∗

t
∑

i=1

(Di −D)2 (19)

where Di represents the Euclidean distance between the ith member in POF ∗
t

and its nearest member in POF ∗
t . D refers to the average value of Di.

4.3. Parameter settings

The parameter settings of chosen DMOEAs in the experiments are presented410

in this subsection. Five representative DMOEAs, including Tr-NSGA-II [14],

DMS [25], PPS [44], MOEA/D-KF [23] and KPEA [48], are compared with

RL-DMOEA. Because of their popularity and promising performance, they are

chosen in testing different environments.

1) In all the experiments, the population size for all competing algorithms415

is set to 100.

2) The dimensions of decision variables are set according to [13].

3) In the parameter settings for RL-DMOEA, the learning rate α is 0.9

and the discount rate γ is set to 0.6. Moreover, the DE-based mutation and

crossover operators are employed. The crossover probability is 0.8 and the420

mutation probability is 0.5.

4) The algorithm-specific parameters for Tr-NSGA-II, DMS, PPS, MOEA/D-

KF and KPEA are set according to their original publications [14], [25], [44],

[23] and [48], respectively.

5) The severity nt is set to 10 and the frequency τt is set to 5,10 and 20.425

6) All the algorithms run 20 independent times on benchmark problems.

In addition, we set the total number of generations to 20τt + 50. This means

that there are entire 20 changes for all the test problems and 50 generations are

executed before the first environmental change is detected.

7) In all the algorithms, we randomly select 10 individuals as the detectors430

when the environmental changes are detected.
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4.4. Experimental results and analysis

To thoroughly investigate the performance of the proposed RL-DMOEA,

we conduct the experiments on all the test problems. The obtained average

VMIGD, VMHV, and SP statistical results under different environment changes435

are summarized in Tables 3-5, respectively. In particular, we show the best

average values in bold face. In addition, we further investigate and analyze the

efficiency of the proposed RL-DMOEA.

Since VMIGD metrics depicts the differences between the approximate and

the true POFs, we can use VMIGD to assess the performance of proposed al-440

gorithm. As can be observed in Table 3, obviously, in most cases, RL-DMOEA

performs best on most of FDA, HE, and DMOP benchmark functions when

evaluating VMIGD metric. It shows that RL-DMOEA has better convergence

than the other five competing algorithms. However, Tr-NSGA-II performs bet-

ter than RL-DMOEA on FDA4. For DIMP2 and DMOP2dec, RL-DMOEA is445

slightly inferior to MOEA/D-KF and Tr-NSGA-II. In addition, RL-DMOEA

also offers some better results on HE2, HE7 and HE9, which means that its

Q-learning approach may be effective in dealing with type III DMOPs.

Table 4 shows the VMHV statistical results of six competing algorithms on

all the test problems. The VMHV results are somewhat different from VMIGD450

values shown in Table 3. Different from Table 3, it shows that RL-DMOEA

performs the best on six test problems but barely loses to Tr-NSGA-II on F-

DA4, DMOP2dec and variants of FDA5 in Table 4. RL-DMOEA shows a little

worse performance compared with Tr-NSGA-II on DMOP2dec. Clearly, the ob-

tained VMHV values of DMS and KPEA are similar, which are reported in Ta-455

ble 4. Additionally, RL-DMOEA shows promising performance maybe because

RL-DMOEA could predict the population according to the severity degree of

environment changes.

For the SP metric, in Table 5, we can find that RL-DMOEA wins the first

place on testing most FDA and DMOP problems, which indicates that it p-460

reserves a good distribution in most cases. It obtains worse results than Tr-

NSGA-II on FDA4, FDA5dec and DIMP2. The DMS, PPS and MOEA/D-KF
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perform better than RL-DMOEA for DMOP3, HE2 and HE9, respectively. Tr-

NSGA-II wins second place on most test problems. For all the tested instances,

the performances of DMS and MOEA/D-KF are almost similar.465

According to the experimental study of VMIGD, VMHV, and SP on these

competing algorithms, the following observations are obtained:

1) From Tables 3 and 4, the results measured by the VMIGD and VMHV

metrics indicate that RL-DMOEA obtains significantly better results on most

tested FDA, DMOP, and HE instances. The Table 5 shows that a good SP470

value is not necessarily related to VMIGD metric, which is given in the cases of

Tr-NSGA-II on FDA4, FDA5 and its variants.

2) For most performance metrics and test instances, RL-DMOEA and Tr-

NSGA-II are in the first and second places. The results show that RL-DMOEA

could search for a well-converged and well-distributed POF. RL-DMOEA shows475

better performance mainly because reinforcement learning evolutionary frame-

work selects the suitable response mechanism.

Compared with our previous proposed KPEA, the experimental results show

that RL-DMOEA has clear advantages in handling DMOPs especially pursuing

a well-converged and well-distributed Pareto front. The main reasons are illus-480

trated as follows. RL-DMOEA focuses on searching for a well-distributed Pareto

front and utilizes the reinforcement learning-based method, which learns more

information from environment and accelerates the evolution process of searching

for Pareto front. The reinforcement learning helps to enhance the searching abil-

ity of solving dynamic multi-objective optimization problems, which promotes a485

better performance in the experiments. KPEA aims to maintain non-dominated

solutions around knee and boundary regions, ignoring the diversity during the

evolutionary process. Although KPEA reduces the computational complexity,

it seems not to obtain a well-distributed Pareto front which is reflected on worse

VMIGD, VMHV and SP values.490
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Table 3: VMIGD values of five algorithms compared with the proposed RL-

DMOEA.

VMIGD RL-DMOEA Tr-NSGA-II DMS PPS MOEA/D-KF KPEA

FDA4 1.058E-1(2.251E-2) 7.218E-2(1.420E-2) 1.128E-1(2.832E-2) 1.397E-1(2.209E-2) 1.902E-1(3.122E-2) 1.918E-1(2.724E-2)

FDA5 1.363E-1(2.044E-2) 1.724E-1(2.414E-2) 1.889E-1(2.440E-2) 1.747E-1(2.938E-2) 1.915E-1(3.016E-2) 1.897E-1(3.313E-2)

FDA5iso 1.124E-1(2.058E-2) 1.365E-1(2.735E-2) 2.419E-1(3.019E-2) 2.080E-1(2.114E-2) 2.351E-1(3.106E-2) 2.844E-1(1.969E-2)

FDA5dec 3.020E-1(2.640E-2) 3.048E-1(3.046E-2) 3.682E-1(2.550E-2) 3.406E-1(4.514E-2) 3.477E-1(3.613E-2) 3.862E-1(2.725E-2)

DIMP2 3.602E-1(2.317E-2) 4.760E-1(4.970E-2) 3.551E-1(3.541E-2) 3.776E-1(2.970E-2) 3.237E-1(2.080E-2) 5.351E-1(1.753E-2)

DMOP2 1.681E-1(1.43E-2) 2.089E-1(2.320E-2) 4.160E-1(2.011E-2) 3.710E-1(2.390E-2) 3.664E-1(2.850E-2) 5.615E-1(6.602E-2)

DMOP2iso 3.292E-1(1.330E-2) 4.520E-1(1.962E-2) 5.065E-1(1.260E-2) 4.351E-1(3.571E-2) 4.803E-1(2.639E-2) 4.896E-1(3.417E-2)

DMOP2dec 3.187E-1(2.702E-2) 2.170E-1(2.151E-2) 5.848E-1(3.052E-2) 5.070E-1(2.236E-2) 4.360E-1(2.177E-2) 5.545E-1(3.246E-2)

DMOP3 1.086E-1(1.960E-2) 3.062E-1(2.715E-2) 5.089E-1(3.193E-2) 4.324E-1(2.678E-2) 4.289E-1(2.405E-2) 5.252E-1(2.729E-2)

HE2 6.221E-2(9.260E-3) 1.583E-1(3.232E-2) 2.965E-1(3.964E-2) 3.881E-1(2.933E-2) 3.786E-1(2.807E-2) 3.781E-1(2.206E-2)

HE7 5.152E-2(1.811E-2) 1.653E-1(2.364E-2) 1.806E-1(3.242E-2) 2.020E-1(2.902E-2) 2.234E-1(2.368E-2) 2.996E-1(2.780E-2)

HE9 1.376E-1(2.903E-2) 1.684E-1(1.948E-2) 1.144E-1(9.959E-3) 2.714E-1(1.862E-2) 2.464E-1(3.420E-2) 3.609E-1(1.751E-2)

Table 4: VMHV values of five algorithms compared with the proposed RL-

DMOEA.

VMHV RL-DMOEA Tr-NSGA-II DMS PPS MOEA/D-KF KPEA

FDA4 6.365E-1(1.068E-2) 6.981E-1(1.071E-2) 6.541E-1(1.247E-2) 6.381E-1(1.478E-2) 5.799E-1(1.014E-2) 5.852E-1(1.232E-2)

FDA5 5.944E-1(2.023E-2) 6.175E-1(1.064E-2) 5.918E-1(1.331E-2) 6.169E-1(1.147E-2) 6.397E-1(2.009E-2) 5.907E-1(1.780E-2)

FDA5iso 5.660E-1(1.654E-2) 5.753E-1(1.214E-2) 5.625E-1(1.297E-2) 5.752E-1(1.388E-2) 5.744E-1(2.089E-2) 5.631E-1(1.574E-2)

FDA5dec 5.643E-1(1.798E-2) 5.872E-1(1.282E-2) 5.472E-1(2.003E-2) 5.781E-1(1.713E-2) 5.612E-1(1.931E-2) 5.598E-1(1.106E-2)

DIMP2 5.041E-1(1.489E-2) 4.513E-1(2.047E-2) 4.699E-1(1.513E-2) 4.574E-1(1.812E-2) 4.642E-1(1.099E-2) 4.590E-1(2.036E-2)

DMOP2 6.165E-1(1.669E-2) 6.001E-1(1.355E-2) 5.951E-1(2.207E-2) 5.737E-1(2.472E-2) 5.424E-1(1.195E-2) 5.412E-1(1.806E-2)

DMOP2iso 4.399E-1(1.338E-2) 4.379E-1(1.094E-2) 4.276E-1(1.350E-2) 4.383E-1(1.055E-2) 4.241E-1(1.403E-2) 4.294E-1(1.084E-2)

DMOP2dec 5.312E-1(1.368E-2) 5.531E-1(1.283E-2) 4.658E-1(2.007E-2) 4.528E-1(1.528E-2) 4.235E-1(1.069E-2) 4.566E-1(1.816E-2)

DMOP3 6.344E-1(1.203E-2) 6.316E-1(1.438E-2) 5.955E-1(1.411E-2) 5.912E-1(2.056E-2) 5.767E-1(1.912E-2) 5.810E-1(1.244E-2)

HE2 6.457E-1(1.446E-2) 6.434E-1(1.905E-2) 6.319E-1(1.573E-2) 6.425E-1(1.529E-2) 6.260E-1(2.034E-2) 6.446E-1(1.195E-2)

HE7 8.235E-1(1.501E-2) 8.021E-1(1.659E-2) 7.357E-1(1.379E-2) 7.411E-1(1.282E-2) 7.486E-1(1.309E-2) 7.382E-1(1.026E-2)

HE9 7.184E-1(1.436E-2) 7.160E-1(1.410E-2) 7.024E-1(2.051E-2) 7.057E-1(1.654E-2) 7.295E-1(1.943E-2) 6.943E-1(1.714E-2)
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Table 5: SP values of five algorithms compared with the proposed RL-DMOEA.

SP RL-DMOEA Tr-NSGA-II DMS PPS MOEA/D-KF KPEA

FDA4 5.521E-2(2.440E-3) 5.430E-2(2.302E-3) 6.247E-2(1.112E-3) 5.644E-2(2.843E-3) 9.796E-2(1.595E-3) 9.718E-2(4.304E-3)

FDA5 4.266E-2(3.125E-3) 6.761E-2(1.248E-2) 7.668E-2(4.875E-3) 6.604E-2(2.980E-3) 6.872E-2(2.061E-3) 7.069E-2(3.551E-3)

FDA5iso 8.671E-2(2.526E-3) 9.516E-2(1.089E-2) 1.317E-1(3.341E-2) 1.439E-1(3.073E-3) 8.774E-2(3.817E-3) 1.335E-1(1.304E-2)

FDA5dec 7.862E-2(5.334E-3) 7.661E-2(3.676E-3) 8.501E-2(5.368E-3) 9.392E-2(5.259E-3) 9.382E-2(4.950E-3) 1.007E-1(2.096E-2)

DIMP2 3.852E-2(2.492E-3) 3.768E-2(1.144E-3) 5.329E-2(3.689E-3) 6.479E-2(4.237E-3) 8.012E-2(3.185E-3) 8.099E-2(4.457E-3)

DMOP2 4.658E-2(3.792E-3) 6.372E-2(2.302E-3) 5.954E-2(2.782E-3) 8.696E-2(4.134E-3) 6.544E-2(3.280E-3) 6.909E-2(2.177E-3)

DMOP2iso 3.153E-2(4.290E-3) 5.962E-2(5.270E-3) 5.236E-2(7.247E-2) 6.414E-2(5.363E-3) 5.763E-2(4.787E-3) 7.559E-2(5.215E-3)

DMOP2dec 3.291E-2(4.833E-3) 2.941E-2(3.317E-3) 4.211E-2(1.204E-3) 8.356E-2(4.778E-3) 6.553E-2(3.419E-3) 7.249E-2(3.170E-3)

DMOP3 9.635E-2(2.394E-3) 9.353E-2(1.843E-3) 4.874E-2(1.609E-3) 9.872E-2(4.283E-3) 7.475E-2(2.958E-3) 8.435E-2(3.634E-3)

HE2 5.264E-2(3.286E-3) 4.925E-2(9.982E-3) 5.329E-2(3.783E-2) 4.228E-2(2.996E-3) 8.061E-2(3.264E-3) 7.898E-2(2.946E-3)

HE7 6.451E-2(2.603E-3) 6.724E-2(3.792E-3) 6.926E-2(3.844E-3) 6.982E-2(4.624E-3) 7.713E-2(4.084E-3) 7.880E-2(3.553E-3)

HE9 7.722E-2(8.9162E-3) 9.986E-2(1.469E-3) 8.137E-2(1.989E-3) 5.664E-2(2.028E-3) 5.078E-2(8.440E-4) 8.982E-2(2.907E-3)

4.5. Effectiveness of different components of RL-DMOEA

In addition, the effectiveness of different components of RL-DMOEA has

been investigated. RL-DMOEA has following key components, namely the Q-

learning evolutionary framework, knee-based prediction, center-based predic-

tion and the indicator-based local search. In order to further investigate each495

component for dynamic optimization, we build three variants based on the orig-

inal RL-DMOEA. The first variant (RL-DMOEA-s1) does not use Q-learning

evolutionary framework, but randomly selects prediction mechanisms when de-

tecting environment changes. The second variant (RL-DMOEA-s2) uses the

Q-learning evolutionary framework. Specifically, RL-DMOEA-s2 detects and500

responds to environment changes through adopting center-based prediction and

indicator-based local search mechanisms (without knee-based prediction). RL-

DMOEA-s3 is another version which retains Q-learning evolutionary framework

but using knee-based prediction and indicator-based local search mechanisms

(without center-based prediction). The mentioned variants are compared with505

proposed RL-DMOEA on five test instances to verify the effectiveness.

Table 6 presents the results on RL-DMOEA and its variants on these three

performance metrics. In terms of three metrics, RL-DMOEA shows the best
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performance on most test problems. It means that all the key components

are critical to the tracking ability of RL-DMOEA. For HE2, there is a signif-510

icant difference between RL-DMOEA and competing variants on all the per-

formance metrics. RL-DMOEA-s3 shows worse SP and VMIGD results than

RL-DMOEA, while it obtains better VMHV values on HE2. In addition, the

differences between RL-DMOEA-s1 and RL-DMOEA for all the test problems

clearly indicate that the use of Q-learning framework can significantly enhance515

the tracking ability of RL-DMOEA. The obtained results indicate that RL-

DMOEA shows better performance than other competing variants. This obser-

vation confirms the advantage of the Q-learning framework and change response

mechanisms in RL-DMOEA.

We can conclude that RL-DMOEA generally outperforms other compared520

variants based on the experimental study. The observation obviously shows that

each component is indispensible in addressing environmental changes. In addi-

tion, we specifically explain the role for each component. The MMD knee-based

prediction and center-based prediction explores high-severity and medium-severity

environmental changes and respond rapidly to enhance the convergence speed.525

The indicator-based local search exploits the information of slight-severity en-

vironmental changes and relocates individuals near the POF, thus tracking the

varying POF quickly. The Q-learning framework promotes rapid convergence

speed and responds to varying degrees of environment changes. Besides, it

uses these change response mechanisms to feed back on different environmen-530

t changes and obtains a delicate balance in exploration-exploitation trade-off.

In summary, all these key components of RL-DMOEA play important roles in

responding to changes and adapting rapidly to various dynamic environments.

4.6. Computational time

In order to examine the computational efficiency of the proposed RL-DMOEA,535

the statistical results on the total computational time are obtained by the com-

pared algorithms when (τt, nt) are set as (5,10), (10,10), and (20,10). All the

algorithms run independently on benchmark problems with parameter configu-
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Table 6: Performance results on RL-DMOEA variants

Problem Performance metrics RL-DMOEA-s1 RL-DMOEA-s2 RL-DMOEA-s3 RL-DMOEA

FDA5 VMIGD 3.408E-1(3.128E-2) 3.023E-1(3.468E-2) 2.477E-1(2.362E-2) 1.363E-1(2.044E-2)

VMHV 5.322E-1(1.672E-2) 5.663E-1(1.828E-2) 5.897E-1(1.918E-2) 5.944E-1(2.023E-2)

SP 8.788E-2(3.405E-3) 6.344E-2(4.492E-3) 5.891E-2(4.083E-3) 4.266E-2(3.125E-3)

DMOP2 VMIGD 3.584E-1(4.136E-2) 2.839E-1(3.143E-2) 3.026E-1(2.647E-2) 1.681E-1(1.43E-2)

VMHV 5.486E-1(1.631E-2) 5.859E-1(1.072E-2) 6.078E-1(2.343E-2) 6.165E-1(1.669E-2)

SP 5.915E-2(3.604E-3) 5.098E-2(5.438E-3) 5.023E-2(4.381E-3) 4.658E-2(3.792E-3)

HE7 VMIGD 1.278E-1(2.341E-2) 1.091E-1(3.932E-2) 9.265E-2(2.011E-2) 5.152E-2(1.811E-2)

VMHV 7.649E-1(1.925E-2) 7.975E-1(1.153E-2) 7.988E-1(2.028E-2) 8.235E-1(1.501E-2)

SP 7.983E-2(2.874E-3) 7.308E-2(3.780E-3) 7.112E-2(3.092E-3) 6.451E-2(2.603E-3)

HE2 VMIGD 1.032E-1(2.413E-2) 1.001E-1(1.409E-2) 8.011E-2(3.776E-2) 6.221E-2(9.260E-3)

VMHV 6.287E-1(1.882E-2) 6.398E-1(1.124E-2) 6.747E-1(2.171E-2) 6.457E-1(1.446E-2)

SP 8.309E-2(3.671E-3) 6.617E-2(2.584E-3) 7.049E-2(3.751E-3) 5.264E-2(3.286E-3)

DMOP3 VMIGD 1.429E-1(2.509E-2) 1.119E-1(2.733E-2) 1.099E-1(2.093E-2) 1.086E-1(1.960E-2)

VMHV 6.253E-1(1.149E-2) 6.280E-1(2.474E-2) 6.323E-1(1.924E-2) 6.344E-1(1.203E-2)

SP 1.251E-1(2.391E-3) 1.080E-1(4.843E-3) 1.057E-1(3.460E-3) 9.635E-2(2.394E-3)
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rations (τt, nt). As reported in Table 7, it can be concluded that KPEA shows

the best computational results, which is considered the fastest algorithm. RL-540

DMOEA wins the second place, which is a little worse than KPEA, validated

by the average running time on all test instances. The performances of DMS

and PPS are almost similar. MOEA/D-KF is the most time-consuming design

compared with other competing algorithms. The reason why MOEA/D-KF

and Tr-NSGA-II consume much time may lie in employing complex prediction545

models. The Kalman Filter-based model takes long time to relocate the individ-

uals in the new environment in MOEA/D-KF. Tr-NSGA-II utilizes the transfer

learning model to predict the new locations of optimal solutions. On the oth-

er hand, KPEA is integrated with MCDM strategies, which mainly focus on

searching solely around the knee-guided region. Instead of maintaining a num-550

ber of non-dominated solutions, it directly searches for the knee and boundary

regions to speed up the convergence and reduce the computational complexi-

ty. Therefore, KPEA outperforms other compared algorithms on computational

time. RL-DMOEA applies a relatively time-saving RL-based prediction frame-

work, which consumes more time than KPEA but much less time than other555

prediction models. This is the main reason why RL-DMOEA is the second

fastest algorithm compared with other competing algorithms.

4.7. Parameter sensitivity analysis

In this subsection, the influence of four parameters which include the pop-

ulation size, the learning rate, the discount rate, and the severity is discussed.560

The sensitivity of four parameters in RL-DMOEA is analyzed and all obtained

results are averaged over 20 independent runs.

4.7.1. Influence of the population size

In order to analyze the sensitivity of the population size, we set it to 50,

100 and 150, respectively. Experimental results on the VMIGD performance565

metric and computational time are shown in Table 8. It can be observed that

RL-DMOEA performs convincingly well when the population size is set to 100.
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Table 7: Computational time of five algorithms compared with the proposed

RL-DMOEA.

Prob. RL-DMOEA Tr-NSGA-II DMS PPS MOEA/D-KF KPEA

FDA4 83.177 308.124 252.797 250.084 1735.25 60.291

FDA5 83.692 311.556 256.226 255.192 1904.66 60.194

FDA5iso 84.713 313.243 256.813 255.478 2008.39 65.237

FDA5dec 83.208 312.998 257.002 256.385 2010.644 66.325

DIMP2 77.966 307.161 253.489 250.657 1666.945 58.825

DMOP2 79.09 304.133 252.166 251.121 1678.324 60.997

DMOP2iso 79.067 305.752 252.362 251.444 1687.35 61.214

DMOP2dec 80.195 305.91 253.998 252.229 1690.098 61.214

DMOP3 73.48 306.898 252.104 251.208 1645.898 60.607

HE2 70.688 302.199 250.321 249.19 1632.79 63.1

HE7 70.858 302.672 250.483 249.478 1634.144 64.198

HE9 69.908 303.254 250,05 249.004 1644.22 63.144

Obviously, reducing the population size will result into less computational time

but cause a poor convergence in RL-DMOEA. The VMIGD values on the chosen

test problems are similar when the population size is set to 100 and 150, while the570

computational time is appreciably different. The computational time increases

from 83.692 seconds to 111.072 seconds when the population size increases from

100 to 150 on FDA5. As a compromise, RL-DMOEA is considered more effective

in solving these DMOP benchmark problems when the population size is set to

100.575

4.7.2. Influence of the learning rate

The learning rate α is an important parameter influencing the efficiency of

the proposed RL-DMOEA. The larger the learning rate α , the more informa-

tion is learned from the reward. If α is small, the proposed RL-DMOEA is not

able to learn the environmental changes very well and may not select the ap-580

propriate prediction-based strategy to generate non-dominated solutions. The

33



Table 8: Experimental results of different population size in RL-DMOEA.

Prob. Population size VMIGD CPU time

FDA5 50 2.036E-1(1.438E-2) 64.72

100 1.363E-1(2.044E-2) 83.692

150 1.362E-1(1.038E-2) 111.072

DMOP2 50 2.206E-1(1.518E-2) 54.724

100 1.681E-1(1.43E-2) 79.09

150 1.679E-1(1.071E-2) 98.387

HE2 50 1.178E-1(1.119E-2) 57.65

100 6.221E-2(9.260E-3) 70.688

150 6.220E-2(8.912E-3) 91.713

DMOP3 50 1.787E-1(1.632E-2) 53.287

100 1.086E-1(1.960E-2) 73.48

150 1.083E-1(1.495E-2) 92.326

performance of RL-DMOEA on four selected test problems for different learning

rate values is examined. It can be seen that the RL-DMOEA obtains the best

results when the learning rate is set to 0.9 in Table 9. As the learning rate

increases, the obtained statistic results are better at the cost of convergence585

rate, which indicates that the learning rate has an influence on the proposed

algorithm. From the experimental results, we recommend that the learning rate

should be set to 0.9.

4.7.3. Influence of the discount rate

The discount rate γ affects the future rewards and the convergence of the590

algorithm [35]. The larger the γ , the more focus the algorithm will concentrate

on the future rewards. If γ is small, the algorithm only focuses on the immediate

reward. This parameter needs to be tuned for the proposed RL-DMOEA. The

statistic results of sensitivity analysis for γ are shown in Table 10. Four different

test problems including FDA5, DMOP2, HE2 and DMOP3 are selected for595

conducting the comparison experiments. It can be observed from Table 10 that

the VMIGD and VMHV values are the best when the discount rate is set to 0.6.

A median discount rate indicates that it not only facilitates the convergence
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Table 9: Experimental results of different learning rate in RL-DMOEA.

Prob. Learning rate VMIGD VMHV

FDA5 0.3 2.061E-1(1.902E-2) 5.305E-1(1.704E-2)

0.6 1.797E-1(1.467E-2) 5.560E-1(1.359E-2)

0.9 1.363E-1(2.044E-2) 5.944E-1(2.023E-2)

DMOP2 0.3 2.310E-2(1.474E-2) 5.918E-1(1.056E-2)

0.6 2.048E-1(1.831E-2) 5.934E-1(1.559E-2)

0.9 1.681E-1(1.43E-2) 6.165E-1(1.669E-2)

HE2 0.3 1.537E-1(2.001E-2) 6.183E-1(1.723E-2)

0.6 1.191E-1(1.418E-2) 6.206E-1(1.055E-2)

0.9 6.221E-2(9.260E-3) 6.457E-1(1.446E-2)

DMOP3 0.3 1.808E-1(1.317E-2) 6.119E-1(1.817E-2)

0.6 1.614E-1(2.011E-2) 6.126E-1(1.236E-2)

0.9 1.086E-1(1.960E-2) 6.344E-1(1.203E-2)

of the RL-DMOEA, but also learns enough information on the future rewards.

Therefore, the discount rate γ is recommended to be set to 0.6.600

4.7.4. Influence of the change severity

To investigate the influence of different change severity levels, we carry out

the experiments on FDA5 and HE2 test problems. The change frequency τt

is set to 10, and the change severity nt is set to 5, 10, and 20, respectively.

The VMIGD values are plotted in Fig. 4, which compare the proposed RL-605

DMOEA with the best algorithm Tr-NSGA-II among the competing algorithm

on test problems considered. As shown in Fig. 4, our proposed RL-DMOEA

shows better performance than Tr-NSGA-II. The change severity reduces as nt

increases, which is reflected on the obtained VMIGD values. In Fig. 4, the

box describes the distribution of the VMIGD values and the lower quartile, the610

median, and the upper quartile values. The whiskers are lines extending from

each end of the box to show the extent of the remaining data. The box-plots

indicate that the proposed RL-DMOEA is robust under different severity of

environmental changes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Influence of the change severity on FDA5 and HE2 problems. τt is set to 10.

The figures show the box plot of VMIGD values of the proposed RL-DMOEA and its

competing algorithm Tr-NSGA-II when nt is set to 5, 10, and 20, respectively.
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Table 10: Experimental results of different discount rate in RL-DMOEA.

Prob. discount rate VMIGD VMHV

FDA5 0.3 1.974E-1(2.095E-2) 5.779E-1(1.933E-2)

0.6 1.363E-1(2.044E-2) 5.944E-1(2.023E-2)

0.9 2.131E-1(1.288E-2) 5.737E-1(1.295E-2)

DMOP2 0.3 2.047E-1(1.614E-2) 5.964E-1(1.474E-2)

0.6 1.681E-1(1.43E-2) 6.165E-1(1.669E-2)

0.9 2.312E-1(1.244E-2) 5.930E-1(1.620E-2)

HE2 0.3 1.297E-1(1.159E-2) 6.332E-1(1.001E-2)

0.6 6.221E-2(9.260E-3) 6.457E-1(1.446E-2)

0.9 1.517E-1(1.196E-2) 6.238E-1(1.771E-2)

DMOP3 0.3 1.978E-1(2.039E-2) 6.192E-1(1.598E-2)

0.6 1.086E-1(1.960E-2) 6.344E-1(1.203E-2)

0.9 1.979E-1(1.504E-2) 6.258E-1(1.399E-2)

5. Conclusion615

This article devised an RL-DMOEA algorithm to address dynamic multi-

objective optimization problems which have time-dependent features. Different

from other approaches, a reinforcement learning technique is incorporated to

enhance the tracking ability. The change response mechanisms including knee-

based prediction, center-based prediction and indicator-based local search are620

incorporated to improve both local and global tracking ability, facilitate the con-

vergence speed and preserve population diversity. This algorithm framework can

perceive the state of the current environment, and select the appropriate pre-

diction mechanism in the evolutionary process based on obtained information

and experience by the Q-learning agent. The experiments with chosen represen-625

tative algorithms verify the efficacy of RL-DMOEA on CEC 2015 benchmark

problems. The experimental studies have shown that RL-DMOEA can track

their changing POFs effectively on most of the test problems considered.

We will concentrate on combining machine learning methods with DMOPs

in the future. In addition, we believe that the proposed RL-DMOEA is useful630

to tackle real-world problems with various uncertainties.
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