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A B S T R A C T

We optimize a six degrees of freedom hovering policy using reinforcement meta-learning. The policy maps flash
LIDAR measurements directly to on/off spacecraft body-frame thrust commands, allowing hovering at a fixed
position and attitude in the asteroid body-fixed reference frame. Importantly, the policy does not require po-
sition and velocity estimates, and can operate in environments with unknown dynamics, and without an asteroid
shape model or navigation aids. Indeed, during optimization the agent is confronted with a new randomly
generated asteroid for each episode, insuring that it does not learn an asteroid's shape, texture, or environmental
dynamics. This allows the deployed policy to generalize well to novel asteroid characteristics, which we de-
monstrate in our experiments. Moreover, our experiments show that the optimized policy adapts to actuator
failure and sensor noise. Although the policy is optimized using randomly generated synthetic asteroids, it is
tested on two shape models from actual asteroids: Bennu and Itokawa. We find that the policy generalizes well to
these shape models. The hovering controller has the potential to simplify mission planning by allowing asteroid
body-fixed hovering immediately upon the spacecraft's arrival to an asteroid. This in turn simplifies shape model
generation and allows resource mapping via remote sensing immediately upon arrival at the target asteroid.

1. Introduction

Recently there has been increased interest in robotic missions to
near Earth asteroids, for both scientific and commercial purposes. The
prevalent concept of operations requires complete characterization of
the asteroid's shape and dynamics prior to a sample return maneuver.
Before a shape model can even be generated, the environmental dy-
namics must be characterized to a high degree of accuracy in order to
allow calculation of stable orbits from which shape model generation
takes place [1]. Moreover, these stable orbits are in general only pos-
sible over a limited range of latitudes [2]. Asteroid body-fixed hovering
at arbitrary locations in proximity to the asteroid has the potential to
simplify mission planning, allowing high resolution sensor measure-
ments at arbitrary locations [3]. Hovering in the inertial frame with the
asteroid rotating below the spacecraft is possible at arbitrary altitudes
(within the limits of terrain hazards) and in general will require less fuel
than hovering in the asteroid body-fixed frame. Although hovering in
the asteroid body-fixed frame requires more fuel expenditure and
cannot be performed at large distances from the asteroid, body frame
hovering has the advantage of allowing multiple sensor measurements

from a fixed position with respect to the asteroid. Finally, body fixed
hovering close to the surface would allow a spacecraft to drill or collect
surface samples while compensating for the force induced by the ma-
nipulators. Clearly, both types of hovering would be useful for asteroid
missions.

Previous work in hovering in close proximity to asteroids includes
[4], where the authors develop a hovering controller that uses altimetry
measurements to hover in the asteroid body-fixed frame. Their work
uses a single altimeter and thrusting direction, but assumes the sensor is
aligned with the gravitational acceleration at the hovering point, the
altitude is below the resonance radius (the altitude where gravitational
and centrifugal forces cancel), and that the centrifugal force compo-
nents perpendicular to thrust direction are known. Furfaro develops a
3-DOF hovering controller using sliding mode control theory [5]. In
other work [6] Gaudet and Furfaro demonstrate both hovering and TAG
maneuvers using a Rao-Blackwellized particle filter to infer the space-
craft's position and velocity using altimetry measurements and an as-
teroid shape model. Lee et al. demonstrates 6-DOF hovering using a
control law developed in the Lie group SE(3) [7], but their method
requires an estimate of the environmental dynamics. Gaudet and
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Furfaro developed a 3-DOF hovering controller using reinforcement
learning [8] that showed improved transient response as compared to
an LQR controller. Importantly, previous work does not cover the case
where the spacecraft arrives at an asteroid and we want the spacecraft
to be able to immediately hover in the body-fixed frame in the case
where 1.) there is no knowledge of the environmental dynamics and 2.)
there is not an existing shape model that can be used by a navigation
system to infer the spacecraft's position and velocity.

Inertial hovering has been successfully executed in both Hayabusa
missions. The most recent, Hayabusa 2 [9] arrived at the asteroid
Ryugu in June 2018 and, after a sequence of close proximity operations
including asteroid mapping and surface's touchdown and sample col-
lection, departed the celestial body in November 2019. It is expected to
deliver the sample to Earth in late 2020. One of the major modes of
operation included the ability of the spacecraft to hover at different
altitudes for either surface mapping and/or in preparation for the
touchdown sequence. The spacecraft employs a combination of Reac-
tion Wheels (RW) and RCS thrusters to control attitude and position. A
wide angle camera called ONC-W [10] is employed for navigation
purposes. The camera is coupled with a dedicated image processor.
Navigation has two major modes: the Asteroid Image Tracking (AIT)
mode which calculates the image center of the asteroid Ryugu when in
the Field of View (FOV). Conversely, in the Target Marker Mode (TMT)
mode, the ONC-W tracks a target marker previously deployed on the
asteroid surface [11]. A LIDAR system is employed to measure the
spacecraft altitude [12]. The latter is generally used at distance larger
than 50 m. For lower altitudes (5–50 m), a Laser Range Finder (LRF) is
employed. In a home position of about 20 km, hovering is executed by a
Ground Control Point Navigation (GCP-NAV) which employs the AIT
mode [11]. Indeed the ONC-W sends images to the ground every
10 min. A ground operator manually overlay the asteroids estimated
shape and GCPs to the image to estimate the spacecraft position. Sub-
sequently, the spacecraft position is propagated forward to account for
the communication time delay. Eventually, the required delta-V is up-
loaded to the spacecraft for timed execution. Once the spacecraft is
hovering below 50 m, the TMT mode is executed by a combination of
ground and on-board operations. In this phase, the position of a pre-
deployed surface marker (reflector) is autonomously computed on-
board. At this stage, hovering is controlled in a 6-DOF fashion using
attitude and navigation information. Hovering generally occurred
above the marker. For the final descent, although the team had ori-
ginally planned to hover at 25 m altitude, flight data showed that the
hovering occurred at an altitude of 8.5 m [13].

In this work we focus on the body-fixed hovering problem where
neither a shape model nor information about the environmental dy-
namics are available. Without a shape model, which allows a navigation
system to infer the spacecraft's position in the asteroid body-fixed
frame, body-fixed hovering is a challenging problem that to our
knowledge has not yet been solved. The chief difficulty is that as the
asteroid rotates it induces hovering position errors, and the hovering
policy must learn how to correct for these errors by observing the
changing LIDAR altimetry readings and use its recollection of these
changing sensor readings to correct the hovering position error. The
problem is further complicated by pulsed thrusters, which will likely
cause an overshoot with corrective thrust commands.

The goal is to remain at a constant asteroid body-fixed position and
attitude from the commencement of the hovering maneuver. We will
assume that the spacecraft is equipped with a flash LIDAR system, gy-
roscopes that can measure the change in the spacecraft's attitude from
the initiation of the hovering maneuver, and rate gyros that measure
rotational velocity. We further assume that these sensors can provide
measurements every 6s. At the start of the hovering maneuver, the
spacecraft is pointed in the general direction of the asteroid, and con-
sequently at least some of the flash LIDAR elements can return valid
altimeter readings. A possible concept of operations would be for the
spacecraft to slowly approach the asteroid using a navigation system

that keeps the asteroid centered in a camera's field of view, and then
commence hovering when the mean range of the flash LIDAR elements
indicates an acceptable hovering altitude. What happens next is mission
specific, potential low altitude scenarios include the spacecraft ho-
vering close to the surface to release a beacon or rover, or collect
samples. Potential high altitude hovering scenarios include shape
model generation (where the ability to take multiple readings from the
same position should simplify simultaneous location and mapping),
remote sensing, as well as tagging the landing site with a targeting laser
to facilitate a precision landing by a separate lander, as described in
Ref. [14].

Our hovering controller is optimized using reinforcement learning
(RL), which learns a policy that maps sensor measurements directly to
on/off thrust commands, and that can adapt both to unknown en-
vironmental dynamics and novel asteroid shapes and textures. The
policy is learned through simulated interaction between an environ-
ment and an agent instantiating the policy. Adaptability is achieved
through RL-Meta Learning (Meta-RL) [15–17], where different asteroid
shapes and environmental dynamics are treated as a range of partially
observable Markov decision processes (POMDP). In each POMDP, the
policy's recurrent network hidden state evolves over the course of an
episode based off of the history of observations and actions, capturing
information about hidden variables that are useful in minimizing the
cost function; these include asteroid shape, texture, environmental
dynamics, and changes in the spacecraft's internal dynamics. By opti-
mizing the policy over this range of POMDPs, the trained policy will be
able to adapt in real time to novel POMDPs encountered during de-
ployment. Specifically, even though the policy's parameters are fixed
after optimization, the policy's hidden state will evolve based off the
history of observations and actions experienced in the current POMDP,
thus adapting to the environment. We have demonstrated the effec-
tiveness of RL meta-learning to create adaptive policies for aerospace
applications in previous work [14,18,19]. In this work our goal is for
the agent to hover at a position within 2 m of its position at the start of
the hovering maneuver, with constant attitude, and fuel expenditure
minimized during hovering. Importantly, the optimized policy will be
general in that it will allow hovering over any asteroid with arbitrary
shape, rotation, and density, provided the size is reasonably close to
that of the synthetic asteroids used for optimization, and within the
limits of thruster capability. To achieve this, the agent learns the policy
in an environment that generates a new random asteroid for each epi-
sode.

The optimized policy serves as an integrated guidance, navigation,
and control system for the purposes of a hovering maneuver, and in-
terfaces with peripheral spacecraft systems as shown below in Fig. 1.

2. Problem formulation

2.1. Spacecraft configuration

The spacecraft is modeled as a uniform density cube with height
=h 2, width =w 2, and depth =d 2, with inertia matrix given in Eq.

(1). The spacecraft has a wet mass ranging from 450 to 500 kg. The
thruster configuration is shown in Table 1, where x, y, and z are the
body frame axes. Roll is about the x-axis, yaw is about the z-axis, and
pitch is about the y-axis. Firing both thrusters on a face give transla-
tional thrust without rotation, while firing a single thruster on a given
face induces a torque. The navigation system provides updates to the
guidance system every 6 s, and we integrate the equations of motion
using fourth order Runge-Kutta integration with a time step of 2 s.
Thrusters have a specific impulse of 210s.
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m is the spacecraft's mass, which is updated as shown in Eq. (6c).

2.2. Asteroid and sensor models

Since our goal is for the agent to hover above an asteroid with
unknown shape, we need to insure that the agent does not learn the
asteroid's shape during optimization. To this end, we randomly gen-
erate a new asteroid for each episode. Each asteroid starts as an ico-
sahedron based on the unit sphere, after which we recursively (twice)
expand each face into four equal triangles, with the new vertices pro-
jected onto the unit sphere. In the following, we will refer to this object
as an “isosphere”. Next, we randomly perturb each vertex of the unit
isosphere by adding a value ∈p 3, where each element of p is uni-
formly drawn over the range −p p[ , ], with p uniformly drawn at the
start of each episode from the range [0.005, 0.05]. Thus, different epi-
sodes will feature asteroids with different textures. We then randomly
generate the asteroid's positive and negative a, b, and c axes over the
range 300–600 m, and then scale the vertices appropriately. Since the
positive and negative axes values are independently generated, this
creates asymmetric a, b, and c axes. A sample randomly generated as-
teroid with 1280 faces and 642 vertices is shown below in Fig. 2.

For the modeling of environmental dynamics, we model the asteroid
as an ellipsoid with uniform density. We assume that the asteroid is in
general not rotating about a principal axis, and therefore to calculate
the angular velocity vector we must specify the spin rate, the nutation
angle (angle between the asteroid's z-axis and the axis of rotation), and
moments of inertia [20]. The moments of inertia in turn depend on the
asteroid's density and dimensions. The dimensions are specified by the

ellipsoid axes = ≠a b c, where the axis constraints significantly sim-
plifies the equations of motion. Since for the random asteroid the a and
b axes are asymmetric and not in general equal, we average them for
purposes of calculating the asteroid's rotational velocity components.
We use a gravity model that assumes a uniformly distributed sphere.
Although an ellipsoid model would have been more accurate, it would
also be more computationally expensive, and with the asteroid sizes
considered in this work, rotational forces dominate the dynamics.

The flash LIDAR is modeled as an 8 × 8 array of range sensors.
Current commercial flash LIDAR units typically have a 100 × 100
sensor array, but the smaller sensor array allows much faster compu-
tation during optimization, and it seems intuitive that if hovering per-
formance is satisfactory with an 8 × 8 array, it would likely be even
better with a 100 × 100 array. In the unlikely event that this is not the
case, an 8 × 8 array can be derived from a 100 × 100 array by
downsampling. We use the Moller-Trumbore ray casting algorithm [21]
to compute the intersection of each LIDAR beam with a triangle in the
randomly generated asteroid. Our implementation only returns a range
if a triangle is intersected on the correct side, and the intersection point
is not occluded by another triangle. If a beam fails to intersect a tri-
angle, a max range reading of 2000 m is returned.

We also assume the spacecraft is equipped with a gyroscope that can

Fig. 1. Deployed policy interface with peripheral systems.

Table 1
Body frame thruster locations.

Thruster x (m) y (m) z (m) Thrust

1 −1.0 0.0 0.4 1.0
2 −1.0 0.0 −0.4 1.0
3 1.0 0.0 0.4 1.0
4 1.0 0.0 −0.4 1.0
5 −0.4 −1.0 0.0 1.0
6 0.4 −1.0 0.0 1.0
7 −0.4 1.0 0.0 1.0
8 0.4 1.0 0.0 1.0
9 0.0 −0.4 −1.0 1.0
10 0.0 0.4 −1.0 1.0
11 0.0 −0.4 1.0 1.0
12 0.0 0.4 1.0 1.0

Fig. 2. Sample random asteroid.
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measure the spacecraft's change in attitude (measured from the initia-
tion of hovering), and a rate gyroscope to measure rotational velocity.
At the beginning of an episode, the spacecraft's flash LIDAR is pointed
in the same direction as the spacecraft's Z-axis. For the remainder of the
episode, the LIDAR system is stabilized, i.e., we keep the LIDAR sys-
tem's attitude constant during the maneuver as the spacecraft's attitude
changes. Stabilization helps the hovering policy differentiate between
changes in altimetry readings caused by rotation and changes caused by
translation. In an actual implementation, this stabilization could be
achieved by physically rotating the LIDAR platform to account for the
spacecraft's change in attitude, similar to missile seeker stabilization
[22]. We used a similar stabilization scheme for our work with seeker
based guidance for asteroid close proximity operations [14].

2.3. Equations of motion

The force FB and torque LB in the lander's body frame for a given
commanded thrust depends on the placement of the thrusters in the
lander structure. We can describe the placement of each thruster
through a body-frame direction vector d and position vector r, both in
3. The direction vector is a unit vector giving the direction of the body
frame force that results when the thruster is fired. The position vector
gives the body frame location with respect to the center of mass, where
the force resulting from the thruster firing is applied for purposes of
computing torque, and in general the center of mass varies with time as
fuel is consumed. For a lander with k thrusters, the body frame force
and torque associated with one or more thrusters firing is then as shown
in Equations (2a) and (2b), where ∈T T T[ , ]cmd min maxi is the commanded
thrust for thruster i, Tmin and Tmax are a thruster's minimum and max-
imum thrust, d i( ) the direction vector for thruster i, and r i( ) the position
of thruster i. The total body frame force and torque are calculated by
summing the individual forces and torques.
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The dynamics model uses the lander's current attitude q to convert
the body frame thrust vector to the inertial frame as shown in Equation
(3) where BN q[ ]( ) is the direction cosine matrix mapping the inertial
frame to body frame obtained from the current attitude parameter q.

=F BN q F[[ ]( )]N
T

B (3)

The rotational velocities ωB N/ are then obtained by integrating the
Euler rotational equations of motion, as shown in Equation (4), where
LB is the body frame torque as given in Equation (2b), Lenv is the body
frame torque from external disturbances, and J is the lander's inertia
tensor. Note we have included a term that models a rotation induced by
a changing inertia tensor.

= − − + +ω ω ω ωJ J J L L˙ ˜ ˙B B B B Benv (4)

The lander's attitude is then updated by integrating the differential
kinematic equations shown in Equation (5), where the lander's attitude
is parameterized using the quaternion representation and ωi denotes the
ith component of the rotational velocity vector ωB.
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The translational motion is modeled as shown in 6a through 6c.

=r v˙ (6a)
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Here FN
i( ) is the inertial frame force as given in Eq. (3), k is the

number of thrusters, =g 9.8ref m/s2, r is the spacecraft's position in the
asteroid centered reference frame, g Mr( , ) is a spherical gravity model
and M is the asteroid's mass, =I 225sp s, and the spacecraft's mass is m.
aenv is a vector representing solar radiation pressure. ωa is the asteroid's
rotational velocity vector, which we compute as shown in Equation (7a)
through (7f), which uses the simplifying assumption that =J Jx y [4].
Here ωo is the asteroid's spin rate and θ the nutation angle between the
asteroid's spin axis and z-axis. We modified the equations from Re-
ference ([4]) to add the phase term φ to handle the case where the
spacecraft starts the maneuver at an arbitrary point in the asteroid's
rotational cycle.

= +ω ω θ ω t φsin cos( )a o nx (7a)

= +ω ω θ ω t φsin sin( )a o ny (7b)

=ω ω θcosa oz (7c)

=ω σω θcosn o (7d)
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3. Guidance law development

3.1. RL overview

In the RL framework, an agent learns through episodic interaction
with an environment how to successfully complete a task by learning a
policy that maps observations to actions. The environment initializes an
episode by randomly generating a ground truth state, mapping this
state to an observation, and passing the observation to the agent. These
observations could be a corrupted version of the ground truth state (to
model sensor noise) or could be raw sensor outputs such as Doppler
radar altimeter readings, a multi-channel pixel map from an electro-
optical sensor, or in our case, a flash LIDAR range matrix. The agent's
policy uses this observation to generate an action that is sent to the
environment; the environment then uses the action and the current
ground truth state to generate the next state and a scalar reward signal.
The reward and the observation corresponding to the next state are
then passed back to the agent. The process repeats until the environ-
ment terminates the episode, with the termination signaled to the agent
via a done signal. Possible termination conditions include the agent
completing the task, satisfying some condition on the ground truth state
(such as altitude falling below zero), or violating a constraint.

A Markov Decision Process (MDP) is an abstraction of the en-
vironment, which in a continuous state and action space, can be re-
presented by a state space S , an action space A , a state transition
distribution +x x u( , )t t t1P , and a reward function =r x u( , ))R , where

∈x S and ∈u A , and r is a scalar reward signal. We can also define a
partially observable MDP (POMDP), where the state x becomes a
hidden state, generating an observation o using an observation function

x( )O that maps states to observations. The POMDP formulation is useful
when the observation consists of raw sensor outputs, as is the case in
this work. In the following, we will refer to both fully observable and
partially observable environments as POMDPs, as an MDP can be
considered a POMDP with an identity function mapping states to ob-
servations.

The agent operates within an environment defined by the POMDP,
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generating some action ut based off of the observation ot, and receiving
reward +rt 1 and next observation +ot 1. Optimization involves max-
imizing the sum of (potentially discounted) rewards over the trajec-
tories induced by the interaction between the agent and environment.
Constraints such as minimum and maximum thrust, glide slope, attitude
compatible with sensor field of view, maximum rotational velocity, and
terrain feature avoidance (such as targeting the bottom of a deep crater)
can be included in the reward function, and will be accounted for when
the policy is optimized. Note that there is no guarantee on the optim-
ality of trajectories induced by the policy, although in practice it is
possible to get close to optimal performance by tuning the reward
function [23].

Reinforcement meta-learning differs from generic reinforcement
learning in that the agent learns to quickly adapt to novel POMDPs by
learning over a wide range of POMDPs. These POMDPs can include
different environmental dynamics, actuator failure scenarios, mass and
inertia tensor variation, and varying amounts of sensor distortion.
Learning within the RL meta-learning framework results in an agent
that can quickly adapt to novel POMDPs, often with just a few steps of
interaction with the environment. There are multiple approaches to
implementing meta-RL. In Ref. [24], the authors design the objective
function to explicitly make the model parameters transfer well to new
tasks, whereas in Ref. [15] the authors demonstrate state of the art
performance using temporal convolutions with soft attention. And in
Refs. [16], the authors use a hierarchy of policies to achieve meta-RL. In
this proposal, we use a different approach [17] using a recurrent policy
and value function. Note that it is possible to train over a wide range of
POMDPs using a non-meta RL algorithm [23,25]. Although such an
approach typically results in a robust policy, the policy cannot adapt in
real time to novel environments.

In this work, we implement metal-RL using proximal policy opti-
mization (PPO) [26] with both the policy and value function im-
plementing recurrent layers in their networks. To understand how re-
current layers result in an adaptive agent, consider that given some
ground truth agent state xt and action vector ut output by the agent's
policy, the next state +xt 1 and observation +ot 1 depends not only on xt
and ut , but also on the ground truth agent mass, inertia tensor, and
external forces acting on the agent, as well as the asteroid's shape.
Specifically, during optimization, the hidden state of a network's re-
current network evolves differently depending on the observed se-
quence of observations from the environment and actions output by the
policy, with the state evolution capturing unobserved and potentially
time-varying information, such as external forces, that are useful in
minimizing the cost function. In contrast, a non-recurrent policy, which
does not maintain a persistent hidden state vector, can only optimize
using a set of current observations, actions, and advantages, and will
tend to under-perform a recurrent policy on tasks with randomized
dynamics [18]. After training, although the recurrent policy's network
weights are frozen, the hidden state will continue to evolve in response
to a sequence of observations and actions, thus making the policy
adaptive. In contrast, a policy without a recurrent network layer has
behavior that is fixed by the network parameters at test time.

The PPO algorithm used in this work is a policy gradient algorithm
which has demonstrated state-of-the-art performance for many RL
benchmark problems. PPO approximates the Trust Region Policy
Optimization (TRPO) process [27] by accounting for the policy ad-
justment constraint with a clipped objective function. The objective
function used with PPO can be expressed in terms of the probability
ratio θp ( )k given by Eq. (8), where πθ is the policy parameterized by
parameter vector θ.

=θp π
π

u o
u o

( ) ( )
( )

θ

θ
k

k k

k kold (8)

The PPO objective function is shown in Equations (9a) through (9c).
The general idea is to create two surrogate objectives, the first being the

probability ratio θp ( )k multiplied by the advantages A o u( , )π
k kw (see Eq.

(10)), and the second a clipped (using clipping parameter ε) version of
θp ( )k multiplied by A o u( , )π

k kw . The objective to be maximized θJ ( ) is
then the expectation under the trajectories induced by the policy of the
lesser of these two surrogate objectives.

= θp A o uobj1 ( ) ( , )k
π

k kw (9a)

= − +θp A ε εo uobj2 clip( ( ) ( , ), 1 , 1 )k
π

k kw (9b)

=θJ ( ) [min(obj1, obj2)]τp ( ) (9c)

This clipped objective function has been shown to maintain a
bounded KL divergence with respect to the policy distributions between
updates, which aids convergence by insuring that the policy does not
change drastically between updates. Our implementation of PPO uses
an approximation to the advantage function that is the difference be-
tween the empirical return and a state value function baseline, as
shown in Equation (10):
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Here the value function V π
w parameterized by vector w is learned

using the cost function given by Eq. (11), where γ is a discount rate
applied to rewards generated by reward function o u( , )R . The dis-
counting of rewards improves optimization performance by improving
temporal credit assignment.
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In practice, policy gradient algorithms update the policy using a
batch of trajectories (roll-outs) collected by interaction with the en-
vironment. Each trajectory is associated with a single episode, with a
sample from a trajectory collected at step k consisting of observation ok,
action uk, and reward =r o u( , )k k kR . Finally, gradient ascent is per-
formed on θ and gradient descent on w and update equations are given
by

= − ∇+ −
= −β Lw w w( )w w w w (12)

= + ∇+ −
= −θ θ θβ J ( )θ θ θ θ (13)

where βw and βθ are the learning rates for the value function, V o( )π
kw ,

and policy, π u o( )θ k k , respectively.
In our implementation, we dynamically adjust the clipping para-

meter ε to target a KL divergence between policy updates of 0.001. The
policy and value function are learned concurrently, as the estimated
value of a state is policy dependent. The policy uses a multi-categorical
policy distribution, where a separate observation conditional catego-
rical distribution is maintained for each element of the action vector.
Note that exploration in this case is conditioned on the observation,
with the two logits associated with each element of the action vector
determining how peaked the softmax distribution becomes for each
action. Because the log probabilities are calculated using the logits, the
degree of exploration automatically adapts during learning such that
the objective function is maximized. Finally, note that a full categorical
distribution would be impractical, as the number of labels would be 212,
as opposed to ×2 12 for the multi-categorical distribution.

3.2. Guidance law optimization

A simplified view of the agent and environment are shown in Fig. 3.
The environment instantiates the system dynamics model, asteroid
shape model, reward function, spacecraft model, and thruster model.
Note that when using a policy gradient method such as PPO it suffices
to deploy the policy, and it is not necessary to deploy the value func-
tion. We can take advantage of this by giving the value function access
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to the ground truth state during optimization, whereas the policy only
has access to the observations, in this case the flash LIDAR measure-
ments. Specifically, the value function has access to the observation
given in Eq. (14), where rerr and dq are the changes in the agent's po-
sition and attitude since the initiation of the hovering maneuver, v is
the agent's velocity, and ω the spacecraft's rotational velocity.

= dqωr vobs [ ]VF err (14)

On the other hand, the policy only has access to the difference be-
tween the matrix of flash LIDAR readings at the current timestep and
the readings at the start of the hovering maneuver Rerr, the change in
LIDAR readings between consecutive measurements dR, along with the
estimated rotational velocity ω and change in attitude since the start of
the hovering maneuver dq. Using Rerr as opposed to the actual range
matrix R allows the agent to generalize better to different altitude
ranges. Note that in an actual implementation, dR would be smoothed
with a Kalman filter. The observation given to the policy is then as
shown in Eq. (15).

= dqωR dRobs [ ]π err (15)

The action space is in k, where k is the number of thrusters. Each
element of the agent action ∈u 0,1 is used to index Table 1, where if
the action is 1, it is used to compute the body frame force and torque
contributed by that thruster.

The value function is implemented using a four layer neural net-
work with tanh activations on each hidden layer. Layer 2 for the value
function network is a recurrent layer implemented as a gated recurrent
unit [28]. The network architecture is as shown in Table 3, where nhi is
the number of units in layer i and obs_dim is the observation dimension
(see Table 4).

The policy has a convolutional [29] front end with an architecture
inspired by Ref. [30], where the pooling layer is replaced by a 2-D
convolutional layer with stride 2. We have found that this improves
performance for RL applications. We use rectified linear activations
units for each convolutional layer. The first convolutional layer has 2
channels (one for the range readings, the other for the difference in
range readings), 8 filters, a filter size of 3, and stride of 1. The second
convolutional layer has 8 channels and 8 filters, a filter size of 4, and a

stride of 2. The final layers are fully connected, as shown in 4. The
entire policy network is diagrammed in Fig. 4. The policy and value
functions are periodically updated during optimization after accumu-
lating trajectory rollouts of 30 simulated episodes.

During optimization, the agent is given negative rewards propor-
tional to the cumulative change in position from the start of the ho-
vering maneuver. Large negative rewards are given for exceeding a
maximum rotational velocity of 0.10 rad/s or if the attitude is such that
all of the flash LIDAR elements miss the asteroid, which is detected by
all elements returning a max range reading of 2000 m. Constraint
violation also results in the termination of the current episode. Small
negative rewards are given proportional to the control effort at each
timestep.

Finally, we provide a terminal reward bonus when the spacecraft
executes a good landing (see below). The reward function is then given

Fig. 3. Agent-environment interface.

Table 2
Parameters for randomly generated asteroids.

Parameter min max

a-axis (m) 300 600
b-axis (m) 300 600
c-axis (m) 300 600
Mass M (kg) ×1 1010 15010

Spin Rate ωo (rad/s) × −5 10 4 × −1 10 6

Nutation Angle (degrees) 45 90
Acceleration due to SRP m/s2 − × −100 10 6 × −100 10 6

Table 3
Value Function network architecture.

Layer # units activation

hidden 1 ∗10 obs_dim tanh
hidden 2 n n*h1 h3 tanh

hidden 3 5 tanh
output 1 linear

Table 4
Fully Connected Policy network layers.

Layer # units activation

FC 1 70 tanh
FC 2 154 tanh
FC 3 120 tanh
FC 4 12 linear

Fig. 4. Policy network.
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by Equation (16), where the various terms are described in the fol-
lowing:

1. α weights a term penalizing the current deviation from desired
hovering position.

2. β weights a term penalizing deviation from desired hovering atti-
tude.

3. γ weights a term penalizing control effort.
4. η is a constant positive term that encourages the agent to keep

making progress along the trajectory.
5. ζ is a bonus given for satisfying a terminal constraint at the end of

the hovering maneuver, where the spacecraft's terminal position and
velocity are all within specified limits. The limits are =r 2 m,

=v‖ ‖ 0.1, m/s, and all components of angular velocity less than
0.025 rad/s

6. κ is a penalty for exceeding any constraint. We impose a rotational
velocity constraint of 0.10 rad/s for all three rotational axes. We
also constrain the spacecraft's attitude such that at least one LIDAR
beam hits the asteroid. If all beams miss the asteroid, we assume the
attitude constraint is violated.

= + + + +
+

r αr βq γ η
ζ κ

T
(terminal constraints satisfied) (constraint violation)

rr rrore e

(16)

Initial hyperparameter settings are shown in Table 5.

4. Experiments

Code to reproduce these experiments will be made available on our
Github page.1 The spacecraft initial condition limits for these experi-
ments were selected assuming that the spacecraft would start with its
sensor pointed in the general direction of the asteroid with minimal
residual translational and rotational velocities. The initial conditions
used for our experiments are given in Table 6. Note that the initial
range is with respect to the asteroid's surface given the line of sight to
the asteroid center from the spacecraft's initial position, i.e., a range of
100 m implies an altitude of 100 m with respect to the asteroid's sur-
face, regardless of the asteroid dimensions. Position θ and φ along with
the initial range (plus the asteroid radius where it is collinear with the
initial line of sight) specify the spacecraft's position in spherical co-
ordinates in the asteroid centered reference frame. The spacecraft has a
small uniformly distributed initial velocity.

The spacecraft's ideal initial attitude is such that the -Z body-frame
axis is aligned with the line of sight to target. This ideal initial attitude
is perturbed at the start of each episode such that the angle between the
-Z body frame axis and line of sight to target varies uniformly as shown
in Table 6. Lower hovering altitudes and larger asteroids both give rise
to a scenario where most of the flash LIDAR beams give valid returns,
and under these conditions the guidance algorithm can tolerate larger
initial attitude errors than that shown in Table 6. Similarly, the gui-
dance system can tolerate higher initial altitudes for smaller initial at-
titude errors and larger asteroids. At the start of each episode, a slight
actuator failure is deemed to occur with probability 0.5. This actuator
failure results in the thrust for a randomly chosen thruster to be reduced
by a factor of 0.9.

4.1. Optimization results

We optimize using 30 episode rollouts and the initial conditions
given in Table 6. To reduce computational requirements, we use an
asteroid with only 320 facets for optimization. Each episode attempts to
hover for 600s, but early termination is possible in the event of a
constraint violation. For each episode, we randomly generate a new
asteroid using parameters as given in Table 2. Fig. 5 plots reward

statistics and Fig. 6 plots the terminal position error statistics, with
statistics for both plots computed over rollout batch of 30 episodes. We
see that initially the position error is high as the policy is focusing on
satisfying the constraints that at least one element of the flash LIDAR
sensor returns a valid reading and the maximum rotational velocity is
not exceeded. Once the policy learns to satisfy the constraints, it focuses
on minimizing the position error.

4.2. Policy testing: synthetic asteroids

We begin by testing the optimized policy on randomly generated
synthetic asteroids, using the same initial conditions and asteroid
parameters as in optimization. Note that unique scenarios are en-
countered in testing due to the random selection of asteroid and initial
condition parameters. Test results are shown in Table 7, which are
computed from 5000 simulated episodes. Note that the rotational ve-
locity row in Table 7 gives the rotational velocity vector element with
the worst performance (highest absolute value). The “Good Hover 1”
row gives the percentage of episodes where the terminal position error
was less than 2 m, terminal speed less than 10 cm/s, and all elements of
the terminal rotational velocity less than 0.015 rad/s. The “Good Hover
2” row has the same terminal speed and rotational velocity constraints,
but only requires the terminal position error to be less than 5 m. We
achieved our terminal performance goals in all 5000 episodes. As a back
of envelope calculation for the fuel required to hover, the mean force
acting on the spacecraft (rotational and gravitational) was 0.5 N.
Plugging in the spacecraft's specific impulse and 300 simulated steps
over the 600s hovering duration, we find that 0.08 kg of fuel would be
required to cancel the environmental forces. Our actual average fuel
consumption of 0.41 kg is considerably larger. Part of the excess fuel
consumption can be attributed to using pulsed thrusters, which do not
allow exact cancellation of environmental forces. It is also possible we
could have increased fuel efficiency by using a higher (absolute) value
for the β coefficient in Table 5. A sample trajectory is shown in Fig. 7,
where the position error subplot plots the deviation from the space-
craft's initial position. Note that when the environmental dynamics are
such that maximum thrust is not required, the policy fires only a single
thruster on a given side of the spacecraft, resulting in a 1 N thrust. This
saves fuel at the expense of inducing rotation, which is compensated for
by firing the opposing thruster on the opposite side at some future time.

To illustrate the ability of the policy to generalize to novel scenarios,
we re-ran testing using the cases tabulated in Table 8. Except as noted
in this table, the initial conditions and asteroid characteristics were
identical to that used for optimization. In each case, performance was
similar but slightly worse to that shown in Table 7, with the exception

Table 5
Hyperparameter settings.

α β γ η ζ κ

−0.02 −0.01 −0.05 0.01 10 −50

Table 6
Initial conditions.

Parameter min max

Range (m) 100.0 600.0
Position θ (degrees) 0.0 90.0
Position φ (degrees) − π π
x comp of Velocity (cm/s) −10.0 10.0
y comp of Velocity (cm/s) −10.0 10.0
z comp of Velocity (cm/s) −10.0 10.0
Attitude Error (degrees) 0.0 11.0
x comp of Rotational Velocity (mrad/s) −20.0 20.0
y comp of Rotational Velocity (mrad/s) −20.0 20.0
z comp of Rotational Velocity (mrad/s) −20.0 20.0

1 https://github.com/Aerospace-AI/Aerospace-AI.github.io.
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of increased fuel consumption for the extended hovering duration test,
and rare failures to achieve the required hovering performance. Ab-
breviated results are given in Table 9, where we see that the policy has
trouble generalizing to lower altitudes. This may be due to the reduced
perceived curvature at lower altitudes, and an obvious remedy that
could be explored in future work would be to optimize over positions
that cover these lower altitudes. We ran additional experiments with a
minimum altitude of 50 m that resulted in performance closer to that of
Table 7. The policy generalized fairly well to a more finely grained
texture (more facets).

4.3. Policy testing: rq36 and Itokawa

Since a guidance law for hovering over synthetic asteroids would be
of limited value, we also test the optimized policy using a shape model
of asteroids rq36 and Itokawa. These shape models are shown below in
Fig. 8, along with flash LIDAR beams (green for hit, red for miss) from a
randomly generated spacecraft initial state. Due to the slightly smaller
size of asteroid rq36 as compared to that of the smallest randomly

generated asteroids, rare complete misses for the flash LIDAR returns
occurred when the altitude was above 500 m. We define a complete
miss as none of the flash LIDAR beams intersecting the asteroid. Simi-
larly, the minimum dimension of the peanut shaped asteroid Itokawa
also resulted in occasional complete misses at altitudes greater than
250 m when the spacecraft was located close to collinear with the as-
teroid's x-axis. Since the curvature of Itokawa is quite different from
that of the synthetic asteroids, it should be a particularly challenging
test case, and we therefore look at two cases. First, we test using the
standard Itokawa shape model, but restrict the altitude to below 250 m.
Second, we scaled up the dimensions of the Itokawa shape model by a
factor of 3, which we refer to in the following as “Itokawa3X”. This
scaling resulted in a minimum axis size slightly larger than the smallest
experienced during optimization, which allowed testing hovering at
higher altitudes. Other than the modified initial altitude shown in
Table 10, the initial conditions are identical to that for the random
synthetic asteroid testing. A performance summary is given in Table 11,
where we see that, similar to the case of the synthetic asteroids, the
policy has trouble generalizing to hovering at low altitudes (below
100 m), particularly for the case of Itokawa3X. We ran additional ex-
periments and found that hovering at a minimum altitude of 20 m gives
performance close to that observed at 100 m. Also note that the per-
formance of Itokawa3X is a bit worse than the other cases, perhaps due
to the policy failing to generalize to the smaller curvature along the
major axis.

5. Conclusion

We formulated a particularly difficult problem that to our knowl-
edge has not been solved: precision hovering in an asteroid's body-fixed

Fig. 5. Optimization rewards learning curves.

Fig. 6. Optimization terminal position error learning curves.

Table 7
Performance.

Parameter Mean Std Max

Terminal Position (m) 0.21 0.15 1.87
Terminal Velocity (cm/s) 0.9 0.4 3.3
Rotational Velocity (mrad/s) 0.00 0.46 1.47
Good Hover 1 (%) 100.0 N/A N/A
Good Hover 2 (%) 100.0 N/A N/A
Fuel (kg) 0.41 0.09 0.63
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frame without a shape model or navigation aids, and without knowl-
edge of the asteroid's environmental dynamics. To solve this problem
we created a high fidelity 6-DOF simulator that synthesized asteroid
models with shapes taking the form of asymmetric ellipsoids. For pur-
poses of computing angular velocity, the asteroid is modeled as a uni-
form density ellipsoid that in general is not rotating about a principal
axis, resulting in time varying dynamics. We then optimized an

adaptive policy that maps flash LIDAR sensor measurements directly to
actuator commands. The policy was optimized using reinforcement
meta-learning, where the policy and value function networks each
contained a recurrent hidden layer, and with the policy network using a
convolutional front-end. During optimization, the agent was confronted
with a new randomly generated asteroid for each episode, with ran-
domized shape, density, rotational speed, and nutation angle. We then
tested the policy, and demonstrated that the optimized policy gen-
eralizes well to novel hovering altitudes, hovering duration, actuator
failure, actuator noise, sensor noise, and asteroid shapes and textures.
Finally, we demonstrated hovering using an rq36 shape model and a
scaled up Itokawa shape model. Comparing test performance for novel
scenarios to that of scenarios used for optimization, we found similar,
but slightly worse performance for the novel scenarios. Future work
could improve upon this performance by creating synthetic asteroids
with varying textures and more complex morphology, optimizing with
random actuator failure and sensor noise, and exploring different
convolutional network architectures. In addition, robustness to larger

Fig. 7. Sample trajectory.

Table 8
Generalization cases.

Case Description

Extended Altitude Range Initial altitude range increased to (10 m, 700 m)
Asteroid Facets Number of facets on each randomly generated asteroid shape model increased from 320 to 1280
Hovering Duration We increased hovering duration to 1200s
Actuator Failure With probability 0.5, random failing thruster has thrust reduced by factor of 0.5
Sensor Noise Random range bias for each episode uniformly distributed between -5m and 5 m, Gaussian zero mean range noise with 2 m standard deviation

at each sample
Environmental Dynamics Maximum asteroid spin rate increased to 1e-3 rad/s
Center of Mass (COM) Variation At the start of each episode, the spacecraft's center of mass is randomly set to an initial value between −10cm and 10 cm on each axis.

Table 9
Generalization performance.

Case Good Hover 1 (%) Good Hover 2 (%) Max Pos Err (m)

Extended IC 98.22 99.76 25.2
Facets 100.00 99.94 4.46
Duration 99.96 100.00 3.73
Actuator Fail 100.00 100.00 1.66
Sensor Noise 100.00 98.86 3.67
Env. Dynamics 100.00 100.00 1.78
COM Variation 100.00 100.00 1.37
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initial attitude errors and higher hovering altitudes would be enhanced
by optimizing a separate policy that, prior to initiation of hovering,
rotates the stabilized flash LIDAR seeker in a manner that minimizes the
number of beams missing the asteroid. We expect that the ability to
hover in the body-fixed frame immediately upon arrival at an asteroid
will simplify shape model generation and other aspects of mission
planning.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] B. Schutz, B. Tapley, G.H. Born, Statistical Orbit Determination, Elsevier, 2004.
[2] M. Lara, D.J. Scheeres, Stability bounds for three-dimensional motion close to asteroids,

J. Astronaut. Sci. 50 (4) (2002) 389–409.
[3] S.B. Broschart, D.J. Scheeres, Control of hovering spacecraft near small bodies: applica-

tion to asteroid 25143 itokawa, J. Guid. Contr. Dynam. 28 (2) (2005) 343–354.
[4] S. Sawai, D. Scheeres, S. Broschart, Control of hovering spacecraft using altimetry, J.

Guid. Contr. Dynam. 25 (4) (2002) 786–795.
[5] R. Furfaro, Hovering in asteroid dynamical environments using higher-order sliding

control, J. Guid. Contr. Dynam. 38 (2) (2014) 263–279.
[6] B. Gaudet, R. Furfaro, Real-time state estimation for asteroid close-proximity operations

via lidar altimetry and a particle filter, 2013 AAS/AIAA Astrodynamics Specialist
Conference, Astrodynamics 2013, Univelt Inc., 2014.

[7] D. Lee, A.K. Sanyal, E.A. Butcher, D.J. Scheeres, Almost global asymptotic tracking
control for spacecraft body-fixed hovering over an asteroid, Aero. Sci. Technol. 38 (2014)
105–115.

[8] B. Gaudet, R. Furfaro, Robust spacecraft hovering near small bodies in environments with
unknown dynamics using reinforcement learning, AIAA/AAS Astrodynamics Specialist
Conference, 2012, p. 5072.

[9] Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the
hayabusa 2―asteroid sample return mission to 1999 ju3, Acta Astronaut. 91 (2013)
356–362.

[10] S. Kameda, H. Suzuki, T. Takamatsu, Y. Cho, T. Yasuda, M. Yamada, H. Sawada,
R. Honda, T. Morota, C. Honda, et al., Preflight calibration test results for optical navi-
gation camera telescope (onc-t) onboard the hayabusa2 spacecraft, Space Sci. Rev. 208
(1–4) (2017) 17–31.

[11] S. Yasuda, K. Matsushima, F. Terui, Y. Mimasu, N. Ogawa, G. Ono, K. Yoshikawa,
Y. Tsuda, Operational design for hayabusa2 touch-down to ryugu, AIAA Scitech 2020
Forum, 2020, p. 2132.

[12] T. Mizuno, T. Kase, T. Shiina, M. Mita, N. Namiki, H. Senshu, R. Yamada, H. Noda,
H. Kunimori, N. Hirata, et al., Development of the laser altimeter (lidar) for hayabusa2,
Space Sci. Rev. 208 (1–4) (2017) 33–47.

[13] K. Yoshikawa, S. Kikuchi, H. Sawada, G. Ono, Y. Mimasu, N. Ogawa, F. Terui, T. Saiki,
Y. Tsuda, Hayabusa2 spacecraft dynamics and operational design of final descent and
touchdown in sampling mission, AIAA Scitech 2020 Forum, 2020, p. 1208.

[14] B. Gaudet, R. Linares, R. Furfaro, Seeker Based Adaptive Guidance via Reinforcement
Meta-Learning Applied to Asteroid Close Proximity Operations, arXiv preprint
arXiv:1907.06098.

[15] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A Simple Neural Attentive Meta-Learner,
arXiv preprint arXiv:1707.03141.

[16] K. Frans, J. Ho, X. Chen, P. Abbeel, J. Schulman, Meta Learning Shared Hierarchies, arXiv
preprint arXiv:1710.09767.

[17] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D.
Kumaran, M. Botvinick, Learning to Reinforcement Learn, arXiv preprint arXiv:1611.
05763.

[18] B. Gaudet, R. Linares, Adaptive Guidance with Reinforcement Meta-Learning, arXiv
preprint arXiv:1901.04473.

[19] B. Gaudet, R. Furfaro, R. Linares, A Guidance Law for Terminal Phase Exo-Atmospheric
Interception against a Maneuvering Target Using Angle-Only Measurements Optimized
Using Reinforcement Meta-Learning, arXiv preprint arXiv:1906.02113.

[20] D.J. Scheeres, Orbital Motion in Strongly Perturbed Environments: Applications to
Asteroid, Comet and Planetary Satellite Orbiters, Springer, 2016.

[21] T. Möller, B. Trumbore, Fast, minimum storage ray/triangle intersection, ACM
SIGGRAPH 2005 Courses, ACM, 2005, p. 7.

[22] G.M. Siouris, Missile Guidance and Control Systems, Springer Science & Business Media,
2004.

[23] B. Gaudet, R. Linares, R. Furfaro, Deep Reinforcement Learning for Six Degree-Of-
Freedom Planetary Powered Descent and Landing, arXiv preprint arXiv:1810.08719.

[24] C. Finn, P. Abbeel, S. Levine, Model-agnostic Meta-Learning for Fast Adaptation of Deep
Networks, arXiv preprint arXiv:1703.03400.

[25] A. Rajeswaran, S. Ghotra, B. Ravindran, S. Levine, Epopt: Learning Robust Neural
Network Policies Using Model Ensembles, arXiv preprint arXiv:1610.01283.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Optimization
Algorithms, arXiv preprint arXiv:1707.06347.

[27] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization,
International Conference on Machine Learning, (2015), pp. 1889–1897.

[28] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Gated feedback recurrent neural networks,
International Conference on Machine Learning, 2015, pp. 2067–2075.

[29] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time series,
The handbook of brain theory and neural networks, 3361 (10) (1995) 1995.

[30] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for Simplicity: the All
Convolutional Net, arXiv preprint arXiv:1412.6806.

Fig. 8. Asteroids RQ36 (left) and Itokawa 3X (right).

Table 10
Initial Condition altitudes for Real Shape Models.

Asteroid Min Altitude (m) Max Altitude (m)

rq36 100 500
rq36 EXT 10 500
Itokawa 100 250
Itokawa EXT 10 250
Itokawa3X 100 600
Itokawa3X EXT 10 600

Table 11
Performance with real shape models.

Asteroid Good Hover 1 (%) Good Hover 2 (%) Max Pos Err (m)

rq36 100.00 100.00 1.63
rq36 EXT 99.30 100.00 4.86
Itokawa 99.84 99.95 8.37
Itokawa EXT 99.80 99.98 9.32
Itokawa3X 99.94 100.00 4.41
Itokawa3X EXT 98.02 99.64 17.52
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