
Computers and Chemical Engineering 133 (2020) 106649

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

Reinforcement learning for batch bioprocess optimization

P. Petsagkourakis a , b , I.O. Sandoval c , E. Bradford

d , D. Zhang

a , e , E.A. del Rio-Chanona

e , ∗

a School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL, United Kingdom

b Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE,

United Kingdom

c Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, C.P. 04510 Ciudad de México, Mexico
d Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
e Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, United Kingdom

a r t i c l e i n f o

Article history:

Received 15 April 2019

Revised 31 October 2019

Accepted 17 November 2019

Available online 18 November 2019

Keywords:

Machine learning

Batch optimization

Recurrent neural networks

Bioprocesses

Policy gradient

Uncertain dynamic systems

Nonsmooth

a b s t r a c t

Bioprocesses have received a lot of attention to produce clean and sustainable alternatives to fossil-based

materials. However, they are generally difficult to optimize due to their unsteady-state operation modes

and stochastic behaviours. Furthermore, biological systems are highly complex, therefore plant-model

mismatch is often present. To address the aforementioned challenges we propose a Reinforcement learn-

ing based optimization strategy for batch processes.

In this work we applied the Policy Gradient method from batch-to-batch to update a control policy

parametrized by a recurrent neural network. We assume that a preliminary process model is available,

which is exploited to obtain a preliminary optimal control policy. Subsequently, this policy is updated

based on measurements from the true plant. The capabilities of our proposed approach were tested on

three case studies (one of which is nonsmooth) using a more complex process model for the true system

embedded with adequate process disturbance. Lastly, we discussed advantages and disadvantages of this

strategy compared against current existing approaches such as nonlinear model predictive control.

© 2019 Elsevier Ltd. All rights reserved.

1

fi

i

2

g

f

s

t

w

I

c

c

V

a

c

t

a

t

c

s

o

m

m

r

c

t

2

p

h

l

o

l

o

h

0

. Introduction

The synthesis of sustainable bioproducts is a promising research

eld of international interest to replace a broad range of chem-

cals derived from fossil synthetic routes (Brennan and Owende,

010; Harun et al., 2018). Biochemical processes employ microor-

anisms to produce platform chemicals and high-value products

rom renewable resources (Jing et al., 2018). Biosystems are con-

iderably more complex than traditional chemical processes due

o the convoluted relationship between metabolic reaction net-

orks and culture fluid dynamics (del Rio-Chanona et al., 2018).

n addition, biological metabolic pathways are highly sensitive to

hanges of the process operating conditions. Therefore, biopro-

esses display stochastic behaviour in the macro-scale (Zhang and

assiliadis, 2015; Thierie, 2004). Consequently, the development of

 physics-based model to accurately represent large-scale biopro-

esses is challenging. For these reasons the control and optimiza-

ion of biosystems is still an open research question. To address
∗ Corresponding author.

E-mail addresses: dongda.zhang@manchester.ac.uk (D. Zhang),

.del-rio-chanona@imperial.ac.uk (E.A. del Rio-Chanona).

a

o

a

ttps://doi.org/10.1016/j.compchemeng.2019.106649

098-1354/© 2019 Elsevier Ltd. All rights reserved.
his problem we propose a data-driven approach, which avoids the

ritical limitations of mechanistic models.

An efficient optimization approach for a bioprocess needs to

ubsequently be able to handle both the inherent stochasticity

f the system (e.g. process disturbances) and plant-model mis-

atches. To accomplish this we exploit a method from Reinforce-

ent learning (RL) called Policy Gradients as an alternative to cur-

ently utilised approaches. RL has been shown to be a powerful

ontrol approach, which is one of the few control techniques able

o handle nonlinear stochastic optimal control problems (Bertsekas,

0 0 0). Solution methods for dynamic optimization problems ex-

loiting RL have been divided into two categories.

The first category is based on Dynamic Programming (DP),

ence termed Approximate Dynamic Programming (ADP). DP re-

ies on the Hamilton-Jacobi-Bellman equation (HJBE), the solution

f which becomes intractable for small size problems with non-

inear dynamics and continuous state and control actions. Because

f this, past research has relied on using ADP techniques to find

pproximate solutions to these problems (Sutton and Barto, 2018).

The second category is to use Policy Gradients , which directly

btains a policy by maximizing a desired performance index. This

pproach is particularly well suited to deal with problems where

https://doi.org/10.1016/j.compchemeng.2019.106649
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2019.106649&domain=pdf
mailto:dongda.zhang@manchester.ac.uk
mailto:a.del-rio-chanona@imperial.ac.uk
https://doi.org/10.1016/j.compchemeng.2019.106649

2 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

g

c

a

n

s

i

a

2

a

w

S

o

t

i

t

H

L

g

V

e

e

1

w

a

a

h

a

a

t

q

t

b

t

c

t

c

c

c

q

i

b

I

m

j

G

c

p

a

a

t

a

e

e

both the state space and the control space are continuous. Given

the advantages that Policy Gradients can offer when confronted

with bioprocess optimization, we have adopted this approach in

the current work. Policy Gradient methods, along with their bene-

fits, are further explained in Section 2.2 .

1.1. Related work

Given that chemical engineers have always dealt with complex

and uncertain systems there have been several approaches that ad-

dress specific instances of the aforementioned problems, we high-

light some related previous work in the sections below.

One example to track stochastic batch-to-batch systems is It-

erative Learning Control (ILC) which was initially introduced for

robot manipulators (Arimoto et al., 1984), and later implemented

by the process control community (Xu et al., 1999). ILC deals with

the problem of tracking the control performance in batch processes

given a reference trajectory for runs that last a fixed time, and

where the process state is reset to the same value at the start of

each run. An overview of ILC strategies in process control can be

found in (Lee and Lee, 2007).

Real-time optimization (RTO) is another method that deals with

uncertain processes. The main idea is to represent the process dy-

namics by a nonlinear input/output mapping where the distur-

bances are explicitly accounted for. This mapping is then used

to optimize some desired performance index. For the interested

reader, further details can be found in Bonvin et al. (2001) and

Chachuat et al. (2009) . A recent review on this topic can be found

in Marchetti et al. (2016) . For the dynamic systems, these method-

ologies are usually referred to as Dynamic Real-time optimization

(DRTO) which is closely related to NMPC. More details can be

found in Rawlings et al. (2017) ; Rossi et al. (2019) .

Another technique that deals with stochastic systems is model

predictive control (MPC), and its extension to nonlinear systems,

NMPC. NMPC has a vast variety of methods that can incorporate

uncertainty or maintain properties under the presence of stochas-

tic environments. The most common paradigms are the stochas-

tic NMPC (Mesbah, 2016) and the Robust NMPC (Bemporad and

Morari, 1999), where the former incorporates the uncertainty by

minimizing (usually) the expectation of the objective function,

whilst the latter approach solves a min-max optimization by min-

imizing the worst case scenario of the uncertainty. Both of these

approaches require knowledge regarding the nature of the uncer-

tainty in order to proceed.

There are different approaches that have been proposed for

NMPC frameworks, including scenario (Bernardini and Bemporad,

2012) based multi-stage schemes for nonlinear systems (Lucia and

Engell, 2012; Krishnamoorthy et al., 2018), where stochastic pro-

gramming is utilized and future information is incorporated in an

adaptive manner. Another approach is the use of Gaussian pro-

cesses (Bradford and Imsland, 2018; Bradford et al., 2018) or us-

ing (generalized) polynomial chaos expansions (Kim and Braatz,

2013) to model effectively the uncertainties of the process. In the

case where no proper information for the uncertainty is available,

e.g. there is not enough data to conduct uncertainty quantification,

optimal control is explored using the nominal linear or nonlinear

available model. In terms of solution procedures for the dynamic

optimization problem, it is common to use a direct approach after

parametrizing and discretizing the control inputs (Vassiliadis et al.,

1994) or the system dynamics (Biegler, 2010) resulting in a nonlin-

ear programming problem. Although much less common, indirect

approaches can also be used, where the necessary conditions of

optimality are solved explicitly (Aydin et al., 2018). If no informa-

tion on structural information is known, conservative assumptions

can be made in order to establish stability conditions (Feller et al.,

2016; Petsagkourakis et al., 2019a; 2020).
Reinforcement Learning (in an Approximate Dynamic Pro-

ramming philosophy), has lately caught significant attention for

hemical process control. For example, in (Lee and Lee, 2005)

 model-based strategy and a model-free strategy for control of

onlinear processes were proposed, in (Peroni et al., 2005) ADP

trategies were used to address fed-batch reactor optimization,

n (Lee and Lee, 2006) mixed-integer decision problems were

ddressed with applications to scheduling. In (Tang and Daoutidis,

018) with the inclusion of distributed optimization techniques,

n input-constrained optimal control problem solution technique

as presented, among other works (e.g. Chaffart and Ricardez-

andoval, 2018; Shah and Gopal, 2016). All these approaches rely

n the (approximate) solution of the HJBE, and have been shown

o be reliable and robust for several problem instances.

In this paper, we present another take on RL, that of using Pol-

cy Gradients. Policy Gradient methods directly estimate the con-

rol policy, without the need of a model, or the solution of the

JBE, its advantages are highlighted in the following section.

In addition to the above, for recent reviews of Machine

earning and Artificial Intelligence applied to chemical en-

ineering the reader is referred to Lee et al. (2018) and

enkatasubramanian (2019) . A shorter review focused on mod-

lling bioprocesses with ML tools can be found in (Del Rio Chanona

t al., 2018).

.2. Motivation

The process systems engineering community has been dealing

ith stochastic batch-to-batch systems for a long time. For ex-

mple, nonlinear dynamic optimization and particularly NMPC are

 powerful methodology to address uncertain dynamic systems,

owever there are several properties that make its application less

ttractive. All the approaches in NMPC require the knowledge of

 detailed model that describe the system dynamics, and stochas-

ic NMPC additionally requires an assumption for the uncertainty

uantification/propagation. Furthermore, the online computational

ime may be a bottleneck for real time applications since a (possi-

ly) nonlinear optimization problem has to be solved.

In contrast, RL directly accounts for the effect of future uncer-

ainty and its feedback in a proper closed-loop manner, whereas

onventional NMPC assumes open-loop control actions at future

ime points in the prediction, which can lead to overly conservative

ontrol actions (Lee and Lee, 2005). In addition, policy gradients

an establish a policy in a model-free fashion and excel at on-line

omputational time. This is because the online computations re-

uire only evaluation of a policy, since all the computational cost

s shifted off-line.

As mentioned previously, Real-time optimization (RTO) has

een used to address many instances of batch-to-batch problems.

nterestingly, some recent approaches have suggested a hybrid

odeling strategy, where function approximates are used in con-

unction with a pre-existing model (del Rio Chanona et al., 2019;

ao et al., 2015). From some perspectives these recent algorithms

ould be thought of as model-based Reinforcement learning ap-

roaches. However, there is not yet a clear consensus on how to

ddress problems with plant-model mismatch, measurement noise,

nd disturbances in an RTO framework.

In terms of previous RL approaches in chemical engineering

o address process control and optimization, they have relied on

ction-value methods (e.g. Q-learning, solution of the HJBE). How-

ver, to address continuous nonlinear action domains Policy Gradi-

nt methods present several advantages:

• In Policy Gradient methods, the approximate policy can nat-

urally approach a deterministic policy, whereas action-value

methods (that use epsilon-greedy or Boltzmann functions)

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 3

t

m

m

p

l

c

F

p

t

(

2

2

b

M

x

T

s

x

w

s

p

p

u

t

P

c

v

(

o

t

Fig. 1. Representation of interaction between policy and the physical system.

a

m

a

t

s

i

d

d

x

J

w

t

d

w

t

m

n

l

2

e

r

u

o

r

a

u

I

p

c

i

c

a

a

b

r

i

a

m

e

θ

w

(
select a random control action with some heuristic rule (Sutton

and Barto, 2018).

• Although it is possible to estimate the objective value of state-

action pairs in continuous action spaces by function approxi-

mators, this does not help choose a control action. Therefore,

on-line optimization over the action space for each time-step

should be performed, which can be slow and inefficient. Policy

Gradient methods work directly with policies that emit proba-

bility distributions, which is much faster and does not require

an online optimization step.

• Policy Gradient methods are guaranteed to converge at least

to a locally optimal policy even in high dimensional continu-

ous state and action spaces, unlike action-value methods where

convergence to local optima is not guaranteed (Sutton and

Barto, 2018).

• Policy Gradient methods enable the selection of control actions

with arbitrary probabilities. In such cases, the best approximate

policy may be stochastic (Sutton and Barto, 2018).

Due to the above advantages, in this work we propose an op-

imization strategy that uses a Policy Gradient algorithm to opti-

ize batch-to-batch bioprocesses. This work extends our proposed

ethodology in (Petsagkourakis et al., 2019b), the new approach

resents a much faster adaptation time by implementing transfer

earning for the efficient adaptation of the policies. Additional more

omplex case studies and a comparison against NMPC are included.

urthermore, we exemplify both approaches (NMPC and our ap-

roach) in a system described by a nonsmooth differential equa-

ion model. The difficulty for nonsmooth models is highlighted in

 Stechlinski et al., 2018).

. Methodology

.1. Problem statement

In this work, we assume that the system’s dynamics are given

y an (generally) unknown probability distribution, following a

arkov process:

 t+1 ∼ p(x t+1 | x t , u t) (1)

his system can be approximated by the following discrete time

tochastic nonlinear system represented as a state-space model:

 t+1 = f (x t , u t , d t) (2)

here t represents the discrete time, x t ∈ R

n x is the vector of

tates, u t ∈ R

n u is the vector of inputs, d t ∈ R

n d is the vector of

rocess disturbances, and f (·) are the nonlinear dynamics of the

hysical system.

Our strategy seeks to find the optimal policy for a batch process

nder the presence of disturbances and measurement noise. Then,

he problem can be written as an Optimal Control Problem (OCP):

(π(·)) :=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

max π(·) E [J(x

k
t , u

k
t)]

s.t.

x

k
0 = x

k (0)

x

k
t+1 = f (x

k
t , u

k
t , d

k
t) ∀ t ∈ { 1 , . . . , T − 1 }

u t ∼ π(x

k
t)

u ∈ U

given

x

j
t ∀ j ∈ { 0 , . . . , k − 1 } ∀ t ∈ { 1 , . . . , T }

(3)

The objective is to maximize the expectation of an economic

riterion J , where k is the current batch, while j refers to pre-

ious batch realizations. Additionally, the optimization problem

3) searches for a set of functions π (·) that maps the probability

f u

k
t given x k t . Notice that in problem (3) we make no assump-

ions about the nature of d . Even in the case where the dynamics
re fully known, the solution of problem (3) may be intractable for

edium size systems.

To overcome this limitation a novel strategy is proposed, where

 policy πθ (·), parametrized by the parameters θ , is constructed

hat maximizes the expectation of a performance index J . The

tates at the time t + 1 are assumed to be given by the probabil-

ty density p(x t+1 | x t , u t) . The interaction with the policy can be

epicted as a closed-loop, see Fig. 1 .

Let τττ denote a joint random variable of states and controls

efining a trajectory with a time horizon T : τττ = (x 0 , u 0 , R 0 , . . . ,

 T −1 , u T −1 , R T −1 , x T , R T) , the performance index being

(τττ) =

T ∑

t=0

γ t R t (u t , x t) (4)

here γ ∈ (0, 1] is the discount factor and R t a given reward at the

ime instance t for the values of u t , x t . We represent the probability

ensity of a trajectory as:

p(τττ | θ) = ˆ μ(x 0)
T −1 ∏

t=0

[π(u t | x t , θ) p(x t+1 | x t , u t)] (5)

here ˆ μ(x 0) is the probability density of the initial state. We can

herefore state the following optimization problem:

ax
π(·)

E τττ∼p(τττ | θ) [J(τττ)] (6)

otice that the process dynamics are implicit in τττ . To solve prob-

em (6) we turn our attention to policy gradient methods.

.2. Policy gradient methods

Policy gradient methods compute a policy that maximizes the

xpectation over some objective function (i.e . problem (6)). They

ely on a parametrized policy function πθ (·) that returns an action

 given a state of the system x and a set of intrinsic parameters θ
f the policy. In the case of stochastic policies, the policy function

eturns the defining parameters of a probability distribution over

ll possible actions, from which the actions are sampled:

 ∼ πθ (u | x) = π(u | x , θ) = p(u t = u | x t = x , θt = θ) . (7)

n this work, a Recurrent neural network (RNN) is used as the

arametrized policy, which takes (a number of past) states and

ontrol actions as inputs and returns the moments of a probabil-

ty distribution. Then the next control action is drawn from the

orresponding probability distribution. For example, if the control

ctions live in a normal distribution then a mean and a variance

re computed, from these mean and variance a control action can

e drawn. In this setting, the exploitation-exploration trade-off is

epresented explicitly by the value of the variance of the underly-

ng distribution of the policy. Deterministic policies can be seen as

 limiting case where the variance converges to zero.

To learn the optimal policy, we seek to maximize our perfor-

ance metric, and hence we can follow a gradient ascent strat-

gy:

m +1 = θm

+ αm

∇ θE τττ∼p(τττ | θ) [J(τττ)] (8)

here m is the current iteration that the parameters are updated

epoch), E τττ∼p(τττ | θ) [J(τττ)] is the expectation of J over τττ and αm

is the

4 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

Fig. 3. Recurrent neural networks as unfolded computational graph, with one step

delay (z −1) .

e

l

p

t

c

c

s

νν
u

w

t

u

t

e

n

i

t

t

d

s

p

p

d

p

i

r

a

S

[

t

a

n

w

t

O

p

m

t
step size (also termed learning rate in the RL community) for the

m

th iteration. Computing ˆ J (θ) = E τττ∼p(τττ | θ) [J(τττ)] directly is difficult,

therefore we use the Policy Gradient Theorem (Sutton et al., 1999),

which shows the following:

ˆ J (θ) = ∇ θE τττ∼p(τττ | θ) [J(τττ)] = ∇ θ

∫
p(τττ | θ) J(τττ) d τττ (9a)

=

∫
∇ θ p(τττ | θ) J(τττ) d τττ (9b)

=

∫
p(τττ | θ)

∇ θ p(τττ | θ)

p(τττ | θ)
J(τττ) d τττ (9c)

=

∫
p(τττ | θ) ∇ θ log (p(τττ | θ)) J(τττ) d τττ (9d)

= E τττ [J(τττ) ∇ θ log (p(τττ | θ))] (9e)

Notice from (9b) that, p(τττ | θ) J(τττ) is an objective function value

multiplied by its probability density, therefore, integrating this over

all possible values of τττ we obtain the expected value. From there

we arrive at (9e) , where, dropping the explicit distribution of τττ ,

gives us an unbiased gradient estimator, (8) now becomes:

θm +1 = θm

+ αm

E τττ [J(τττ) ∇ θ log (p(τττ | θ))] (10)

Using the expression for p(τττ | θ) in (5) and taking its logarithm, we

obtain:

∇ θ log (p(τττ | θ)) = ∇ θ

T −1 ∑

t=0

log (π(u t | x t , θ)) (11)

Note that since p(x t+1 | x t , u t) and ˆ μ(x 0) are independent of θ they

disappear from the above expression. Then we can rewrite (9e) for

a trajectory as:

∇ θE τττ [J(τττ)] = E τττ

[

J(τττ) ∇ θ

T −1 ∑

t=0

log (π(u t | x t , θ))

]

(12)

Notice that expression (12) does not require the knowledge of

the dynamics of the physical system. However, the above update

presents two challenges: the selection of the policy π(u t | x t , θ)

and the computation of the expectation. To address these pos-

sible issues, in this work, recurrent neural networks are used

to parametrize the policy of the policy gradient (presented in

Section 2.3), while a Monte-Carlo method is utilized to approxi-

mate the expectation (presented in Section 2.4).

2.3. Recurrent neural network

Recurrent neural networks (RNNs) were developed to efficiently

represent sequential data, which are a type of artifical neural net-

work tailored to this task. RNNs produce an output at each time

step and have recursive connections between hidden units. This al-

lows them to fully account for previous data and hence are ideal to

simulate time-series. In general, RNNs can be depicted as a folded

computational graph as presented in Fig. 2 .

Fig. 2 shows how an input ˆ x t is presented to the network as

well as the recursive state of RNN, u t−1 and outputs νννt . A more

detailed representation of an RNN is depicted in Fig. 3 , which is
Fig. 2. Computational graph of recurrent neural network.
quivalent to a series of unfolded nodes associated with a particu-

ar time instance.

In Fig. 3 we can appreciate that each node receives two in-

uts x t−i and u t−i −1 . Generally speaking, the input x t−i corresponds

o the data supplied to that node, such as in a traditional artifi-

ial neural network (also referred to as feedforward). The unfolded

omputational graph in this case can be represented as a dynamic

ystem:

νt = h θ (̂ x t , u t−1)
 t = G t (νννt)

(13)

here ˆ x t is the vector that contains all the external variables for

he RNN, G the function that computes the output of the network

 , and h θ represents the layers of the neural networks. Deep struc-

ures (which means having more than one hidden layer) can be

mployed to enhance the performance of the network (deep neural

etworks) which have been combined with Reinforcement learn-

ng recently in (Mnih et al., 2013; 2015). Previous realizations of

he states x and the controls u are also used as input variables

o the network, e.g. ˆ x t = [x T t , . . . , x
T
t−N

, u

T
t−2

, . . . , u

T
t−N−1

] T , to model

ynamic systems. RNNs have previously been applied either as a

urrogate model of the process dynamics (Su et al., 1992) or as a

arametrization of the agent (control policy) (Mnih et al., 2014).

In this work, RNNs are applied to parameterize the stochastic

olicy. We must remark that in theory the Markov decision process

oes not require RNNs (due to the Markov property), however in

ractice the use of RNNs can improve the performance of the pol-

cy by exploiting additional memory that is provided. In the cur-

ent work the RNN initially computes the mean and the variance of

 multivariate normal distribution where the control actions live.

ubsequently, the actual control action is drawn. Precisely, νννt =

μμμt , ���t] where the μμμ and ��� are the mean and variance, respec-

ively, and u t = G t (νννt) is substituted by u t ∼ N (μμμt , ���t) making it

 stochastic policy. Under the presence of uncertainty (stochastic in

ature) a deterministic policy will fail as the control action will al-

ays be the same for the same states since it learns a determinis-

ic mapping from states to control actions at the exact same state.

n the contrary, a stochastic policy draws a control action from a

robability distribution which can account for stochastic environ-

ents.

In Fig. 4 , a schematic representation of a policy network where

he stochastic policy follows a Gaussian distribution is depicted. In
Fig. 4. Graphical representation of a stochastic policy network.

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 5

t

t

s

c

o

2

i

r

s

e

p

T

t

p

r

d

t

E

∇

w

o

i

a

t

o

b

w

∇

T

i

d

e

p

A

I

r

n

O

f

i

l

g

c

c

u

t

2

u

m

p

e

t

f

A

A

I

i

N

f

O

t

r

N

a

t

a

i

t

a

o

m

u

i

T

m

b

s

e

d

s

i

i

p
his figure, we can observe how the states ˆ x t are used as input to

he network, and how the network computes the mean μt+1 and

tandard deviation σt+1 for the subsequent time step. Then, the

ontrol action u t+1 is drawn from the distribution defined by the

utputs of the network.

.4. Reinforce algorithm

Given that the parametrized policy used in this work is a RNN,

t must be trained to adjust its weights so that the output cor-

esponds to an optimal control action. To this end, we use the

teepest ascent strategy mentioned in (8) . However, computing the

xpectation in (12) can be an intractable problem, and this ex-

ression is needed to compute the steepest ascent update (10) .

herefore, we propose to use the Reinforce algorithm to compute

he policy gradient. The Reinforce algorithm (Williams, 1992) ap-

roximates the gradient of the policy to maximize the expected

eward with respect to the parameters θ without the need of a

ynamic model of the process. To compute the expectation we

ake several sample trajectories and then approximately calculate

 τττ

[
J(τττ) ∇ θ

∑ T −1
t=0 log (π(u t | x t , θ))

]
as an average of K samples:

 θE τττ ≈ 1

K

K ∑

k =1

[

J(τττ k) ∇ θ

T −1 ∑

t=0

log

(
π(u

k
t | ̂ x

k
t , θ)

)]

(14)

here we denote the sample k as a super-index. The variance

f this estimation can be reduced with the aid of an action-

ndependent baseline b , which does not introduce a bias (Sutton

nd Barto, 2018). A simple but effective baseline is the expecta-

ion of reward under the current policy, approximated by the mean

ver the sampled paths:

 =

ˆ J (θ) ≈ 1

K

K ∑

k =1

J(τττ (k)) , (15)

hich leads to:

 θ
ˆ J (θ) ≈ 1

K

K ∑

k =1

[

(J(τττ k) − b) ∇ θ

T −1 ∑

t=0

log

(
π(u

k
t | ̂ x

k
t , θ)

)]

(16)

his selection increases the log likelihood of an action by compar-

ng it to the expected reward of the current policy. (16) is the gra-

ient that we can now incorporate into our steepest ascent strat-

gy. The algorithm that trains the RNN and obtains the optimal

olicy network is the following.

The steps in the Algorithm 1 are explained below.

lgorithm 1 Policy gradient algorithm.

nput: Initialize policy parameter θ = θ0 , with θ0 ∈
0 ,learning

ate, its update rule α, m := 0 , the number of episodes K and the

umber of epochs N.

utput: policy π(·|·, θ) and

or m = 1,…, N do

1. Collect u

k
t , x

k
t for T time steps for K trajectories along with

J(x k
T
) , also for K trajectories.

2. Update the policy, using a policy gradient estimate θm +1 = θm

+
αm

1
K

∑ K
k =1

[
(J(τττ k) − b) ∇ θ

∑ T −1
t=0 log

(
π(u

k
t | ̂ x

k
t , θ)

)]
3. m := m + 1

Initialization: The RNN policy network and its weights θ are

nitialized, along with the algorithm’s hyperparameters such as

earning rate, number of episodes and number of epochs.
Training loop: The weights on the RNN are updated by a policy

radient scheme for a total of N epochs. In Step 1 K trajectories are

omputed, each trajectory consists of T time steps, and states and

ontrol actions are collected. In Step 2 the weights of the RNN are

pdated based on the policy gradient framework. In Step 3 , either

he algorithm terminates or returns to Step 1.

.5. Reinforcement learning for bioprocess optimization under

ncertainty

The methodology presented aims to overcome plant-model

ismatch in uncertain dynamic systems, a usual scenario in bio-

rocesses. It is common to construct simple deterministic mod-

ls according to a hypothesized mechanism, however the real sys-

em is more complex and presents disturbances. We propose the

ollowing methodology to address this problem (following from

lgorithm 2).

lgorithm 2 Batch to batch algorithm.

nput: Initialize the set of policy parameter
0 ,learning rate and

ts update rule α, epochs N := N 0 , maximum number of epochs

 max , epochs for the true system N true , episodes K 0 , and episodes

or the true system K with K 0 � K.

1. while N ≤ N max do :

(a) Apply Algorithm 1 using an approximate model and get the

trained parameters ˆ
0 using N epochs and T 0 episodes.

(b) increase N.

2. ˆ
1 := ̂
0 Initial values of the parameters ˆ
1 are set as those

identified in Step 1

3. Transfer Learning: Pick ˆ
∗
1

⊂ ˆ
1 to be constant

4. For i = 1 , . . . , N true do :

(a) Apply Algorithm 1 on the true system and get the trained

parameters ˆ
1 for one epoch and K episodes.

5.
 =

ˆ
1

utput: Preliminary trained policy network with parameters

hat takes states as inputs (e.g. x t) and outputs the statistical pa-

ameter (e.g. μμμt+1 , σσσ t+1) of an optimal stochastic action.

ote: We denote
0 as the set of parameters of the RNN before

ny training, ˆ
0 the set of parameters after the training in Step 1 .
ˆ

1 denotes the set of parameters passed along to the training by

he true system, and subsequent set of parameters during Step 4

s ˆ
i , where i is the current epoch.

Step 0, Initialization: The algorithm is initialized by consider-

ng an initial policy network (e.g. RNN policy network) with un-

rained parameters θ0 .

Step 1, Preliminary Learning (Off-line): It is assumed that

 preliminary mechanistic model can be constructed from previ-

us existing process data, hence, the policy learns this preliminary

echanistic model. This is done by running Algorithm 1 in a sim-

lated environment by the mechanistic model. This allows the pol-

cy to incorporate previously believed knowledge about the system.

he policy will therefore end with an optimal control policy for the

echanistic model. The termination criteria can be defined either

y the designer or by the difference from the solution of the OCP,

ince the process model is known.

Given that the experiments are in silico, a large number of

pisodes and trajectories can be generated that corresponds to

ifferent actions from the probability distribution of u t , and a

pecific set of parameters of the RNN, respectively. The result-

ng control policy is a good approximation of the optimal pol-

cy. Notice that if a stochastic preliminary model exists, this ap-

roach can immediately exploit it, contrary to traditional NMPC

6 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

Fig. 5. Part of the network is kept frozen to adapt to new situations more efficiently.

Fig. 6. Batch-to-Batch algorithm (Algorithm 2).

3

e

e

t

e

u

3

(

r

w

l

b

d

t

s

o

i

t
approaches. This finishes the in silico part of the algorithm, sub-

sequent steps would be run in the true system. Therefore, empha-

sis after this step is given on sampling as least as possible, as ev-

ery new sample would result in a new batch run from the real

plant.

Step 2–3, Transfer Learning: The policy could directly be re-

trained using the true system and adapt all the weights according

to the Reinforce algorithm. However, this may result in undesired

effects. The control policy proposed in this work has a deep struc-

ture, as a result a large number of weights could be present. Thus,

the optimization to update the policy may easily be stuck in a low-

quality local optima or completely diverge. To overcome this issue

the concept of transfer learning is adopted. In transfer learning, a

subset of training parameters is kept constant to avoid the use of a

large number of epochs and episodes, applying knowledge that has

been stored in a different but related problem. This technique is

originated from the task of image classification, where several ex-

amples exists, e.g . in (Krizhevsky et al., 2012), (Russakovsky et al.,

2015), (Donahue et al., 2013).

Using transfer learning, the current work only retrained the last

hidden layers, and the policy is able to adapt to new situation

without losing previously obtained knowledge, as shown in Fig. 5 .

Alternatively, an additional set of layers could be added on the top

of the network.

Step 4, Transfer Learning Reinforce (On-line): In this step,

Algorithm 1 is applied again, but now, on the true system. This

algorithm aims to maximize a given reward (e.g. product concen-

tration, economic objective)

Step 5: Terminate policy update and output
 that defines the

optimal RNN policy.

The methodology is described in Algorithm 2 and depicted in

Fig. 6 .
t
. Computational case studies

In this section three case studies are presented to illustrate the

ffectiveness of the proposed batch-to-batch strategy. Our strat-

gy is applied to 3 fed-batch bioreactors, where the objective is

o maximize the concentration of a target product (y 2 or c q) at the

nd of the batch time, using light and an inflow rate (u 1 or I and

 2 or F N) as manipulated variables.

.1. Case study 1 - Ordinary differential equations

In the first case study, the “real” photo-production system

plant) is described by the following equations plus an additional

andom disturbance:

dy 1
dt

= −(u 1 + 0 . 5 u

2
1) y 1 + 0 . 5

u 2 y 2
(y 1 + y 2)

(17)

dy 2
dt

= u 1 y 1 − 0 . 7 u 2 y 1 (18)

here u 1 , u 2 and y 1 , y 2 are the manipulated variables and the out-

et concentrations of the reactant and product, respectively. The

atch operation time course is normalized to 1. Additionally, a ran-

om disturbance is assumed, which is given by a Gaussian dis-

ribution with mean value 0 and standard deviation 0.02 on the

tates y 1 and y 2 . We discretize the time horizon into 10 intervals

f the dimensionless time, with one constant control input in each

nterval, resulting in a total of 20 control inputs.

The exact model is usually not known, and a simplified de-

erministic model is assumed according to some set of parame-

ers. This preliminary model, given in (19) –(20) , is utilized in an

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 7

Fig. 7. The time trajectories of the output variables of the approximate model and the piecewise constant control actions associated with the preliminary trained policies.

e

n

t

u

T

p

t

fi

R

T

o

a

c

t

c

i

m

a

(

r

r

p

p

n

p

c

i

s

b

f

F

i

n

e

w

Fig. 8. The reward computed for the approximate model for each epoch.

p

a

i

i

5

r

a

l

i

c

p

a

t

p

t

l

f

w

a

t

s

M

o

s

n

i

t

u

xtensive offline training in order to construct the control policy

etwork. As illustrated in the previous Section 2.4 , there is a po-

ential to have a close approximation of the solution of the OCP

sing the RNN-Reinforce.

dy 1
dt

= −(u 1 + 0 . 5 u

2
1) y 1 + u 2 (19)

dy 2
dt

= u 1 y 1 − u 2 y 1 (20)

he training consist of 100 epochs and 800 episodes using the sim-

lified model to search the optimal control policy that maximizes

he reward of (19) –(20) in this case the concentration of y 2 at the

nal instance (21) .

R t = 0 , t ∈ { 0 , T − 1 }
 T = y 2 (T) .

(21)

The control actions are constrained to be in the interval [0,5].

he control policy RNN is designed to contain 2 hidden layers, each

f which comprises 20 neurons embedded by a hyperbolic tangent

ctivation function. It was observed that 2 hidden layers are suffi-

ient to approximate the optimal control policy, however there is

he potential to use deeper structures with more layers for more

omplex systems. Furthermore, we employed two policy networks

nstead of one for simplicity. This approach assumes that the two

anipulated variables are independent resulting in diagonal vari-

nce.

The algorithm is implemented in Pytorch version 0.4.1. Adam

 Kingma and Ba, 2014) is employed to compute the network’s pa-

ameter values using a step size of 10 −2 with the rest of hyperpa-

ameters at their default values. After the training, using the sim-

lified model the reward has the same value with the one com-

uted by the optimal control problem, as expected. It should be

oted that the computation cost of the control action using the

olicy is insignificant since it only requires the evaluation of the

orresponding RNN, and does not depend directly on the complex-

ty or the number of variables. In contrast, the solution of the OCP

cale very badly with respect to both the complexity and the num-

er of variables. Precisely, the maximum rewards for RL and OCP

or both cases is 0.64. The reward for its epoch is illustrated in

ig. 8 and the process trajectories after the final update of the pol-

cy networks are shown in Fig. 7 .

Fig. 8 shows that the reward has a large variance at the begin-

ing of the training but is undetectable at the end. This can be

xplained as the trade-off between exploration and exploitation,

here initially there is a lack of information and policy explores
ossible control actions, while at the end the policy exploits the

vailable information. This policy can be considered as an initial-

zation of the Reinforce algorithm which uses transfer learning to

ncorporate new knowledge gained from the true plant (Steps 3–

 in Algorithm 2). New data-sets from 25 batches are used (i.e. 25

eal plant epochs) to update the true plant’s RL policy. The solution

fter only 4 epochs is 0.591 while the stochastic-free optimal so-

ution identified using the unknown (complex) model of the plant

s 0.583. This results show that the stochastic nature of the system

an also affect the performance. The reward for each epoch is de-

icted in Fig. 10 and the process trajectories after the last epoch

re depicted in Fig. 9 . Notice that even before having any interac-

ion with the “real” system the proposed approach has a superior

erformance than NMPC. This is because RL directly accounts for

he effect of future uncertainty and its feedback in a proper closed-

oop manner, whereas NMPC assumes open-loop control actions at

uture time points in the prediction.

There is a variation on the results after the last batch upon

hich the policy is updated. This makes sense, since the system

ppears to have some additive noise (i.e. Gaussian disturbance) and

he policy maintains its stochastic nature.

The results are also compared with the use of NMPC using

hrinking horizon. The results can be seen in Fig. 10 , where 100

onte-Carlo simulations were conducted. The optimization using

ur approach appears to be superior to the one given by the NMPC,

howing the significance of our result. Furthermore, it should be

oted that the performance of our proposed policy is better even

n epoch 1, before the adaptation is started. In addition, in Fig. 11 ,

he comparison between the control inputs of that are computed

sing our approach and the NMPC.

8 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

Fig. 9. The time trajectories produced by the real plant using our approach (dash) and NMPC (solid).

Fig. 10. The reward computed by the updated training using the plant (“real” sys-

tem) for each epoch (circle) and the average performance of the NMPC (triangle)

with 2 times the standard deviation.

Fig. 12. The reward computed by the updated training using the plant (“real” sys-

tem) for each epoch (circle) and the average performance of NMPC (triangle) with

2 times the standard deviation.

w

s

t

o

d

t

p

a

3.2. Case study 2 - Stochastic differential equations

In this case study the same type of reaction is assumed to fol-

low a stochastic differential equations:

d y 1 =

[
−(u 1 + 0 . 5 u

2
1) y 1 + 0 . 5

u 2 y 2
(y 1 + y 2)

]
d t

dy 2 = [u 1 y 1 − 0 . 7 u 2 y 1] d t +

[
0 . 1

√

y 1
]
d W
Fig. 11. Comparison of the time trajectories of the piecewise constant
here W is Wiener stochastic process. The simplified model is as-

umed to be the same with the previous case study. As a result

he same policy that is trained off-line is used here. The purpose

f this case study is to observe how the same policy can adapt in

ifferent environments. Now the model that describes the real sys-

em is not only structurally different, but also stochastic in nature.

The same hyperparmeters and networks are utilized for the

olicies in both stages, in order to show that the same policy can

dapt to different environments successfully.
 control actions between our approach (left) and NMPC (right).

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 9

Fig. 13. The time trajectories produced by the real plant using our approach (dash) and NMPC (solid).

Fig. 14. Comparison of the time trajectories of the piecewise constant control actions between our approach and NMPC.

s

p

m

q

s

i

h

w

w

s

d

s

e

d

t

a

s

t

t

o

i

3

p

A

Fig. 15. The reward computed for the approximate model for each epoch.

a

fi

n

f

d

n

s

m

m
The same validation is conducted here using 100 Monte-Carlo

imulations. Through comparison, our approach is found to be su-

erior to the NMPC. In this case, our proposed algorithm adapts

ore rapidly to the new conditions, reducing significantly the re-

uirement for a large number of episodes and epochs, as it can be

een in Fig. 12 . This is attributed to the systematic transfer learn-

ng proposed in our algorithm. The computationally intensive part

as been shifted off-line where the preliminary inaccurate model

as used to train the policy. Then the (deep) recurrent neural net-

ork adapts successfully to the new environment that consists of a

ystem of stochastic differential equations. The comparison is also

epicted in Fig. 13 . This result is also observed in the previous case

tudy where the stochastic part of the physical system has a differ-

nt nature. The control inputs are depicted in Fig. 14 .

It should be noted that in both case studies the NMPC pro-

uced very similar control actions, with the only difference being

he variance, compared to our approach which shapes the control

ctions to fit the needs of the different dynamics and uncertainty.

The methods used in the Reinforce algorithm usually require

ubstantial number of episodes and epochs, therefore a good ini-

ial solution in combination with transfer learning is paramount so

hat Step 4 can be completed with a few batch-to-batch runs. In

rder to keep the problem realistic, only a small number of batches

s utilized in Step 2–3 to refine the policy network.

.3. Case study 3 - Nonsmooth model

The last case study in this paper focuses on the photo-

roduction of phycocyanin synthesized by cyanobacterium

rthrospira platensis. Phycocyanin is a high-value bioproduct
nd its biological function is to enhance the photosynthetic ef-

ciency of cyanobacteria and red algae. It has applications as a

atural colorant to replace other toxic synthetic pigments in both

ood and cosmetic production. Additionally, the pharmaceutical in-

ustry considers it as beneficial because of its unique antioxidant,

europrotective, and anti-inflammatory properties.

Both the “real” and simplified model in this case are con-

idered to be nonmooth. Due to different growth phases, non-

ooth behaviour is observed for the physical system. To accom-

odate this difficulty, switching functions have been proposed

10 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

Fig. 16. Solution for control actions of the nominal system using RNN.

Fig. 17. Comparison of the responses when RNN and NMPC are applied to the “real” physical system.

f

a

e

c q

 N + K
(del Rio-Chanona et al., 2015; Zhang et al., 2015). In this work

the nonsmooth behaviour is modelled using a sign(·) function. The

“real” dynamic system consists of three nonsmooth ODEs describ-

ing the evolution of the concentration of biomass (X), nitrate (N),

and product (q). The dynamic model is based on Monod kinetics,

which describes microorganism growth in nutrient sufficient cul-

tures, where intracellular nutrient concentration is kept constant

because of the rapid replenishment. We assume a fixed volume

dc q

dt
=

{

k m

I

I + k sq + I 2 /k iq
c x

c N
c N + K N

− k d C
0
ed-batch. The manipulated variables as in the previous examples

re the light intensity (I) and inflow rate (F N). The mass balance

quations are

dc x

dt
= u m

I

I + k s + I 2 /k i
c x

c N
c N + K N

− u d c X (22)

dc N
dt

= −Y N/X u m

I

I + k s + I 2 /k i
c x

c N
c N + K N

+ F N (23)

 N q
, if c N ≤ 500 mgL −1 & c X ≥ 10 gL −1

, otherwise ,
(24)

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 11

Fig. 18. Comparison of the responses when RNN and NMPC are applied to the “real” physical system.

w

t

w

σ

σ

a

n

t[
d

t

R

w

n

l

t

i

O

o

c

a
here the parameters are given in Table 1 . The real physical sys-

em consists of additive disturbance

 (t) = sin (t) σd + σn (25)

d = diag(4 × 10

−3 , 1 ., 1 × 10

−7) (26)

n ∼ N (0 , σd) , (27)

nd measurement noise

oise (t) ∼ N (0 , diag(4 × 10

−4 , 0 . 1 , 1 × 10

−8)) . (28)

Additionally, uncertainty is assumed for the initial concentra-

ion, where

c x (0) c N (0) c q (0)
]

∼ N (
[
1 . 150 . 0 .

]
,

iag(1 × 10

−3 , 22 . 5 , 0 .)) . (29)
Table 1

Parameter values for physical sys-

tem (22) –(24) .

Parameter values

u m 0.0572 h
−1

u d 0.0 h
−1

K N 393.1 mg/L

Y NX 504.1 mg/g

k m 0.00016 mg/g/h

k d 0.281 h
−1

k s 178.9 μmol/m

2 /s

k i 447.1 μmol/m

2/s

k sq 23.51 μmol/m

2/s

k iq 800 μmol/m

2/s

K NP 16.89 mg/L

4

b

m

i

v

s

fi

c

r

d

c

t

p

t

p
The reward is additionally penalized by the change of the con-

rol actions u (t) = [I, F N]
T . As a result the reward is given as:

R t = −�u

T
t diag(3 . 125 × 10

−8 , 3 . 125 × 10

−6)�u

T
t , t ∈ { 0 , T − 1 }

 T = c q (T) , (30)

here �u t = u t − u t−1 .

The simplified deterministic model is assumed without the

oise or the additive disturbance. This preliminary model, is uti-

ized in an extensive offline training in order to construct the con-

rol policy network. As illustrated in the previous section 3.4, there

s a potential to have a close approximation of the solution of the

CP using RNN-Reinforce.

The training consists on 100 epochs and 500 episodes and the

ptimal control policy that maximizes the reward in Eq. (30) . The

ontrol actions are constrained to be in the interval 0 ≤ F N ≤ 40

nd 120 ≤ T ≤ 400. The control policy RNN is designed to contain

 hidden layers, each of which comprises 20 neurons embedded

y a leaky rectified linear unit (ReLU) activation function. Further-

ore, in this case a unified policy network with diagonal variance

s utilized such that the control actions share memory and the pre-

ious states are used from the RNN (together the current measured

tates).

The algorithm is implemented in Pytorch with the same con-

gurations. It should be noted that the computational cost of

omputing the control action online is insignificant since it only

equires the evaluation of the corresponding RNN, and does not

epend directly on the complexity or the number of variables. In

ontrast, the solution of the OCP scales badly in this case due to

he presence of integer variables. The reward for each epoch is de-

icted in Fig. 15 . In this case the probability density is shown due

o the nonsmoothness of the model, that may result in multiple

eaks. The lines are faded out towards earlier epochs. Additionally,

12 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

Fig. 19. Probability density function for the reward computed by the updated train-

ing using the plant (“real” system) for each epoch and performance of NMPC.

4

l

t

t

t

t

t

w

u

p

l

a

u

p

o

s

m

o

m

c

m

t

d

T

s

n

2

d

p

e

l

t

o

o

s

s

k

t

c

s

i

i
there is no guarantee of global optimality in the current work,

as a result the reward may get stuck in other local minima. It

should be noted that in this case the uncertain initial conditions

are applied during this training phase.

The nominal control actions are depicted in Fig. 16 , where the

shaded areas are the 98% and 2% percentiles. The corresponding

states are depicted in Fig. 17 with their 98% and 2% percentiles. The

nominal behaviour is subject to the corresponding initial condi-

tions since no other uncertainty is taken into account in the offline

procedure. The probability density of the product c q has clearly

only one peak, this is shown in Fig. 17 c.

As in the previous case studies, the results are compared with

the use of NMPC using shrinking horizon. The optimization is a

mixed integer nonlinear programming problem (MINLP). Local op-

timization is used in order to be numerically tractable. Orthogonal

collocation is implemented and integer variables have been used

to model the switches. It should be noted that this MINLP takes

2–4 min to be solved.

The results can be seen in Fig. 18 with their 98% & 2% percentile

respectively, where 100 Monte-Carlo simulations were conducted.

The optimization using our approach appears to be superior to the

one given by the NMPC, showing the significance of our result. Af-

ter the adaptation the probability densities are depicted in Fig. 19 .

Next, the control inputs are depicted in Fig. 20 with their 98% &

2% percentile respectively. It is clear that the NMPC control actions

have large variance compare to the ones produce by our proposed

methodology. This is due to the nonsmoothness of the model and

the uncertainty which the NMPC struggles with.

In addition, in Fig. 20 , the comparison between the control in-

puts of our approach and the NMPC is presented.
Fig. 20. Comparison of the time trajectories of the piecewise co
. Conclusions and future work

In this work we propose a new methodology for batch-to-batch

earning by adapting Reinforcement learning techniques to uncer-

ain and complex bioprocesses. The results reveal that it is possible

o obtain a near optimal policy for a stochastic system when the

rue dynamics are unknown. In real systems with the absence of a

rue model, it is impossible to generate highly accurate datasets to

rain the policy network. As a result we propose a 2-stage frame-

ork where first an approximate (possibly stochastic) model is

sed to train the policy network. Subsequently, this policy is im-

lemented into the true system. In this way, there is no need for a

arge number of evaluations of the true system which can be costly

nd time consuming.

A systematic adaptation to the new environment is achieved

sing transfer learning. In Step 4: Transfer Learning Reinforce the

olicy is trained using T < < T 0 episodes conducting the Steps 1–3

f Algorithm 1 . The proposed algorithm is validated using two case

tudies for different nature of stochastic processes. Our proposed

ethodology results in a policy that overcomes the performance

f the NMPC, where only simple policy evaluations are needed.

The off-line CPU time is 3 h, however the online imple-

entation of the needs only 0.002 s. This means that all the

omputational complexity is shifted offline and an efficient opti-

al control policy is constructed. One should also keep in mind

hat after the off-line training the solution to a nonlinear stochastic

ynamical system is provided, in the form of a stochastic policy.

his is a more complete and efficient solution as it is a closed-loop

olution, rather than an open-loop optimization. Furthermore, a

onsmooth system was integrated with Casadi (Andersson et al.,

019), which is more time consuming than integrating a smooth

ynamic system.

For both the case studies 4 epochs and 25 batches were im-

lemented. In this work, the training was stopped after the 4 th

poch, but the training could have been continued or stopped ear-

ier. Here, the total number of batches is 4 × 25 = 100 ; however,

he policy for all case studies performs better from the beginning

f the online implementation. This means that a smaller number

f batches can be used and still outperform NMPC.

We emphasize that our considered systems contain both

tochasticity and plant-model mismatch, and there is no process

tructure available. The optimisation of such systems is generally

nown to be intractable. Given the early stage of this research,

here are still disadvantages of this method which must be ac-

ommodated in the future, including the robust satisfaction of con-

traints. In addition, there is a wide discussion regarding the safety

n reinforcement learning (Wabersich and Zeilinger, 2018), which

s also a result of the difficulty of robust satisfaction of constraints.
nstant control actions between our approach and NMPC.

P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649 13

F

R

r

D

c

i

A

(

R

A

A

A

B

B

B

B

B

B

B

B

C

C

D

D

F

G

H

J

K

K

K

K

L

L

L

L

L

M

M

M

M

M

P

P

P

P

R

d

d

d

R

R

S

S

S

S

S

uture work will focus on the robust satisfaction of constraints in

L methods.

The codes are available at: https://gitlab.com/Panos108/

l- with- nonsmooth

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgements

This project has received funding from the EPSRC project

 EP/P016650/1).

eferences

ndersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M., 2019. Casadi–a soft-

ware framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11 (1), 1–36. doi: 10.1007/s12532- 018- 0139- 4 .

rimoto, S., Kawamura, S., Miyazaki, F., 1984. Bettering operation of robots by learn-

ing. J. Robot. Syst. 1 (2), 123–140. doi: 10.10 02/rob.4620 010203 .
ydin, E. , Bonvin, D. , Sundmacher, K. , 2018. Toward fast dynamic optimization: an

indirect algorithm that uses parsimonious input parameterization. Ind. & Eng.
Chem. Res. 57 (30), 10038–10048 .

emporad, A., Morari, M., 1999. Robust model predictive control: a survey. Robust.
Identif. Control 245, 207–226. doi: 10.1007/BFb0109870 .

ernardini, D., Bemporad, A., 2012. Stabilizing model predictive control of stochas-
tic constrained linear systems. IEEE Trans. Autom. Control 57 (6), 1468–1480.

doi: 10.1109/TAC.2011.2176429 .

ertsekas, D.P. , 20 0 0. Dynamic Programming and Optimal Control, secnd Athena
Scientific .

iegler, L.T. , 2010. Nonlinear Programming: Concepts, Algorithms, and Applications
to Chemical Processes. Society for Industrial and Applied Mathematics (SIAM,

3600 Market Street, Floor 6, Philadelphia, PA 19104) .
onvin, D. , Srinivasan, B. , Ruppen, D. , 2001. Dynamic optimization in the batch

chemical industry. Chem. Process Control-VI .

radford, E., Imsland, L., 2018. Stochastic nonlinear model predictive control using
Gaussian processes. In: 2018 European Control Conference (ECC), pp. 1027–1034.

doi: 10.23919/ECC.2018.8550249 .
radford, E. , Schweidtmann, A.M. , Zhang, D. , Jing, K. , del Rio-Chanona, E.A. , 2018.

Dynamic modeling and optimization of sustainable algal production with un-
certainty using multivariate gaussian processes. Comput. Chem. Eng. 37 .

rennan, L., Owende, P., 2010. Biofuels from microalgae a review of technologies

for production, processing, and extractions of biofuels and co-products. Renew.
Sustain. Energy Rev. 14 (2), 557–577. doi: 10.1016/j.rser.2009.10.009 .

hachuat, B., Srinivasan, B., Bonvin, D., 2009. Adaptation strategies for real-time op-
timization. Comput. Chem. Eng. 33 (10), 1557–1567. doi: 10.1016/j.compchemeng.

2009.04.014 .
haffart, D., Ricardez-Sandoval, L.A., 2018. Optimization and control of a thin film

growth process: a hybrid first principles/artificial neural network based mul-

tiscale modelling approach. Comput. Chem. Eng. 119, 465–479. doi: 10.1016/j.
compchemeng.2018.08.029 .

el Rio Chanona, E.A., Cong, X., Bradford, E., Zhang, D., Jing, K., 2018. Review of
advanced physical and data driven models for dynamic bioprocess simulation:

case study of algae bacteria consortium wastewater treatment. Biotechnol. Bio-
eng. bit.26881. doi: 10.1002/bit.26881 .

onahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T., 2013.

DeCAF: a deep convolutional activation feature for generic visual recognition.
http://arxiv.org/abs/1310.1531 , 10.1007/978-3-319-51844-2_3.

eller, C. , Ouerghi, M. , Ebenbauer, C. , 2016. Robust output feedback model predictive
control based on relaxed barrier functions. In: 2016 IEEE 55th Conference on

Decision and Control (CDC), pp. 1477–1483 .
ao, W., Wenzel, S., Engell, S., 2015. Modifier adaptation with quadratic approxima-

tion in iterative optimizing control. In: 2015 European Control Conference (ECC),

pp. 2527–2532. doi: 10.1109/ECC.2015.7330918 .
arun, I. , Del Rio-Chanona, E.A. , Wagner, J.L. , Lauersen, K.J. , Zhang, D. , Hell-

gardt, K. , 2018. Photocatalytic production of bisabolene from green microalgae
mutant: process analysis and kinetic modeling. Ind. Eng. Chem. Res. 57 (31),

10336–10344 .
ing, K., Tang, Y., Yao, C., del Rio-Chanona, E.A., Ling, X., Zhang, D., 2018. Overpro-

duction of L-tryptophan via simultaneous feed of glucose and anthranilic acid
from recombinant escherichia coli W3110: kinetic modeling and process scale-

up. Biotechnol. Bioeng. 115 (2), 371–381. doi: 10.1002/bit.26398 .

im, K.K.K., Braatz, R.D., 2013. Generalised polynomial chaos expansion approaches
to approximate stochastic model predictive control. Int. J. Control 86 (8), 1324–

1337. doi: 10.1080/00207179.2013.801082 .
ingma, D. P., Ba, J., 2014. Adam: a method for stochastic optimization. http://arxiv.

org/abs/1412.6980 .
rishnamoorthy, D., Thombre, M., Skogestad, S., Jäschke, J., 2018. Data-driven
scenario selection for multistage robust model predictive control. IFAC-

PapersOnLine 51 (20), 462–468. doi: 10.1016/j.ifacol.2018.11.046 .
rizhevsky, A. , Sutskever, I. , Hinton, G.E. , 2012. ImageNet Classification with Deep

Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Wein-
berger, K.Q. (Eds.), Advances in Neural Information Processing Systems 25. Cur-

ran Associates, Inc., pp. 1097–1105 .
ee, J.H., Lee, J.M., 2006. Approximate dynamic programming based approach to

process control and scheduling. Comput. Chem. Eng. 30 (10–12), 1603–1618.

doi: 10.1016/j.compchemeng.2006.05.043 .
ee, J.H., Lee, K.S., 2007. Iterative learning control applied to batch processes: An

overview. Control Eng. Practice 15 (10), 1306–1318. doi: 10.1016/j.conengprac.
2006.11.013 . Special Issue - International Symposium on Advanced Control of

Chemical Processes (ADCHEM)
ee, J.H., Shin, J., Realff, M.J., 2018. Machine learning: overview of the recent pro-

gresses and implications for the process systems engineering field. Comput.

Chem. Eng. 114, 111–121. doi: 10.1016/j.compchemeng.2017.10.008 .
ee, J.M. , Lee, J.H. , 2005. Approximate dynamic programming-based approaches for

input output data-driven control of nonlinear processes. Automatica 41 (7),
1281–1288 .

ucia, S., Engell, S., 2012. Multi-stage and two-stage robust nonlinear model predic-
tive control, 4. IFAC doi: 10.3182/20120823- 5- NL- 3013.0 0 015 .

archetti, A., François, G., Faulwasser, T., Bonvin, D., 2016. Modifier adaptation for

real-Time optimization methods and applications. Processes 4 (4), 55. doi: 10.
3390/pr4040055 .

esbah, A., 2016. Stochastic model predictive control: an overview and perspectives
for future research. IEEE Control Syst. Mag. 36 (6), 30–44. doi: 10.1109/MCS.2016.

2602087 .
nih, V., Heess, N., Graves, A., Kavukcuoglu, K., 2014. Recurrent models of visual

attention. http://arxiv.org/abs/1406.6247 .

nih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Ried-
miller, M., 2013. Playing Atari with Deep Reinforcement Learning. http://arxiv.

org/abs/1312.5602 , 10.1038/nature14236.
nih, V. , Kavukcuoglu, K. , Silver, D. , Rusu, A .A . , Veness, J. , Bellemare, M.G. ,

Graves, A. , Riedmiller, M. , Fidjeland, A.K. , Ostrovski, G. , Petersen, S. , Beattie, C. ,
Sadik, A. , Antonoglou, I. , King, H. , Kumaran, D. , Wierstra, D. , Legg, S. , Hass-

abis, D. , 2015. Human-level control through deep reinforcement learning. Na-

ture 518, 529 .
eroni, C., Kaisare, N., Lee, J., 2005. Optimal control of a fed-batch bioreactor using

simulation-based approximate dynamic programming. IEEE Trans. Control Syst.
Technol. 13 (5), 786–790. doi: 10.1109/TCST.2005.852105 .

etsagkourakis, P., Heath, W.P., Carrasco, J., Theodoropoulos, C., 2019a. Input-output
stability of barrier-based model predictive control.

etsagkourakis, P. , Heath, W.P. , Theodoropoulos, C. , 2020. Stability analysis of piece-

wise affine systems with multi-model model predictive control. Automatica 111 .
etsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang, D., del Rio-Chanona, E.,

2019b. Reinforcement learning for batch-to-batch bioprocess optimisation. In:
Kiss, A .A ., Zondervan, E., Lakerveld, R., zkan, L. (Eds.), 29th European Sympo-

sium on Computer Aided Process Engineering. In: Computer Aided Chemical
Engineering, 46. Elsevier, pp. 919–924. doi: 10.1016/B978- 0- 12- 818634- 3.

50154-5 .
awlings, J.B. , Mayne, D.Q. , Diehl, M.M. , 2017. Model Predictive Control: Theory,

Computation, and Design .

el Rio Chanona, E. , Alves Graciano, J. , Bradford , Chachuat, B. , 2019. Modifier-Adap-
tation schemes employing gaussian processes and trust regions for real-Time

optimization. IFAC-PapersOnLine .
el Rio-Chanona, E.A., Dechatiwongse, P., Zhang, D., Maitland, G.C., Hellgardt, K.,

Arellano-Garcia, H., Vassiliadis, V.S., 2015. Optimal operation strategy for bio-
hydrogen production. Ind. Eng. Chem. Res. 54 (24), 6334–6343. doi: 10.1021/acs.

iecr.5b00612 .

el Rio-Chanona, E.A. , Wagner, J.L. , Ali, H. , Zhang, D. , Hellgardt, K. , 2018. Deep learn-
ing based surrogate modelling and optimization for microalgal biofuel produc-

tion and photobioreactor design. AIChE J. .
ossi, F., Manenti, F., Buzzi-Ferraris, G., Reklaitis, G., 2019. Stochastic NMPC/DRTO

of batch operations: batch-to-batch dynamic identification of the optimal de-
scription of model uncertainty. Comput. Chem. Eng. 122, 395–414. doi: 10.1016/

j.compchemeng.2018.08.014 .

ussakovsky, O. , Deng, J. , Su, H. , Krause, J. , Satheesh, S. , Ma, S. , Huang, Z. , Karpa-
thy, A. , Khosla, A. , Bernstein, M. , Berg, A.C. , Fei-Fei, L. , 2015. ImageNet large scale

visual recognition challenge. Int. J. Comput. Vision (IJCV) 115 (3), 211–252 .
hah, H., Gopal, M., 2016. Model-Free predictive control of nonlinear processes

based on reinforcement learning. IFAC-PapersOnLine 49 (1), 89–94. doi: 10.1016/
j.ifacol.2016.03.034 .

techlinski, P., Patrascu, M., Barton, P.I., 2018. Nonsmooth differential-algebraic

equations in chemical engineering. Comput. Chem. Eng. 114, 52–68. doi: 10.1016/
j.compchemeng.2017.10.031 . FOCAPO/CPC 2017

u, H.T., McAvoy, T.J., Werbos, P., 1992. Long-Term predictions of chemical processes
using recurrent neural networks: A Parallel training approach. Ind. Eng. Chem.

Res. 31 (5), 1338–1352. doi: 10.1021/ie0 0 0 05a014 .
utton, R., Barto, A., 2018. Reinforcement Learning: An Introduction Second Edi-

tion. MIT Press doi: 10.1016/S1364-6613(99)01331-5 . http://arxiv.org/abs/arXiv:

1011.1669v3
utton, R.S. , McAllester, D. , Singh, S. , Mansour, Y. , 1999. Policy gradient methods

for reinforcement learning with function approximation. In: Proceedings of the
12th International Conference on Neural Information Processing Systems. MIT

Press, Cambridge, MA , USA , pp. 1057–1063 .

https://gitlab.com/Panos108/rl-with-nonsmooth
https://doi.org/10.13039/501100000266
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1002/rob.4620010203
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0003
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0003
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0003
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0003
https://doi.org/10.1007/BFb0109870
https://doi.org/10.1109/TAC.2011.2176429
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0006
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0006
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0007
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0008
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0008
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0008
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0008
https://doi.org/10.23919/ECC.2018.8550249
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0010
https://doi.org/10.1016/j.rser.2009.10.009
https://doi.org/10.1016/j.compchemeng.2009.04.014
https://doi.org/10.1016/j.compchemeng.2018.08.029
https://doi.org/10.1002/bit.26881
http://arxiv.org/abs/1310.1531
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0015
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0015
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0015
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0015
https://doi.org/10.1109/ECC.2015.7330918
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0017
https://doi.org/10.1002/bit.26398
https://doi.org/10.1080/00207179.2013.801082
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.ifacol.2018.11.046
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0021
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0021
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0021
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0021
https://doi.org/10.1016/j.compchemeng.2006.05.043
https://doi.org/10.1016/j.conengprac.2006.11.013
https://doi.org/10.1016/j.compchemeng.2017.10.008
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0025
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0025
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0025
https://doi.org/10.3182/20120823-5-NL-3013.00015
https://doi.org/10.3390/pr4040055
https://doi.org/10.1109/MCS.2016.2602087
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0029
https://doi.org/10.1109/TCST.2005.852105
http://refhub.elsevier.com/S0098-1354(19)30416-8/othref0006
http://refhub.elsevier.com/S0098-1354(19)30416-8/othref0006
http://refhub.elsevier.com/S0098-1354(19)30416-8/othref0006
http://refhub.elsevier.com/S0098-1354(19)30416-8/othref0006
https://doi.org/10.1016/B978-0-12-818634-3.50154-5
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0032
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0032
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0032
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0032
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0033
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0033
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0033
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0033
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0033
https://doi.org/10.1021/acs.iecr.5b00612
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0035
https://doi.org/10.1016/j.compchemeng.2018.08.014
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0037
https://doi.org/10.1016/j.ifacol.2016.03.034
https://doi.org/10.1016/j.compchemeng.2017.10.031
https://doi.org/10.1021/ie00005a014
https://doi.org/10.1016/S1364-6613(99)01331-5
http://arxiv.org/abs/arXiv:1011.1669v3
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0042
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0042

14 P. Petsagkourakis, I.O. Sandoval and E. Bradford et al. / Computers and Chemical Engineering 133 (2020) 106649

W

Z

Z

Tang, W., Daoutidis, P., 2018. Distributed adaptive dynamic programming for data-
driven optimal control. Syst. Control Lett. 120, 36–43. doi: 10.1016/j.sysconle.

2018.08.002 .
Thierie, J. , 2004. Modeling threshold phenomena, metabolic pathways switches and

signals in chemostat-cultivated cells: the crabtree effect in saccharomyces cere-
visiae.. J. Theoret. Biol. 226 (4), 483–501 .

Vassiliadis, V.S. , Sargent, R.W.H. , Pantelides, C.C. , 1994. Solution of a class of mul-
tistage dynamic optimization problems. 2. problems with path constraints. Ind.

Eng. Chem. Res. 33 (9), 2123–2133 .

Venkatasubramanian, V., 2019. The promise of artificial intelligence in chemical en-
gineering: is it here, finally? AIChE J. 65 (2), 466–478. doi: 10.1002/aic.16489 .

Wabersich, K.P., Zeilinger, M.N., 2018. Safe exploration of nonlinear dynamical sys-
tems: A predictive safety filter for reinforcement learning. CoRR abs/1812.05506.

http://arxiv.org/abs/1812.05506 .
illiams, R.J. , 1992. Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Mach. Learn. 8 (3–4), 229–256 .

Xu, J.-X., Chen, Y., Lee, T.H., Yamamoto, S., 1999. Terminal iterative learning control
with an application to rtpcvd thickness control. Automatica 35 (9), 1535–1542.

doi: 10.1016/S0 0 05-1098(99)0 0 076-X .
hang, D., Dechatiwongse, P., Del-Rio-Chanona, E.A., Hellgardt, K., Maitland, G.C.,

Vassiliadis, V.S., 2015. Analysis of the cyanobacterial hydrogen photoproduction
process via model identification and process simulation. Chem. Eng. Sci. 128,

130–146. doi: 10.1016/j.ces.2015.01.059 .

hang, D. , Vassiliadis, V.S. , 2015. Chlamydomonas reinhardtii metabolic pathway
analysis for biohydrogen production under non-Steady-State operation. Ind. Eng.

Chem. Res. 54 (43), 10593–10605 .

https://doi.org/10.1016/j.sysconle.2018.08.002
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0044
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0044
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0045
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0045
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0045
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0045
https://doi.org/10.1002/aic.16489
http://arxiv.org/abs/1812.05506
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0048
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0048
https://doi.org/10.1016/S0005-1098(99)00076-X
https://doi.org/10.1016/j.ces.2015.01.059
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0051
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0051
http://refhub.elsevier.com/S0098-1354(19)30416-8/sbref0051

	Reinforcement learning for batch bioprocess optimization
	1 Introduction
	1.1 Related work
	1.2 Motivation

	2 Methodology
	2.1 Problem statement
	2.2 Policy gradient methods
	2.3 Recurrent neural network
	2.4 Reinforce algorithm
	2.5 Reinforcement learning for bioprocess optimization under uncertainty

	3 Computational case studies
	3.1 Case study 1 - Ordinary differential equations
	3.2 Case study 2 - Stochastic differential equations
	3.3 Case study 3 - Nonsmooth model

	4 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References

