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a b s t r a c t 

This paper proposes a systematic framework to develop deep reinforcement learning (RL)-based algo- 

rithms for control system of downstream separation in biopharmaceutical process as follows. First, a sim- 

ulation model as a digital twin is built and Monte-Carlo sampling generates substantial amounts of sam- 

ples considering disturbances. Second, the deep RL-based control system is designed and the optimization 

subject to sample datasets is conducted. The methodology is implemented in a prototype software and 

relevant codes are shared by Mendeley Data. The proposed model is successfully applied to control the 

liquid-liquid extraction column for the recovery of fusidic acid as part of downstream processing. The 

resulting deep RL algorithm provides an operation performance with a better API recovery yield (32 % 

higher than open loop operation) and lower deviations (23 % lower than open loop operation) against 

disturbances. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Downstream processing refers to separation processes used for

he recovery and the purification of biological products and plays

n important role in pharmaceutical production processes ( Strube

t al., 2011 ; Weatherley, 2013 ). Great amounts of solvents for ex-

raction of valuable products from solutions including active phar-

aceutical ingredients (APIs) could be used in the event of the

ownstream processing, and it requires optimal control systems to

ake sure the sustainability of downstream separation ( Jiménez-

onzález & Woodley, 2010 ). Moreover, economic aspects (i.e., pro-

essing costs in biopharmaceutical industries present as high as 70

90 % of the total production costs ( Heinzle et al., 2007 )) also en-

ail reliable control strategies for the synthesis of sustainable bio-

harmaceutical products. 

In some large-scale and/or complex production processes,

odel-based control design approach using first-principles or

odel identification is difficult, costly, and time-consuming ( Hou

 Wang, 2013 ). As an alternative to model-based control, data-
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riven control has been proposed and consistently paid attention

ue to the development of information science and technology

 Selvi et al., 2018 ). Reinforcement learning (RL) is a powerful data-

riven method that provides the optimal policy to solve control

roblems ( Radac & Precup, 2019 ). Various research on RL have

een lately highlighted in chemical process control ( Petsagkourakis

t al., 2020 ) and the results from the existing literatures motivate

urther study to extend RL applications to different control prob-

ems/area ( Shin et al., 2019 ). 

To the best of our knowledge, few studies have been performed

ddressing the application challenges and strategies for RL on the

ontrol of downstream separation process in biopharmaceutical

roduction, which is the focus of this paper. Therefore, this paper

ims to propose an intelligent control framework based on deep

L and evaluate the developed model by applying for downstream

eparation to improve process performance. In particular, we ad-

ress the following research questions and challenges in this re-

earch: 

A Develop a control system based on emerging concepts of

RL using simulation data. To overcome the challenge that

RL and deep-learning (DL) algorithms suffer from data defi-

ciency, Monte-Carlo (MC) sampling approach is proposed to

generate a number of feasible samples in combination with

digital twin concept. 

https://doi.org/10.1016/j.compchemeng.2020.106910
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106910&domain=pdf
mailto:soohw@kt.dtu.dk
mailto:gsi@kt.dtu.dk
https://doi.org/10.1016/j.compchemeng.2020.106910
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Table 1 

Comparison of model-free RL problems; MC: Monte-Carlo, TD: temporal-different, and MDP: Markov decision process. 

Category Method or algorithm Purpose 

Prediction MC learning ( Wiering & Van Otterlo, 2012 ) 

TD learning ( Taylor et al., 2006 ) 

Estimate the value function of an unknown MDP. 

Control On-policy ( Singh et al., 2000 ) 

Off-policy ( Arulkumaran et al., 2017 ) 

Optimize the value function of an unknown MDP. 

Unknown or large MDPs Value function approximation ( Konidaris et al., 2011 ) Present a value function with a parameterized 

function instead of a table. 

Policy gradient REINFORCE ( Williams, 1992 ) 

Actor-Critic ( Houk et al., 1995 ; Peters & Schaal, 2008 ) 

Parameterize the policy by finding best parameters in 

a given policy that maximize any policy objective 

function. 
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B Develop a prototype software by appropriate tools integra-

tion to facilitate the applications and deployment of emerg-

ing machine learning branch of AI to chemical engineering

processes and in particular downstream separation. 

C Evaluate the feasibility of deep RL-based control system for

digital twin underpinned by various unit operations in par-

ticular focusing on liquid-liquid extraction (LLE) step. 

This paper is structured as follows. The Section 2 suggests the

review of previous works associated with process control to make

sure the feasibility of deep RL-based control framework for down-

stream processing. In the Section 3 , the overall framework integrat-

ing MC sampling and deep RL for control system is explained. The

Section 4 includes the implementation of the suggested framework

and relevant pseudocodes for a case study of the LLE column. The

resulting codes are provided on Mendeley Data that is commonly

used to host open source projects ( Hwangbo & Sin, 2019 ). In the

Section 5 , the results from the case study are compared and dis-

cussed. Finally, concluding remarks are clarified in the Section 6 . 

2. Previous works 

Data-driven control methods mainly depend on either on-line

data (i.e., the controller is updated using each new measurements

obtained) or off-line data (i.e., a batch of measurements are used

to design the controller before it becomes operational and no ad-

ditional modification is carried out in the middle of operation)

( Tanaskovic et al., 2017 ) and related works are as follows. Diverse

on-line data-driven control methods have been proposed such as

radial basis function networks to deal with nonlinear functions

( Irwin et al., 1995 ), simultaneous perturbation stochastic approx-

imation for multiple unknown parameters with high-dimensional

problems ( Spall & Cristion, 1998 ), and model-free adaptive con-

trol using dynamic linearization technique (Z. Hou & Jin, 2010 ,

2013 ). Conventional off-line data-driven control tools such as iter-

ative feedback tuning ( Hjalmarsson, 2002 ), correlation-based tun-

ing ( Miškovi ́c et al., 2007 ), and virtual reference feedback tuning

( Formentin et al., 2011 ) have been suggested to prevent control

performance degradation. Furthermore, approximate dynamic pro-

graming that overcomes the curse-of-dimensionality by combining

RL (model-free method) with dynamic programming (model-based

method) has been demonstrated in a number of applications re-

lated to large and complex problems ( Lee, 2014 ; Lee & Lee, 2006 ;

Powell, 2009 ). 

As many RL theories have been recently developed, the applica-

tion rage of RL in real industrial markets has consistently expanded

( Levine, 2018 ; Mnih et al., 2013 ; Mnih et al., 2015 ). Subsequently,

RL as representative data-driven technique has been greatly paid

attention to design new control concepts and to solve decision-

making issues in the presence of uncertainty ( Rocchetta et al.,

2019 ). From the perspective of process control, the design of RL

problems including an objective function for satisfying minimum

energy consumption or optimizing energy cost via control system

has been introduced ( Arif et al., 2016 ; De Somer et al., 2017 ; Qi
t al., 2016 ; Wang et al., 2017 ). Various significant potentials for

L-based applications of control system such as heating ventila-

ion/air conditioning/domestic hot water ( Al-Jabery et al., 2016 ;

heng et al., 2016 ; Sekizaki et al., 2015 ; Sun et al., 2015 ) and dis-

ributed generation at the building and electrical storage ( Berlink

t al., 2015 ; Raju et al., 2015 ; Tan et al., 2018 ) have been addressed.

Reinforcement learning is one of three broad branches of ma-

hine learning, the rest of which are supervised learning and un-

upervised learning. Both supervised learning and unsupervised

earning operate using a static dataset, on the other hand, RL works

ith data from a dynamic environment and the goal of RL is not

o label data or cluster data but to figure out the optimal actions

ased on goal-oriented learning from interaction ( Sutton & Barto,

018 ). Therefore, RL aims at optimization by learning experiences

hrough trial and error method, and RL problem is a framing of the

roblem of learning from interactivity to achieve a goal ( Kaelbling

t al., 1996 ). The learner is called the agent and the thing that the

gent interacts with is called the environment. The agent takes

n action to the environment according to an internal policy in

he agent. The environment decides how to act or move based

n the action from the agent, and discharges outputs as the form

f a state. Any changes in the environment and pertinent results

hereof are directly examined by a predefined reward function,

nd the agent can obtain positive or negative rewards from the

nvironment. Discharged states and rewards are iteratively used

n the agent as input components to update the internal policy

n the agent. The design of RL problems depends on the way to

apidly and precisely train the agent and optimally operate the en-

ironment. Diverse RL sub-problems can be mainly separated by

he complexity of a RL problem, characteristic of the policy, and

raining methods for the agent. Whether complete knowledge of

he environment exists or not divides RL into model-based RL and

odel-free RL ( Arulkumaran et al., 2017 ; Wiering & Van Otterlo,

012 ). 

Dynamic programming as representative model-based RL ap-

roach assumes full knowledge of the Markov chain process and

ive a general solution method for problems such as planning,

cheduling, and shortest path algorithm ( Bellman, 1966 ; Howard,

960 ). Most of RL methods rely on model-free models that have

een recently the most active area of research and Table 1 show

 comparison of specific model-free RL algorithms from the per-

pective of different purposes. Q-leaning, which is a member of

emporal-different learning based on a bootstrapping method, has

een greatly investigated in process control problems, indicating

hat Q-learning outperforms a rule-based control method and im-

roves control performance ( Cheng et al., 2016 ; Yang et al., 2015 ).

owever, Q-learning is limited to local control systems due to the

ostly computation time required for updating the policy in an

gent such as large Markov decision process problems ( Mocanu

t al., 2016 ). Recently, a novel RL approach called deep Q-network

DQN), which integrates deep-learning with Q-learning and con-

ists of the off-policy model-free method, has been developed

 Mnih et al., 2015 ). Compared to model predictive control that



S. Hwangbo and G. Sin / Computers and Chemical Engineering 140 (2020) 106910 3 

Fig. 1. A framework of the proposed control platform; (A): data generation through Latin hypercube sampling, Monte-Carlo simulation, and deep-Q-network, (B): diagram 

of weigh parameters transfer in deep-Q-network and (C): parameters update in behavior policy by Q-value update equation. 
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as suggested by the process control community and is currently

he most widely used technology based on the look-ahead opti-

ization, several research have demonstrated advantages of RL-

ased control systems by applying it for the physical plants such

s a reference office building and bioprocesses ( Ahn & Park, 2020 ;

etsagkourakis et al., 2020 ). However, the application of DQN-

ased control systems in downstream separation in biopharmaceu-

ical processes has been hardly reported. 

The purpose of the developed control framework based on DQN

lgorithm is ultimately to support digital twin in relation to virtual

lants including a cascade of biopharmaceutical processes. This is

one through formulating a component object model, which is a

latform-independent system and provides inter-process commu- 

ication object creation in a broad range of programming lan-

uages ( Djamaluddin et al., 2011 ; Liu et al., 2002 ). Component ob-

b  
ect model plays a crucial role of the integration of virtual plants

uilt on simulation tools with corresponding DQN-based control

ystems in an object-oriented programming environment. While in

his study, we focus on a single unit operation namely LLE col-

mn as a means to evaluate the feasibility of the proposed control

ramework. 

. A framework for integration of Deep-Q-Network and 

onte-Carlo sampling for process control 

The suggested framework primarily consists of MC sampling

ethod and deep RL-based control systems by a versatile inter-

ace based on component object model, which integrates different

oftware ( Fig. 1 (A)). Sufficient big data considering process distur-

ances are produced by the combination of the Latin hypercube
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Fig. 2. Pseudocode for Monte-Carlo simulation based on Latin hypercube sampling; COM: component object model and MC: Monte-Carlo. 
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sampling (LHS) method, which has been used to produce massive

samples with disturbances in input datasets ( McKay et al., 1979 ;

Sin et al., 2009 ). 

DQN, which is employed in the proposed control framework,

has two policies: the policy being learning about is called the tar-

get policy and the policy used to generate behavior is called the

behavior policy, all of which are designed by DL networks from a

point of a view of value function approximation. The reason DQN

uses two policies is that efficient learning can be accomplished by

combining experiences from the other policy. To represent an ap-

propriate update timing of each policy, the entire samples from the

MC sampling method should be divided into two different scales

(i.e., step scale and episode scale). A set of arbitrary dozens of steps

consists of one episode (i.e., the number of steps in the episode

can be flexibly determined). The behavior policy is learned per

each step and the target policy is improved per each episode by

transferring parameters of the behavior policy into the target pol-

icy ( Fig. 1 (B)). DQN utilizes the concept of supervised learning to

optimize the behavior policy, which means that the target policy

plays a role of an external supervisor as providing labeled data

( Fig. 1 (C)). Precise introduction of mathematical models and the

structural relationship of policies corresponding to a case study are

elaborated in the sub Section 4.3 . 

An interface based on component object model is necessary for

an inevitable connection with the simulation tool. Samples from

the LHS designed by MATLAB are transmitted to Aspen Plus TM to

run MC simulation, and a needed outcome should be transferred

and saved. Actions from the agent in the DQN model developed by

Python and samples from the LHS should be fed into the environ-

ment developed by Aspen Plus TM . The interface extracts wanted re-

sults and information whether or not the environment converges,

and the results are transferred to the reward function in the DQN

to enhance the agent’s performance. 

4. Case study of the liquid-liquid extraction column applied to 

the proposed control framework 

4.1. Case study description 

Downstream processing is usually the most sophisticated part

of manufacturing typically divided into preparation, capture, purifi-

cation or separation, and polishing ( Buyel et al., 2015 ; McPartland

et al., 2012 ). The LLE column is commonly used as a technology in

the separation step to concentrate the API product and is based on

the principle of separating components depending on their relative

solubilities in two different immiscible liquids. In the LLE, a first

liquid feed including two or more components is directly faced

with a second liquid phase, which is called the solvent ( Seader
t al., 1998 ). The purpose of a case study in this paper aims to eval-

ate the suggested control system manipulating solvent flowrate in

rder to achieve a better recovery of API compared to the existing

oncentration from open loop operation. The process performance

f the suggested framework against disturbance rejection related

o composition of feed stream and model uncertainties is demon-

trated. For the latter, the uncertainty of property model parame-

ers, which are used to calculate solubility of species in feed mix-

ure in solvent and aqueous phases, is considered. The LLE column

n this study uses segment parameters that have been empirically

isclosed in the existing literature ( Molla et al., 2019 ). Therefore,

his research concentrates explanations of MC simulation based on

HS, the DQN model, and DL networks. Table 2 presents crucial pa-

ameters and primary components of the case study applied to the

roposed control framework. 

.2. Monte-Carlo simulation based on Latin hypercube sampling for 

he case study 

Main purposes of the sampling method in this case study are

s follows. First, disturbance or noise in feed stream of the LLE col-

mn and segment parameters, which influence the solubility based

n eNRTL-SAC property model, should be considered. Definition of

nput space for MC simulation is of importance because it affects

he output behavior from the simulation model. Second, the DQN

odel should import samples of feed flowrate and feed mass ratio

rom the LHS and the average of the API concentration distribution

rom MC simulation runs. 

The resulting pseudocode of MC simulation based on the LHS

n this case study is depicted in Fig. 2 . Samples can be produced

y a built-in function in the MATLAB executable and MC simula-

ion runs are performed using Aspen Plus TM where the LLE col-

mn is configured to represent the case study. Interface based on

omponent object model makes it possible to transfer information

nd results between two programs. Reference values of regressed

egment parameters of API, feed flowrate, and feed mass ratio are

mported ( Table 2 ). 

The number of the total input variables, p , and the number of

amples per each input variable, N , are selected and the LHS, which

s the built-in function expressed as lhsdesign, is executed and re-

ults in N -by- p matrix A. The LLE simulation file can be open af-

er assessing the Aspen Plus TM via the interface and feed flowrate,

eed mass ratio, and segment parameters of the API in each row

f the matrix A are given. According to the fixed range of amounts

f feasible solvent flowrate, MC simulation runs per each solvent

owrate is iteratively implemented. The number of simulation runs

an be handled and as multiplying the number of simulation runs

y the number of candidates in solvent flowrates, the total number
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Table 2 

Parameters and assumed components in the MC sampling method, the DQN model, and DL network. 

MC sampling method 

Sampling function (LHS method) lhsdesign (built-in function in MATALB) 

Sampling variables • 5 segment parameters of eNRTL-SAC 
• Feed flowrate 
• Feed mass ratio 

Number of each sampling variable 40,000 

Type of distribution function Normal 

Mean value from MC simulation 0.3145 

Standard deviation from MC simulation 0.1045 

DQN model 

Total number of episode available 2,000 

Step size in one episode 20 

ε value in ε-greedy 0.999 t (minimum value: 0.01) 

Components in a set of the state • Previous feed flowrate 
• Previous feed mass ratio 
• Previous API mass concentration 
• Current feed flowrate 
• Current feed mass ratio. 

Candidates in action 17 different solvent flowrates 

Discount rate 0.99 

Reward function Eq. (7) 

Starting point for agent training After 1,000 steps (i.e., after 50 episodes) 

Batch size 480 steps (i.e., 24 episodes) 

DL network in the agent of the DQN model 

Activation functions ( Ramachandran et al., 2017 ) • Relu in two hidden layers 
• Linear function in the output layer 

Kernel initializer he_unifrom ( He et al., 2015 ) 

Number of epoch 1 

Input dimension 5 (equal to the number of components in the state) 

Output dimension 17 (equal to the number of candidates in action) 

Output dimensions in hidden layers 32 of the first hidden layer 

24 of the second hidden layer 

17 of the output layer 

Loss function Mean squared error 

Optimizer Adam ( Bock et al., 2018 ) 

Learning rate 0.001 
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f simulation results is computed. After completing all MC simula-

ion runs, a distribution of the API concentration values is obtained

here the average and the standard deviation of the API concen-

ration values can be estimated from inference statistics. The aver-

ge value plays a role of the setpoint parameter in the DQN model.

amples of feed flowrate and feed mass ratio from matrix A ex-

luding samples of segment parameters are separately saved since

hese data are allocated in the state as the input of the DQN-based

ontrol system. 

.3. Deep-Q-network of the control system in the liquid–liquid 

xtraction column 

Pseudocode of the DQN model and a specific structure thereof

re illustrated in Fig. 3 . Initially, feed stream data including feed

owrate and feed mass ratio from the LHS and the expected API

oncentration value computed by MC simulation runs are imported

o the DQN model. Feed stream data should be reshaped as T -by-

 matrix due to the feature of the updating timing of RL as fol-

ows. First, states in the conventional RL are changed whenever a

tep ( T ) moves forward. When the agent reaches for the terminal

tate, the entire system, which is generally called a game, is com-

leted with finishing an episode ( M ). Another game starts again

ith the initial state in another episode. However, in the proposed

ontrol framework, one single step corresponds to one single oper-

tion of the LLE column, indicating that the initial state, the in-

ermediate states, and the terminal state are all the dependent

peration. Second, as aforementioned that the DQN requires two

olicies, the behavior policy is learned per each step and the tar-

et policy is improved per each episode. Therefore, step scale and
pisode scale are determined by artificially reshaping feed stream

ata into two-dimension matrix to fulfill mentioned previously two

onditions. This case study assumes that each process parameter

enerate 40,0 0 0 samples and these are split in 2,0 0 0 episodes and

0 steps (i.e., an episode contains 20 steps). 

In this research, DL networks are modeled using Keras, which

s an open-source neural network and capable of running on top

f TensorFlow in Python ( Gulli & Pal, 2017 ). Detailed structure of

L networks and explanation thereof are provided in the next sec-

ion. The interface is necessary for connecting between the agent

nd the environment because Aspen Plus TM designs the LLE col-

mn as the environment in the proposed DQN model. In principle,

he DQN model saves all past experiences into the experience re-

lay memory. The current state, s , the current API concentration

btained by operating the LLE column based on the action from

he agent, a , the reward, r , and the next state, s’ , are consistently

ccumulated in the experience replay memory, D . As the overall

ength of saved experiences is out of the range of a certain point,

 , the policy begins to be trained by utilizing saved experiences in

 batch size, j . 

.3.1. Off-policy using Q-learning and deep learning networks to train

he agent 

When the agent takes an action at the current state for the next

tate (i.e., state transition) according to the policy, the agent de-

ides the action that makes sure to provide the greatest Q-value

 

π ( s, a ) (also known as action-value). Indeed, Q-value Q 

π ( s, a ) is

he expected return G t starting from the state s , taking the action

 , and thereafter following policy π ( Eq. (1) ). The expected return
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Fig. 3. Pseudocode for designing the DQN-based control system and backup diagram of Q-value update; MC: Monte-Carlo, COM: component object model, TMS: fixed total 

mean score, and TS: fixed total score. 
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G t is the sum of the discounted rewards over the future ( Eq. (2) ).

Q-value Q 

π ( s, a ) is continuously modified by updating the policy.

Q 

π (s, a ) = E π [ G t | S t = s, A t = a ] (1)

G t = 

∞ ∑ 

k =0 

(
γ k × R t+ k +1 

)
0 ≤ γ ≤ 1 (2)

where S t is the state at a step t, A t is the action at a step t, γ is

the discount rate, and R t is the reward at a step t . In off-policy algo-

rithm, Q-value from the behavior policy Q 

b ( s, a ) is updated towards

maximizing a direction of Q-value from the target policy Q 

π ( s, a ),

which is equal to R + γ × max 
a ′ Q 

π (s ′ , a ′ ) (backup diagram in Fig. 3 ).

Therefore, Q-value learning algorithm in off-policy methods can be

defined by Eq. (3) ( Watkins, 1989 ). 

Q 

b (s, a ) ← Q 

b (s, a ) + α ×
[ 

R + γ × max 
a ′ Q 

π (s ′ , a ′ ) − Q 

b (s, a ) 
] 

(3)

where α is a constant step-size parameter, b is the behavior pol-

icy, and π is the target policy. However, the real Q-values in the

DQN are hardly known because the DQN is based on model-free

problem with arbitrarily large state spaces. Therefore, in terms of

approximate solution methods, the real Q-value is replaced with

the target Q-value from Eq. (3) . Parameter theta θb 
k 

in the Q-value

from the behavior policy is regressed by the loss function and the

gradient decent method ( Eqs. (4) and ( 5 )) ( Sutton et al., 2009 ):

Q 

b ( s, a ; θb ) is the predicted Q-value from the behavior policy and

R + γ × max 
a ′ Q 

π (s ′ , a ′ ; θπ ) is equal to the target Q-value from the

target policy in the DQN. 

loss f unction = 

{ 

R + γ × max 
a ′ Q 

π (s ′ , a ′ ; θπ ) − Q 

b (s, a ; θ b ) 
} 2 

(4)
θ b 
k +1 ← θ b 

k − α × ∇ θ b E s ′∼P(s ′ | s,a ) 

×
[{ 

R + γ × max 
a ′ Q 

π (s ′ , a ′ ; θπ ) − Q 

b (s, a ; θ b ) 
} 2 

]
θ b = θ b 

k 

(5)

Typical DL networks are involved with policies construction to

fficiently update parameters in the behavior policy that is ex-

ected to be continued for all steps until one episode finishes, and

arameters in the target policy θπ is replaced with updated pa-

ameters in the behavior policy. The proposed DL networks con-

ist of two hidden layers with Relu function as the activation func-

ion. Hyperparameters and dominant mathematical expressions in

L networks are presented in Fig. 4 and Table 2 . Since the state

orresponding to the input has 5 variables and candidates in the

ction are assumed by 17 different solvent flowrates, the input

ize and the output size of the suggested DL networks are 5 and

7, respectively. Output from the DL networks does not explicitly

resent the solvent flowrate value, but the action corresponding

o the greatest Q-value among outputs is decided as the current

ptimal solvent flowrate to be transmitted to the environment. In

n attempt to increase the output size of the first hidden layer

ompared to the initial input size and linearly reduce output sizes

f the second hidden layer and the output layer, the final output

ize becomes the same as the number of possible solvent flowrates

 Fig. 4 ). As aforementioned, the target Q-value from the Eq.

3) plays a role of the real Q-value and the mean squared error be-

omes the loss function. Adam optimizer, which is the most com-

only used technique ( Bock et al., 2018 ), is employed to minimize

he loss function. 

In the event of taking an action, the ε-greedy algorithm should

e considered to prevent a problem of local optima, describing that

ost of the time the agent selects an action that has maximal esti-

ated action-value (exploitation), but with probability ε the agent

nstead chooses an action at random (exploration) ( Table 2 ). There-

ore, as exploring concealed states of the environment in an at-
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Fig. 4. Python codes and a corresponding architecture of the suggested deep-learning algorithm using Keras library. 
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empt to take random actions, the agent can reach for a global op-

imal policy at a certain point. 

.3.2. Reward function to evaluate the environment 

As the input data, solvent flowrate corresponding to the action-

alue determined from the agent and reshaped feed stream data

o the certain step in the certain episode are fed into the LLE col-

mn developed in Aspen Plus TM via the interface. After running

he LLE simulation, the API concentration is given back through

he interface and a reward is calculated depending on results from

he simulation run. In this research, a simple reward function is

efined only to figure out the enhancement of the process perfor-

ance ( Eqs. (6) and ( 7 )). The setpoint SP of control system is the

verage of all API concentration values from open loop operation in

C sampling method AP I MC 
Simulation 

(i.e., the summation of API con-

entration values divided by the total number of simulation runs

S ) ( Eq. (6) ). In case that the API concentration from the LLE col-

mn as the environment in the DQN model AP I RL 
En v ironment 

is less

han the setpoint or the LLE column operated by the action fails to

e converged (i.e., if the control system is converged, SC is equal to

ero, otherwise, one), the negative integer is rewarded, otherwise,

he positive integer is rewarded ( Eq. (7) ). 

P = 

∑ 

AP I MC 
Simulation /NS (6) 

 = 

{
−1 i f ( 1 − SC ) × AP I RL 

En v ironment 
< SP 

1 otherwise 
(7) 

All rewards from the episode (i.e., one reward per one step) are

dded and result in the score, and the first step in the next episode

tarts implementing the same procedure. For example, in case that

he proposed control system is converged and discharges greater

PI concentration values than the setpoint for every step in the

pisode, the total of 20 score is generated, otherwise, negative 20

core is obtained. If the expected score in the last m episodes is

reater than the fixed mean score and each score in the last m

pisodes is greater than the fixed score, training stops. 
To summarize, the following key input factors are identified in

he implementation of the framework. (1) Defining a proper inputs

pace reflecting the case study application and generating large

andom samples, N, to perform MC simulations. (2) Building the

oss function based on the target Q-value from the Q-value update

lgorithm and using the gradient decent method as required by the

odel-free and off-policy DQN model. (3) Developing DL networks

o find good approximate Q-value functions in both the behavior

olicy and the target policy. 

. Results and discussion 

.1. Solvent selection for the case study 

Segment parameters of the API and several solvents, which

ere disclosed by the previous works, are used in the case study

o determine a proper solvent from the perspective of solvent se-

ection ( Chen & Song, 2004 ; Molla et al., 2019 ). A total of 5 sol-

ents, each of which is iso-butanol, 1-butanol, 1,4-dioxane, methyl

sobutyl ketone, and methyl tert-butyl ether, are employed to oper-

te the LLE column designed by Aspen Plus TM . Each mass flowrate

f the feed stream and the solvent stream is assumed as 100 kg

er hour and mass fractions of water and API in the feed stream

re fixed as 0.8 and 0.2, respectively. Table 3 represents the re-

ults of the mass fractions of components in the extract stream

nd raffinate stream. Based on these results, methyl isobutyl ke-

one (MIBK) is selected among the solvent candidates to be further

sed in this case study. 

.2. Monte-Carlo sampling to generate large samples 

Once the LLE column is designed together with an appropriate

olvent, we focus on data generation for training of the deep RL al-

orithm. A number of datasets from MC sampling method must be

enerated to implement the proposed DQN since it is cumbersome

o collect empirical big data from existing processes in a produc-

ion facility. Feasible datasets of segment parameters influencing



8 S. Hwangbo and G. Sin / Computers and Chemical Engineering 140 (2020) 106910 

Fig. 5. API concentration distribution by Monte-Carlo simulation using Latin hypercube sampling. 

Table 3 

Results of mass fractions from the solvent selection us- 

ing Aspen Plus TM ; MIBK: methyl isobutyl ketone and 

MTBE: methyl tert-butyl ether. 

Extract stream (mass fraction) 

Water API Solvent 

iso-butanol 0.1264 0.1462 0.7273 

1-butanol 0.1634 0.1431 0.6935 

1,4-dioxane 0.0173 0.9829 0 

MIBK 0.0456 0.1592 0.7952 

MTBE 0.0612 0.1579 0.7810 

Raffinate stream (mass fraction) 

Water API Solvent 

iso-butanol 0.9917 0 0.0083 

1-butanol 0.9486 0 0.0514 

1,4-dioxane 0.4434 0 0.5566 

MIBK 0.9990 0 0.0010 

MTBE 0.9857 0 0.0143 
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solubilities, feed flowrate, and feed mass ratio are produced by the

LHS method. 

To describe the input space for the sampling, the following as-

sumptions are made. 1) All distribution functions for the identi-

fied inputs are a normally distributed. 2) Average values of seg-

ment parameters are equal to the regressed values from the liter-

ature ( Molla et al., 2019 ) and their standard deviation is 0.01. 3)

The average and the standard deviation of feed flowrate are 100

and 15. 4) The average and the standard deviation of feed mass

ratio 0.2 and 0.03. The input space can easily updated and mod-

ified according to the needs and conditions specific to each ap-

plication or a case study. 40,0 0 0 sample datasets are produced

by the LHS method and transmitted to the LLE column developed

by Aspen Plus TM through the interface. MC simulations per each

solvent flowrate candidate are accomplished and the API concen-

tration distribution is achieved ( Fig. 5 ), showing that the average

and the standard deviation of the API concentration are 0.3145 and
.1045 corresponding to open loop operation without a control sys-

em. The shape of Fig. 5 shows a positively-skewed (also known as

ight skewed) curve so that high API concentrations can be main-

ained only in small probability density. It describes that during

C simulations, some input samples inappropriate for open loop

peration appear in the given design specification of the LLE col-

mn. This leads to a skewed distribution of the output of API in

he top product column. The expected API concentration from open

oop operation is used for the setpoint in the DQN-based control

ystem. 

.3. Deep-Q-network and evaluation 

The LLE column in Aspen Plus TM utilizes feed stream sample

atasets from the LHS and a solvent flowrate corresponding to an

ction determined by the agent, and results in the API concentra-

ion in the extract stream (top product of the LLE column). The

ehavior policy is trained per every single step in an episode and

he target policy is updated at the end of the last step (i.e., prior

o starting the next episode). It is of great importance to the agent

o start training its policies in a way to use the experience replay

emory, which indicates that experiences should be considerably

ccumulated to a certain extent. 

Fig. 6 depicts variations of the total score in an increase of the

umber of episodes. Increase in the score implies that the con-

rol performance is improving and achieving its target, which is

he desired outcome. As assuming that a single episode consists

f 20 steps in the previous section, the maximum positive score

f one episode is 20 (e.g., the total score of 10 explains that the

ontrolled API concentration values by the DQN model in 15 times

f 20 steps are greater than the setpoint, otherwise, in 5 times of

0 steps, either those are less than the setpoint or the LLE column

oes not achieve any convergence). Training procedure of the DQN-

ased control system stops when it satisfies following conditions:

) the average score of the latest 30 episodes is greater than 15

nd 2) each score of each episode is greater than 10. 
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Fig. 6. Score fluctuation according to an increase of episodes in the middle of the DQN-based control system training. 

Fig. 7. Controlled API concentration distribution by the optimal control system based on the DQN model. 
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Large variations with negative scores take place at the begin-

ing of the episode scale because solvent flowrates are randomly

elected until the first 50 episodes to prepare for the training: ex-

eriences during the first 50 episodes are stored in the experience

eplay memory then learning Q-values in the policies of the agent

tarts. A number of API concentration values less than the setpoint

an be occurred in this preparation stage similar to open loop op-

ration with random parameters. 
The reason negative scores are often allocated after starting

raining is related to the ε-greedy policy used for the DQN, which

anages trade-off between exploitation and exploration in a prob-

bilistic way. The ε-greedy keeps on generating random actions at

 certain probability without depending on the policy in the agent.

n this study, the more the trained episodes are accumulated, the

maller that random action probability gets since the ε value is

et to gradually decrease as the episode scale progresses (i.e., ex-
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Fig. 8. Score results of the DQN-based control system using test datasets. 

Fig. 9. DQN-based API concentration distribution using test datasets. 
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ploration decreases in favor of exploitation) ( Table 2 ). The gen-

eral flow of the total score is significantly increased at around the

400th episode, and the high scores are continuously maintained at

the end of training ( Fig. 6 ). 

The distribution of the API concentration values controlled by

the DQN-based control system is illustrated in Fig. 7 . The aver-

age and the standard deviation of the controlled API concentration

values are now 0.41 and 0.08, respectively. There exists the range

of small API concentration values. However, most of API concen-
ration values are distributed near the average, which is approx-

mately increased by 32 % compared to the average of the API

oncentration distribution from MC simulation under open loop

onditions. The standard deviation of the controlled API concen-

ration values is reduced by around 23 % compared to the previ-

us standard deviation from MC simulations under open loop con-

itions. These outcomes demonstrate the feasibility of developing

nd training RL algorithm using simulation data and samples from

C sampling method to operate in a stable manner an LLE column.
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The trained control system is evaluated by using test data. New

ample datasets of 100 episodes (i.e., equal to 2,0 0 0 steps) are

rbitrarily extracted from sample datasets unused in the training

atasets. The results explain that about 16 positive score is on av-

rage ( Fig. 8 ). This specifies that in the total of 20 operations, 18

imes of API concentration values in the extract stream are greater

han the setpoint, otherwise, only 2 times of those are less than

he setpoint or fail to converge. The distribution of API concentra-

ion values from the trained control system using test datasets is

resented in Fig. 9 , which says that the average and the standard

eviation are 0.41 and 0.077. The entire shape of the distribution

n Fig. 9 is similar to that in Fig. 7 . Indeed, results from using test

atasets validate performance of the optimal control system under

ifferent process operation conditions. 

We believe that the proposed framework and its implemen-

ation indicate the feasibility of emerging AI concepts (especially

eep RL algorithms) for optimizing operation in downstream pro-

essing and other process engineering applications. Looking ahead,

urther validation and testing of the proposed methods are needed

sing pilot and production facility platforms as well as benchmark-

ng against other established industry operation practice to better

dentify and match industrial needs. In particular, further research

s required to identify the specific needs and constraints of indus-

rial applications, assess computational costs and improve numeri-

al efficiency, and enhance the accuracy of modelling among others

nd its validation. In that regard, hybrid-modelling concept using

oth model-based and data-driven techniques is worth considering

specially where there is lack of mechanistic models 

. Conclusions 

We have presented a control framework based on the DQN al-

orithm and applied the developed model for the downstream sep-

ration in biopharmaceutical processes. Major challenges related to

he lack of historical data have been solved by employing MC sam-

ling method. The model-free and off-policy DQN algorithm has

een designed and trained successfully to control a separation pro-

ess. An interface based on component object model has been in-

egrated in the proposed model to provide a vital link between dif-

erent software, each of which is MATLAB for the sampling method,

spen Plus TM for simulation runs, and Python for the main algo-

ithm of the DQN. A prototype software is produced and shared

n Mendeley Data to further facilitate the application of the DQN

lgorithm. 

A case study of the LLE column of downstream separation

n biopharmaceutical process has been accomplished. The LHS

ethod has generated a number of suitable sample datasets con-

idering disturbances and MC simulation runs under open loop

onditions have been conducted to determine the setpoint of the

QN-based control system in the LLE column. Results from the

ase study state that the developed control model has improved

he API concentration distribution in terms of the system robust-

ess, showing an increase of the average by 32 % and a decrease

f the standard deviation by 23 % compared to the results from

pen loop operation. Future works focus on industrial/pilot scale

alidation and refinement of the proposed control framework, and

xtend the application to a virtual plant encompassing other pro-

esses from fermentation to ultrafiltration, extraction column, and

rystallization processes. 
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