
Computers and Chemical Engineering 141 (2020) 106982

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

A deep reinforcement learning approach for chemical production

scheduling

Christian D. Hubbs a , Can Li a , Nikolaos V. Sahinidis a , ∗, Ignacio E. Grossmann

a ,
John M. Wassick

b

a Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15123, United States
b Dow Chemical, Digital Fulfillment Center, Midland, MI 48667, United States

a r t i c l e i n f o

Article history:

Received 13 February 2020

Revised 13 June 2020

Accepted 17 June 2020

Available online 19 June 2020

Keywords:

Machine learning

Reinforcement learning

Optimization

Scheduling

Stochastic programming

a b s t r a c t

This work examines applying deep reinforcement learning to a chemical production scheduling process

to account for uncertainty and achieve online, dynamic scheduling, and benchmarks the results with a

mixed-integer linear programming (MILP) model that schedules each time interval on a receding horizon

basis. An industrial example is used as a case study for comparing the differing approaches. Results show

that the reinforcement learning method outperforms the naive MILP approaches and is competitive with

a shrinking horizon MILP approach in terms of profitability, inventory levels, and customer service. The

speed and flexibility of the reinforcement learning system is promising for achieving real-time optimiza-

tion of a scheduling system, but there is reason to pursue integration of data-driven deep reinforcement

learning methods and model-based mathematical optimization approaches.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

s

p

t

c

t

h

W

f

c

i

(

i

d

d

t

2

t

o

u

t

o

t

o

p

t

m

f

t

S

c

d

a

t

s

2

f

s

d

h

0

. Introduction

Industrial chemical operations in the modern day convert thou-

ands of tons of raw material inputs into thousands of tons of

roduct worth tens of millions of dollars each day. Complex ques-

ions regarding resource allocation must be asked and answered

ontinuously (Harjunkoski et al., 2014). What to produce? When

o produce it? How much to produce? How much to sell now vs

ow much to store in inventory and for how long? Shobrys and

hite (2002) estimated that “good” answers to these decisions can

urther enhance profit margins. Businesses are also faced with in-

reased pressure from competition and innovation, thereby forc-

ng modifications to production strategies to remain competitive

 Harjunkoski et al., 2009). Moreover, these decisions must be made

n the face of significant uncertainty. Production delays, plant shut-

owns or stoppages, rush orders, fluctuating prices, and shifting

emand are all sources of uncertainty that render a previously op-

imal schedule, sub-optimal or even infeasible (Li and Ierapetritou,

008; Gupta and Maravelias, 2016).

Optimization under uncertainty has received significant atten-

ion by the process systems engineering community and a plethora

f approaches have been developed. While explicitly accounting for
∗ Corresponding author.

E-mail address: niksah@gmail.com (N.V. Sahinidis).

s

v

n

ttps://doi.org/10.1016/j.compchemeng.2020.106982

098-1354/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
ncertainty can greatly improve the result of the model above de-

erministic formulations, this improved result comes with a trade-

ff (Huang and Ahmed, 2009). Models including uncertainty lead

o significantly higher computational costs due to a large number

f scenarios in cases where discrete uncertainty is present. Com-

utational costs of models which represent uncertainty as con-

inuous probability distributions are driven by integration require-

ents (Balasubramanian and Grossmann, 2003). Here, we will only

ocus on the primary areas of research that are directly relevant

o the planning and scheduling problem we are pursuing (see

ahinidis (2004) for a fuller discussion of optimization under un-

ertainty).

Two primary methods to address planning and scheduling un-

er uncertainty have emerged over the years: robust optimization

nd stochastic optimization (Grossmann et al., 2016). Robust op-

imization ensures a schedule is feasible over a given set of pos-

ible outcomes of the uncertainty in the system (Bertsimas et al.,

011). Lin et al. (2004) provides an example of robust optimization

or scheduling a chemical process modeled as a continuous time

tate-task network (STN) with uncertainty in the processing time,

emand, and raw material prices.

The stochastic optimization approach deals with uncertainty in

tages whereby a decision is made, then the uncertainty is re-

ealed which enables a recourse decision to be made given the

ew information. For scheduling applications, Jung et al. (2004) de-
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.compchemeng.2020.106982
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106982&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:niksah@gmail.com
https://doi.org/10.1016/j.compchemeng.2020.106982
http://creativecommons.org/licenses/by/4.0/

2 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 1. Diagram of reinforcement learning system.

s

t

M

f

t

t

P

a

r

i

w

a

s

t

t

i

c

m

a

o

t

u

p

–

r

a

b

o

(

w

t

m

(

D

i

(

n

a

h

p

t

(

s

M

a

t

h

v

r

fi

o

D

t

a

o

o

t

p

S

e

a

l
velops a multi-stage stochastic optimization model to determine

safety stock levels to maintain a given customer satisfaction level

with stochastic demand. Sand and Engell (2004) developed a

two-stage stochastic mixed-integer linear program to address the

scheduling of a chemical batch process with a rolling horizon

while accounting for the risk associated with their decisions.

In this work, we use reinforcement learning to address the

uncertainties in the production planning and scheduling prob-

lem and illustrate its application in an industrial, single-stage,

continuous chemical manufacturing process. Reinforcement learn-

ing (RL) recasts the learning problem as a Markov Decision Pro-

cess (MDP). Discrete, stochastic MDPs were first introduced by

Bellman (1957) and consist of a series of sequential states with

probabilistic transitions between them. Transitions to these states

are influenced by decisions made at each prior. Thus the produc-

tion scheduling problem we are pursuing here can be cast as a

Partially Observable MDP (POMDP) where states are defined as in-

ventory levels, demand, and so forth, with decisions being what to

schedule next. The next state is a consequence of previous deci-

sions and the realization of any random variables in the system.

As illustrated in Fig. 1 , reinforcement learning involves an agent

which takes actions based on observations and information –

known as the state – it receives from the environment (Sutton and

Barto, 2018). In the case of planning and scheduling, the agent is

the scheduling algorithm and its actions are scheduling decisions

(i.e. what to produce, when to produce, how much, etc.). The en-

vironment is the plant, factory, or machine that will do the pro-

cessing, and the state can be defined as inventory levels, demand,

the existing schedule, or whatever information is deemed relevant

to developing a schedule. The goal of the agent is to maximize a

reward which is a scalar signal it receives through interacting with

the environment. The reward is given by a reward function , which

is the reinforcement learning equivalent to an objective function in

traditional optimization parlance. The agent learns a policy to map

states to actions in order to maximize the reward signal the agent

receives from the environment.

Reinforcement learning has been used with good results in

scheduling problems, although literature on the topic remains

sparse. One of the earliest papers on RL methods and schedul-

ing comes from Zhang and Dietterich (1995) where the TD (λ)

algorithm was applied to train a neural network to schedule

NASA’s space shuttle pay load processing (Sutton, 1988). In com-

parison with simulated annealing, Zhang et al. showed better re-

sults in less computational time using RL (Metropolis et al., 1953).

Schneider et al. (1998) implemented a dynamic programming ap-

proach to achieve near-optimal results on a stochastic job shop

scheduling problem based on an industrial facility. Riedmiller and

Riedmiller (1999) used a multilayer perceptron and an RL tech-

nique – Q-learning – to learn local policies to minimize the tar-

diness for a flexible job shop scheduling problem (Watkins, 1989).

Stockheim et al. (2003) applied Q-learning to a job acceptance sys-

tem whereby, the RL agent would learn a good policy for accepting

new jobs, which would then be scheduled using a deterministic

scheduling algorithm. Martinez et al. (2011) utilized a tabular Q-

learning approach for a flexible job shop scheduling problem and
howed superior results for Q-learning ant colony optimization and

abu search, yet under-performed relative to a genetic algorithm.

ortazavi et al. (2015) used discretized Q-learning to develop a

our-echelon supply chain simulation consisting of a retailer, dis-

ributor, manufacturer, and supplier. The Q-learning system is able

o adapt and learn based on non-stationary demand described by a

oisson distribution with a mean that changes deterministically on

 12-week cycle. Palombarini et al. (2018) used the SARSA (λ) algo-

ithm to develop logical if/else repair operators to build robustness

nto schedules (Singh and Sutton, 1996).

Aside from scheduling, other areas of chemical engineering

hich involve uncertainty beyond planning and scheduling are

menable to RL applications. For example, Morinelly and Yd-

tie (2016) used Q-learning to develop an adaptive control sys-

em that learns the optimal policy (a Linear Quadratic Regula-

or) to control a discrete linear system with uncertain dynam-

cs. Badgwell et al. (2018) drew parallels to RL and MPC for pro-

ess control, highlighting the potential RL has to supplement hu-

an knowledge (e.g. operators in a control plant monitoring oper-

tions), serve as a replacement for existing process control technol-

gy, integrate with existing MPC frameworks, and simplify opera-

ions of a complex chemical plant. Lewis and Liu (2013) expounded

pon application areas of RL in engineering with a particular em-

hasis on process controls.

In recent years, the field of deep reinforcement learning (DRL)

which employees multi-layer neural networks (or deep neu-

al networks) for value and policy approximations – has emerged

nd provided extraordinary results on problems once thought to

e decades away. For example, in 2016 Google DeepMind devel-

ped AlphaGo to defeat the European Go champion, Lee Sedol

 Silver et al., 2016). The following year, these same techniques

ere used to defeat the world champion Ke Jie and a new sys-

em was developed – AlphaGo Zero – which learned without hu-

an input and easily defeated the previous AlphaGo system 100-0

 Silver et al., 2017). A thorough overview of the developments in

RL and applications of the technique is provided by Li (2017) .

Given the success of DRL in large problems and the amenabil-

ty of planning and scheduling problems to MDP representations

 Schneider et al., 1998), it seems natural to extend these tech-

iques to industrial planning and scheduling models. The liter-

ture on DRL in this area, however, is severely lacking – per-

aps not surprising given the recency of many of the DRL accom-

lishments. Regardless, there is some research in this area, no-

ably Oroojlooyjadid et al. (2017) applied a single, deep Q-network

DQN) to each of the four stages of the beer game (retailer, whole-

aler, distributor, and manufacturer) to obtain near-optimal results.

ao et al. (2016) considered an application of the REINFORCE

lgorithm to assigning jobs on a large-scale computational clus-

er showing that this technique is superior to existing scheduling

euristics in their domain (Williams, 1992). Lee et al. (2018) pro-

ide an overview of machine learning techniques, including

einforcement learning, for the process systems engineering

eld.

We conduct simulated experiments based on data provided by

ur industrial partners. We seek to determine the applicability of

RL to production scheduling under uncertainty in comparison to

raditional optimization approaches. Given the computational costs

ssociated with stochastic programming and other techniques to

ptimize under uncertainty and the need for regular updates based

n new data, these models are difficult to implement in indus-

rial production planning and scheduling settings of the sort ex-

lored within this paper. This paper is divided into six sections.

ection 2 describes the industrial problem and data we have mod-

led our experiments on. Section 3 provides the details of our DRL

pproach as well as various MILPs. Section 4 consists of an il-

ustrated problem to clarify the concepts and enable easy repro-

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 3

Table 1

Product data for simulated reactor.

Product Run Rate (MT/Day) Average Standard Margin ($/MT) Curing Time (Days)

A 218 28 1

B 237 39 1

C 259 40 1

D 246 44 1

Fig. 2. Receding horizon schedule.

d

c

2

w

s

D

d

d

i

(

b

t

c

s

t

t

s

h

d

T

s

j

t

t

r

i

Table 2

Product transition losses (MT).

Transition To

A B C D

Transition

From

Start-Up 2 3 5 5

A 0 0 72 0

B 45 0 76 75

C 0 237 0 75

D 45 237 0 0

t

w

a

t

t

B

p

f

B

f

t

fi

r

o

o

m
ucibility for the reader. Sections 5 and 6 cover the results and

onclusions, respectively.

. Problem statement

We consider a continuous, chemical manufacturing process

ith a single stage and single production unit operating under

tochastic demand modeled after a site owned and operated by

ow Inc. 1 The goal of the scheduling algorithms is to build a pro-

uction schedule for the full planning horizon of K days (product

ata is given in Table 1 , all reported mass quantities are given

n metric tons, MT). The schedule is fixed for the first H days

fixed horizon) in accordance with operating procedures provided

y the plant. This is done in order to provide operating stability for

he production facility and maintain commitments to down-stream

ustomers where deliveries have been confirmed. This makes the

chedule inflexible, particularly in cases where new orders are en-

ered into the system for high-priority customers with a short lead

ime. This variation in demand may change a previously optimal

chedule to become a sub-optimal schedule.

This process is repeated each day throughout the simulation

orizon (see Fig. 2 for an illustration). Additionally, there are losses

ue to type changes, which the model must take into account.

hese losses are minimized by moving to and from products with

imilar production temperatures and compositions. Making large

umps in processing temperature, for example, will yield produc-

ion of off-grade material, which is outside of product specifica-

ions and cannot be sold for the same price as prime product thus

educing the margin and negatively impacting the profitability of
1 All dollar values, order quantities, profit margins, and so forth are shown for

llustrative purposes only and do not represent actual values of Dow Inc.

a

a

i
he facility. Because off-grade is typically sold off on spot markets

hen it is made at whatever price is available, we do not take into

ccount off-grade revenue and consider it as lost production. These

ransition losses are modeled by reducing the quantity produced in

he next period. Thus, if product D is selected at time t and product

 at t + 1 , the model will incur transition losses total to the day’s

roduction quantity, effectively losing an entire day of production

or B to off-grade material. The model may continue with product

 in the next period, at which point it will register a transition

rom B to B and no off-grade losses will be incurred (Table 2).

Demand is represented by an order book and is generated at

he beginning of the simulation according to a fixed statistical pro-

le. The demand is revealed to the planning models when the cur-

ent day matches the order entry date that is associated with each

rder in the system. This provides limited visibility to the models

f future demand and forces it to react to new entries as they are

ade available. Furthermore, demand is divided into two types:

ctual demand and forecasted demand. These are distinguished by

 binary flag in the order book (see Table 3 for an example).

The actual demand determines specific orders that must be sat-

sfied, while the forecasted demand does not, but instead serves

4 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Table 3

Sample order book excerpt.

Document Number Document Creation Date Order Due Date Product Order Quantity (MT) Order Margin ($/MT) Forecast Flag

1 14 20 B 25 36 0

2 -5 3 D 25 45 1

3 23 25 C 25 42 0

4 20 26 A 25 27 0

5 15 22 B 25 39 1

Table 4

Simulation parameters.

Parameter Value Description

H 7 Fixed Planning Horizon

K 15 Lookahead Planning Horizon

D 90 Number of Periods in Simulation

η 12% Percentage of Annual Working Capital Cost

α 25% Daily Late Shipment Penalty

b

r

s

r

d

m

o

p

s

m

d

3

m

M

z

t

u

S

a

d

w

a

w

u

b

t

3

p

i

i

v

a

b

t

h

u

E

σ

w

(

s

t

s

t
as an estimate of the anticipated demand for the scheduling algo-

rithms. Following the set-up of our real-world problem, the fore-

cast is provided as an input to the model, and is simply a high-

level number that indicates the anticipated total demand for each

product in a month. Traditionally, the planning and scheduling

role has been performed by humans, thus they can work with a

high-level estimate and update their schedules as more informa-

tion comes in each day. Additionally, lower-level forecasts that at-

tempt to predict specific order entry and shipment dates are too

inaccurate to be of any value, whereas a reasonable estimate of to-

tal monthly demand can be forecasted. In the reinforcement learn-

ing case, the forecast can simply be an entry in the state de-

scription, however, more complex, disaggregation methods need to

be explored to combine a high-level demand forecast with actual,

low-level orders. Further information on the specific strategies em-

ployed can be found in Section 3.5 .

The model is discretized in time to one day time intervals and

the scheduling problem takes place over a 90 day horizon. The

planning models must operate in the presence of a fixed planning

horizon H , meaning the schedule cannot change for the next H

days out. For example, if H = 7 and a schedule is made on Jan-

uary 1st for the 1st-15th, then the schedule cannot be altered be-

tween the 1st and the 7th. All scheduling algorithms thus build a

schedule for a K day planning horizon (where K ≥ H) on a rolling

horizon and freeze the schedule for the next H days as seen in

Table 4 .

Production quantities are discretized into 24-hour periods

based on their run rates (MT/day). Additionally, a 24-hour curing

time is required for each product before it can be shipped to allow

for cooling and degassing. Thus, any given product scheduled to

begin production on January 1st will not be available to be shipped

until January 3rd, and thus orders cannot be satisfied until then.

The transition losses are applied to daily production runs, so that

transition from A to C, for example, yields a loss of 72 MT of prime

production.

A late penalty (α) of 25% of the order value is assessed for each

day that an order is late. Thus an order worth $1,0 0 0 and shipped

on time is worth the full, $1,0 0 0 but only $750 if shipped one day

late, $500 if two days, and so forth.

The goal of the reinforcement learning and optimization meth-

ods are to maximize the profitability of the site over the simulation

period. The reward/objective function is given as:

max z =

∑

i

∑

t

∑

n

V in S itn − η
∑

i

∑

t

βi I it (1)

where V in indicates the discounted standard margin for order n

and product i , and S denotes the shipped amount for order num-
itn
er n for each time period t corresponding to product i . This rep-

esents the income – although it may become a loss if there are

ufficient late penalties to pay – while the costs are related to car-

ying large inventory I it , with β i being the average variable stan-

ard margin for each product and η being a fractional, capital cost

ultiplier.

The approaches are compared using the total profitability and

ther key performance indicators such as overall tardiness, prime

roduction rate, number of type changes, and inventory levels. All

olutions are validated against a simulated production environ-

ent with identical demand and stochastic elements to enable a

irect comparison of the results.

. Methods

Five classes of models are developed for comparison: a DRL

odel, deterministic MILP on a rolling horizon, a deterministic

ILP on a shrinking horizon, a stochastic MILP on a rolling hori-

on, and a perfect information MILP which optimizes over the en-

ire horizon and with no uncertainty. The DRL model is trained

sing the Advantage Actor-Critic algorithm (abbreviated A2C, see

ection 3.1.1 for details). The deterministic model is tested with

nd without a forecast. The shrinking horizon method was intro-

uced in order to develop better, long-range planning such as that

hich is needed in this problem. The stochastic MILP is developed

nd tested to compare an optimization model under uncertainty

ith the DRL approach. Finally, the perfect information MILP is

sed to give an optimistic upper-bound on model performance for

enchmarking purposes. All solutions are validated in simulation

o provide the results.

.1. Reinforcement learning model

Machine learning is typically divided into three categories: su-

ervised learning, unsupervised learning, and reinforcement learn-

ng (Bishop, 2006). Supervised learning deals with labeled data and

s used to address classification and regression problems. Unsuper-

ised learning seeks to find patterns in the structure of data such

s with clustering algorithms. Reinforcement learning is agent-

ased whereby an agent interacts with an environment in order

o maximize a reward.

The agent is modeled using a deep neural network with twelve

idden layers and 256 nodes for each layer with exponential linear

nit (ELU) activation functions:

LU(x) =

{
x if x > 0

�(e x − 1) if x ≤ 0

(2)

(x) m

=

e x m ∑ M

m =1 e
x

∀ m ∈ M (3)

here � is a constant set to 1 (Eq. (2)) - and a softmax output

 Eq. (3)). The network outputs a probability distribution over the

et of possible actions A . This probability distribution is sampled

o yield a t , or the product to make at time t in the schedule. The

chedule is built by successive forward propagation of the state

hrough the network to yield distributions, which are sampled to

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 5

g

R

t

3

a

t

f

(

t

v

w

f

0

f

t

o

p

s

θ

w

a

a

n

t

t

a

z

t

R

U

d

�

T

e

t

s

(

W

v

t

a

d

p

b

a

A

m

3

r

t

o

Algorithm 1 Advantage Actor-Critic Algorithm.

Require: A differentiable policy parameterization π(a | s, θπ)

A differentiable state-value parameterization

ˆ v (s, θˆ v)

Select step-size parameters 0 < απ , αˆ v ≤ 1

Initialize the parameters θπ , θˆ v
1: for N episodes do :

Initialize the episode with s 0
2: for T steps in episode do :

Get action a t from current policy π : a t ← π(s t , θπ)

Take action a t and observe reward (r t) and new state (s t+1)

Calculate TD error: �t ← R t + γ ˆ v (s t+1 , θˆ v) − ˆ v (s t , θˆ v) ∀ t ∈ T

3: end for

Update at end of episode:

Calculate actor loss: L (θπ) ← − 1
T

∑ T
t log

(
π(a t | s t , θπ)

)
�t

Calculate policy entropy: H

(
π(a t | s t , θπ)

)
← −∑

i π(a t |
s t , θπ) log π(a t | s t , θπ)

Update actor: θπ := θπ + απ

(∇ θπ
L (θπ) + β∇ θπ

H

)
Calculate critic loss: L (θˆ v) =

1
T

∑ T
t (�t − R t)

2

Update critic: θˆ v := θˆ v + αˆ v ∇ θˆ v
L (θˆ v)

4: end for

a

r

a

p

T

a

z

t

s

e

a

p

w

w

c

t

s

t

a

c

p

a

3

g

i

a

b

h

C

b

t

3

v

A

v

u

c
enerate a schedule. At each time step of the simulation a reward,

 t , is returned as feedback to the model to train on at the end of

he episode.

.1.1. Reinforcement learning algorithm

We implemented a version of the Advantage Actor-Critic (A2C)

lgorithm (Mnih et al., 2016). This is a policy gradient algorithm

hat learns a value function approximation (the critic) and a policy

unction (the actor).

The critic learns to approximate the value of the current policy

 ̂

 v) - according to its parameterization (θˆ v) - which is the expecta-

ion of the sum of the future discounted rewards:

ˆ
 (s t , θˆ v) ≈ E

[
R t + γ R t+1 + γ 2 R t+2 + . . . + γ T R t+ T

]
(4)

here s t is the state at time t, R t is the reward received at time t

rom transitioning from s t to s t+1 , and γ is a discount factor where

 < γ ≤ 1, which causes current rewards to be more valuable than

uture rewards.

The actor learns a stochastic policy (π) parameterized by θπ

hat is designed to take the action that has the greatest probability

f maximizing the sum of the future rewards. The policy is thus

arameterized by θπ and yields a probability distribution over the

et of available actions at time t :

π = arg max θ

T ∑

t=1

E

[
R (s t , a t)

]
(5)

here R indicates the reward function evaluated by taking action a

t state s and time t . The action a t is sampled from the set of avail-

ble actions A t according to the probabilistic output of the policy

etwork during training to encourage exploration. During testing,

he maximum value is selected instead. It is important to note that

he reward function is identical to the objective function that the

lgorithm seeks to maximize or minimize over the planning hori-

on, however we provide feedback at every time step by evaluating

he reward function for each step as shown below in Eq. (6) .

 (s t , a t) =

∑

i

∑

n

V in S itn − η
∑

i

βi I it (6)

pdates are made to the parameters by calculating the temporal

ifference error (TD-Error).

= R t + γ ˆ v (s t+1 , θˆ v) − ˆ v (s t , θˆ v) (7)

he gradient of the TD-Error is taken with respect to the param-

ters, which are then updated using stochastic gradient ascent at

he end of each episode, where an episode contains all of the time

teps from the beginning of the simulation until its termination

 Sutton and Barto, 2018).

Policy gradient algorithms were first proposed by

illiams (1992) , and later a proof for local optimality con-

ergence was provided by Sutton et al. (1999) . More recently,

hese algorithms provided the backbone for AlphaGo’s historic

chievements (Silver et al., 2016).

The A2C algorithm deploys an actor-critic pair represented as a

eep neural network to act on a Monte Carlo simulation of the

lanning environment. After n-steps, the error is calculated and

ackpropagated through the network to update value estimation

nd policy of the network as discussed above. Pseudo-code for the

2C algorithm is given in Algorithm 1 . All networks were imple-

ented in PyTorch v1.0 (Paszke et al., 2017).

.1.2. Action selection

The agent is modeled using a deep neural network (DNN) to

epresent the policy π – the function which maps states to ac-

ions. The policy is stochastic and yields a probability distribution

ver possible actions for each state. In typical DRL applications, the
ction taken at time t is immediately acted upon and the envi-

onment transitions to a new state, s t+1 . In the case of planning

nd scheduling, decisions must be made in advance for the entire

lanning horizon without the benefit of observing the new state.

here are at least two ways to deal with this complication: the

gent may sample over possible schedules for the planning hori-

on, or the agent may iteratively sample over all products while

aking into account a model of the evolution of future states.

The first option is how DRL is usually practiced. However, in

uch a case as scheduling, the number of possible schedules grows

xponentially meaning the action space explodes as new products

re added or the planning horizon is increased. Given even a small

lant with four products and a planning horizon of seven days,

e have A = P H = 16 , 284 possible schedules to sample from. This

ould result in needing many more samples before a good policy

ould be found.

The second option requires some way to predict what the fu-

ure state, ˆ s t , will be given the information available at t . This is

o because repeatedly passing the agent the current state to build

he schedule will result in the same probability distribution over

ctions. To determine ˆ s t , we provide the agent a simple, first prin-

iple model with an inventory balance: ˆ I it = I it−1 + ˆ p it − d it . The

lanned production and the available orders on the books give the

gent a good first pass at estimating ˆ s t .

.1.3. Training

The DRL approach described above is known as a model-free al-

orithm, meaning there is no transition function of the system that

s given to the RL agent – it must learn a good policy through trial

nd error. For this reason, the model must be trained extensively

y making mistakes early on, and then learning what actions yield

igh rewards over time. This is done through a sequence of Monte

arlo simulations of the scheduling environment to provide feed-

ack and data for the algorithm to update the network’s parame-

ers.

.1.4. State

The state of the system is passed to the algorithm from the en-

ironment and contains the relevant decision making information.

s seen in Fig. 3 , for this model, relevant information includes in-

entory levels, actual demand, forecast, current schedule, and sim-

lation time. The production from the most recent time step is in-

luded as a one-hot encoding in the state because only the previ-

6 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Table 5

Definitions of sets, indices, and variables.

Sets and Indices:

i, j Product indices.

t Index for time periods.

n Index for individual orders.

Continuous Variables:

p it Amount of product i produced at the end of interval t (MT).

I it Quantity of inventory for product i at the end of time interval t (MT).

S itn Quantity of order n with product i during time (MT) t .

Binary Variables:

x itn Binary associated with each order such that x itn = 1 if product i is shipped to meet the

demand for order n at the end of time interval t and is 0 otherwise.

y it Denotes the product i scheduled at the beginning of interval t , where y it = 1 if the product

is scheduled and 0 otherwise.

z ijt Indexes product transitions, where z i jt = 1 if the transition has occurred and 0 otherwise.

Parameters:

d itn The demand of product i at t for order number n (MT).

t n The due date for order n .

V in The variable standard margin minus the lateness penalty for each day the order is late

($/MT). The penalty is pre-computed to enable the value to be treated as a parameter.

δij Transition losses from product i to product j .

b max
i

Maximum production quantity for product i (MT/day).

Fig. 3. The state consists of a concatenation of the projected inventories, demand,

forecasted demand, one-hot encoding of the previously scheduled product, and the

time.

p

v

g

f

t

t

a

a

d

d

o

d

p

e

d

a

t

m

t

p

f

a

n

v

m

c

3

t

r

s

t

t

o

t

o

t

d

ous scheduled product impacts the off-grade produced during the

transition. Faster and more stable training was found by providing

the model the current inventory plus planned production and sub-

tracting the actual demand. Additionally, the net forecast is pro-

vided to the network for each product-month pair without pursu-

ing any disaggregation strategies such as required in Section 3.5 .

Combining the state values in this way takes the relevant inputs

considered by a planner and reduces the size of the input vector.

The feature engineering in the net inventory means the network

does not have to learn these relationships itself, which did help

speed training.

3.2. Deterministic optimization model

The following model is used to describe a single-stage, con-

tinuous production plant. Production decisions are discretized to

daily time intervals (t) and it takes one full day for each product

i to be produced. Another full day is required for curing time so

that the product may be shipped. Thus, it takes two time intervals

from when a product is scheduled and production begins until it

is available to be shipped and loaded into inventory. The produc-

tion facility has fixed run rates associated with each product (b max
i

)

and transition losses are incurred as the plant changes from one
roduct to another as given by the parameter δij (see Table 2 for

alues). All sets, indices, and variables are laid out in Table 5 .

Decision variables are given by x itn and y it where x itn is a binary

iven to each unique order number n which is 1 when it is to be

ulfilled with product i at time t , and 0 otherwise. y it is a binary

hat relates the production of each product i to be produced at

ime t. y it is equal to one when product i at time t is scheduled

nd 0 otherwise. Only one product may be produced at a time and

n order may only be fulfilled once and only at or after the due

ate, i.e. no early shipments.

The model is tasked with determining which products to pro-

uce and when in order to maximize the profitability given in the

bjective function. Each order is specified by d itn and has a ship-by

ate t n , and a corresponding variable standard margin v n . A 25%

er day penalty is assessed on the variable standard margin for

ach day beyond the ship-by date that an order is not shipped. Ad-

itionally, there is a cost to carrying inventory which is calculated

s the sum of the average value of each product currently in inven-

ory and scaled by a working capital multiplier. Thus, the goal is to

aximize the value added to the enterprise by scheduling produc-

ion in order to meet orders on time (or with as little penalty as

ossible) while maintaining the lowest inventory possible.

The objective function is identical to the DRL agent’s reward

unction (Eq. (1)). However, discounting caused by late penalties

re pre-computed and treated as parameters in the system to avoid

on-linearities which arise from the relation between the decision

ariables and the penalty assessment. The full, deterministic opti-

ization model is defined by the objective function in Eq. (1) , and

onstraints in described in the following section.

.3. Mathematical formulation

In this work, we use a multi-period formulation. The optimiza-

ion model is formulated as an MILP that develops a schedule on a

eceding horizon for the full planning period. The MILP generates a

chedule for a time horizon consisting of K days where K = 2 H + 1

o provide better end-state conditions, then the schedule is passed

o the facility model to execute. The simulation is stepped forward

ne time step, and the results are fed back into the MILP model

o generate a new schedule over the K -step planning horizon. The

bjective function is given in Eq. (1) whereby the algorithm seeks

o maximize the accrued profit by satisfying orders with as little

elay as possible, while minimizing inventory levels.

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 7

3

I

m

r

t

a

c

3

t

p

r

l

c

p

∑

∑

a

d

3

t

s

o

fi

S

w

s

s

s∑

o

3

s

f∑

w

T

a

a

a

s

t

0

q

a

c

e

S

x

3

m

d

s

t

t

u

a

d

a

m

T

h

s

1

r

2

r

c

n

t

s

a

c

ω

r

m

m

w

f

i

t

T

s

s

3

i

s

T

e

δ

.3.1. Mass balance

 it = I it−1 + p it−2 −
∑

j

δi j z i jt−2 −
∑

n

∑

t≥t n

S itn ∀ i, t (8)

Eq. (8) states that for any product i at time t , we calculate the

ass balance of the system as the inventory from the previous pe-

iod, plus the scheduled production from two days prior (given

he two day delay for production and curing), minus any sales

nd transition losses that may occur due to the production type

hanges.

.3.2. Transition constraints

Transition losses are incurred by the system for unfavorable

ransitions. These are driven by temperature disparities and the

resence of additives or other reactants that may remain in the

eactor and cause the resulting product to be out of spec and thus

abeled as “off-grade” product. Off-grade represents lost production

apacity because raw materials and time are consumed in order to

roduce it, yet it cannot be sold at a favorable price.

Transition constraints are enforced by the following equations:

i

z i jt = y jt ∀ j, t (9)

j

z i jt = y it−1 ∀ i, t (10)

These constraints work together to set the relevant binary vari-

ble z i jt = 1 if product i was made at time t − 1 and j was pro-

uced in the subsequent time period t , where j is an alias of i .

.3.3. Shipping constraints

Each order in the system has a particular due date, t n , to de-

ermine when the order can be fulfilled. The demand can only be

atisfied for times where t ≥ t n . In other words, early satisfaction

f orders is prohibited. The product quantity and orders to be ful-

lled at time t is given by the constraint:

 itn = d it n n x itn ∀ n, i, t ≥ t n (11)

here the demand parameter d it n n is satisfied when the corre-

ponding binary variable x itn = 1 .

Because there may be situations where all demand cannot be

atisfied, we relax the constraint on the binary shipping variables

uch that they can be less than or equal to 1 for all orders n :

i

∑

t≥t n

x itn ≤ 1 ∀ n (12)

This constraint also ensures that each order is only satisfied

nce, if it is satisfied at all.

.3.4. Production constraints

Because this model is restricted to a single-reactor production

ystem, only one product may be produced at a time. This is en-

orced by the assignment constraint:

i

y it = 1 ∀ t (13)

hich forces the production variable y it = 1 for each time period.

his also ensures that the system does not shut-down as per oper-

ting procedures, so it must always be producing one of the avail-

ble products.

Each product has a given run-rate, b max
i

, which is fixed and not

t the planners discretion for this facility. The next equation en-

ures that the production values p it do not exceed this run-rate if

he product is selected, or else is 0.

 ≤ p it ≤ b max y it ∀ i, t (14)
i
Shipment quantities (S itn), inventory levels (I it), and production

uantities (p it) are positive, continuous variables, while binaries are

ssociated with individual order shipments (x itn), production de-

isions (y it), and product transitions (z ijt). These requirements are

xpressed by:

 itn , I it , p it ≥ 0 (15)

 itn , y it , z i jt ∈ { 0 , 1 } (16)

.4. Stochastic optimization

In addition to the deterministic models, a stochastic program-

ing model was developed to hedge against the uncertainty in the

emands of different products. In stochastic programming, it is as-

umed that the probability distributions of the uncertain parame-

ers are known a priori (Birge and Louveaux, 1997). The uncertain-

ies are usually characterized by some discrete realizations of the

ncertain parameters as an approximation to the continuous prob-

bility distribution. In this scheduling problem, we can generate

ifferent realizations of demand using the forecast models, which

re described in detail in Section 3.5 . Each realization of the de-

and is called a scenario . The set of scenarios is denoted by ω ∈ �.

he scenarios generated from the forecast models are assumed to

ave equal probabilities.

We use a special case of stochastic programming called two-

tage programming for our scheduling problem. Specifically, stage

 decisions are made ‘here and now’ at the beginning of the pe-

iod, and are then followed by the resolution of uncertainty. Stage

 ‘wait and see’ decisions, or recourse decisions, are taken as cor-

ective actions at the end of the period. Stage 1 decisions usually

orrespond to the decisions that decision-maker needs to fix right

ow. For this problem, the scheduler needs to fix the decisions for

he next H days from now. Therefore, we treat the decisions corre-

ponding to the first H days from now as the first stage decisions,

nd the decisions from day H + 1 to day K as the second stage de-

isions in the rolling horizon framework.

Compared with the deterministic MILP model, we add index

 to all the decisions variables to distinguish the decisions cor-

esponding to different scenarios. The objective function seeks to

aximize the expected profit over all the scenarios:

ax IE(z) =

∑

ω

τω

(∑

n

∑

i

∑

t

V in ω s itn ω − η
∑

i

∑

t

βi I it ω

)

(17)

here τω is the probability of scenario ω. We generate 10 different

orecasts in the test case, i.e., τω = 0 . 1 for all ω ∈ �.

The constraints of the stochastic model are given in the follow-

ng subsections. Most of the equations are obtained by extending

he equations of the deterministic model to each scenario ω ∈ �.

he only addition is the non-anticipativity constraints, which en-

ure that the ‘here and now’ decisions are the same across all the

cenarios.

.4.1. Mass balance

The next equation ensures that for any product i at time t , the

nventory carries over from the previous period in the particular

cenario ω:

I itω = I it−1 ω + p it−2 ω −
∑

j

δi j z i jt−2 ω −
∑

nω

∑

t≥t nω

S itnω ∀ i, t, ω

(18)

he potential shipped quantities are given by S itn ω and differ for

ach scenario. Again, any losses due to type changes are given by

ij and found in Table 2 .

8 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Table 6

Definitions of sets, indices, and variables for the stochastic optimization model.

Sets and Indices:

i, j Product indices.

t Index for time periods.

ω Index for the scenarios

n Index for the individual orders in each scenario.

Continuous Variables:

p it ω Amount of product i produced at the end of interval t (MT).in scenario ω.

I it ω Quantity of inventory for product i at the end of time interval t (MT) in scenario ω.

S itn ω Quantity of order n with product i during time (MT) t in scenario ω.

Binary Variables:

x itn ω Binary associated with each order such that x itnω = 1 if product i is shipped to meet the

demand for order n at the end of time interval t and is 0 otherwise.

y it ω Denotes the product i scheduled at the beginning of interval t , where y it = 1 if the product

is scheduled and 0 otherwise.

z ijt ω Indexes product transitions, where z i jt = 1 if the transition has occurred and 0 otherwise.

Parameters:

d in ω The demand of product i at t for order number n (MT) in scenario ω.

t n ω The due date for order and scenario n, ω respectively.

V in The variable standard margin minus the lateness penalty for each day the order is late

($/MT). The penalty is pre-computed to enable the value to be treated as a parameter.

δij Transition losses from product i to product j .

b max
i

Maximum production quantity for product i (MT/day).

s

q

e

S

f

x

r

3

o

l

o

t

o

o

f

a

d

w

s

r

d

c

F

t

q

F

I

n

t

t
3.4.2. Transition constraints

Transition constraints are enforced by the stochastic versions of

the equations found in the deterministic model: ∑

i

z i jtω = y i jtω ∀ j, t, ω (19)

∑

j

z i jtω = y it−1 ω ∀ i, t, ω (20)

Each of these constraints behave according to the same dynamics,

but is solved for each scenario ω.

3.4.3. Shipping constraints

Each scenario that is generated yields differing orders at vari-

ous times over the planning horizon. These orders are all given an

individual due date, t n ω , that must be met in order to avoid incur-

ring any penalties. As in the deterministic model, early satisfaction

of the demand is proscribed.

S itnω = d it nω nω x itnω ∀ i, n, ω, t ≥ t nω , ω, n (21)

Similarly, orders may go unfulfilled or be satisfied late, all the

while incurring a penalty. This is enabled through the following

constraint, which is solved for all scenarios. ∑

i

∑

t≥t n

x itnω ≤ 1 ∀ n, ω (22)

3.4.4. Production constraints

The following constraints are the stochastic versions of the pro-

duction constraints, yielding the same effects as Eqs. (13) and (14) ,

albeit for all the various scenarios ω. ∑

i

y itω = 1 ∀ t, ω (23)

0 ≤ p itω ≤ b max
i y itω ∀ t, ω (24)

3.4.5. Non-anticipativity constraints

Non-anticipativity constraints are provided as follows:

y itω = y itω+1 ∀ ω, t ≤ H (25)

These constraints ensure that the first stage production decision

variables over the initial fixed horizon H remain consistent across

all scenarios ω.
The corresponding variables used in the stochastic model for

hipment quantities (S itn ω), inventory levels (I it ω), and production

uantities (p it ω), are all positive, continuous variables as given in

quation the subsequent equation:

 itnω , I itω , p itω ≥ 0 (26)

Binary variables are given by x itn ω for the individual orders, y it ω
or the production decisions, and z ijt ω for the transitions.

 itnω , y itω , z i jtω ∈ { 0 , 1 } (27)

A complete description of the sets, indices, variables, and pa-

ameters for the stochastic model are given in Table 6 .

.5. Forecast disaggregation

The performance of the model is predicated on meeting specific

rders with a given order quantity and value. In addition, a high-

evel forecast is also provided to assist planning decisions where

rders are absent. Orders are entered daily, but there are often

imes when there is excess capacity particularly at the beginning

f each month before most orders are entered. Because specific

rders are difficult to forecast, greater accuracy can be achieved

orecasting total demand at a monthly level, albeit with a given

mount of error. Thus, the model must make schedules with two

emand signals: actual demand comprised of confirmed orders

hich, are entered into the system on a daily basis and must be

atisfied, along with a high-level forecasted product demand that

emains fixed for each month. To integrate these two signals, we

eveloped a disaggregation approach to break the monthly fore-

ast into individual orders distributed over the month as seen in

ig. 4 .

The first step taken to disaggregate the forecast is to calculate

he net forecast , which is simply the total forecast for the period in

uestion minus the sum of the actual demand.

m

net,it = max

(

F m

it −
∑

i,n,t∈ m

d it c n , 0

)

∀ i, t ≤ t c (28)

f the actual demand is greater than the forecasted demand, the

et forecast is 0 and the forecast is discarded because it underes-

imated the actual demand and provides no new information.

The net forecast is then broken into individual orders and dis-

ributed over the remaining horizon. Three basic disaggregation

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 9

Fig. 4. The forecast is provided at a high level by product and by month while the detailed scheduling must take into account specific orders and the forecast.

a

F

s

a

m

h

t

s

r

m

t

t

3

m

s

t

t

t

a

3

d

d

t

r

l

3

a

c

f

3

i

B

m

t

c

z

a

p

o

e

u

i

fi

t

t

c

o

g

h

w

t

4

l

T

e

s

a

h

l

c

t

o

t

p

l

further assume no forecast information is available to the model at

2 See https://github.com/hubbs5/public _ drl _ sc .
pproaches were developed, a uniform forecast disaggregation (see

ig. 5), a smoothed forecast disaggregation (see Fig. 6), and a

tochastic forecast disaggregation (see Fig. 7).

The following figures provide illustrations of how this is

chieved. The top left panel shows the actual demand that must be

et as of the first day of the simulation when only a few orders

ave been entered into the system. The top right panel shows how

he net forecast is divided according to the uniform, smoothed, or

tochastic approaches. The bottom panel then shows the net or

esultant forecast, which is reached by combining the actual de-

and with the disaggregated, high-level forecast values. This is

hen treated as the demand (d it n n) by the MILP and does not al-

er the formulation of the deterministic or stochastic models.

.5.1. Uniform forecast disaggregation

The uniform disaggregation approach is straightforward. The

onthly net forecast is calculated, and the forecasted demand is

pread evenly over the remaining days in the month. This leads

o some days that may already have high demand receiving addi-

ional demand (as can be seen on day 6 in Fig. 5). This can lead

he model to over estimating the short-term demand due to the

bnormally large spikes.

.5.2. Smoothed forecast disaggregation

The smoothed forecast disaggregation attempts to level out the

emand over the course of the month by calculating the average

emand level, and evening out each of the days until it reaches

hat point. Days that currently have above average actual demand

eceive no additional forecasted demand, whereas days that are

acking actual demand are provided forecasted demand.

.5.3. Stochastic demand forecast

The stochastic MILP requires multiple scenarios to be developed

nd optimized over. To address this, we keep the actual demand

onstant across all scenarios and adjust the forecast by sampling

rom a probability distribution over the remaining days.

.6. Shrinking horizon model

To incorporate additional information from the forecast, we also

mplement a schedule with a shrinking horizon such as found in

alasubramanian and Grossmann (2004) , which approximates a
ultistage stochastic programming problem through a sequence of

wo-stage programming problems with a shrinking horizon. In our

ase, a deterministic model is solved for the entire planning hori-

on. As in the rolling horizon models, the first H days are fixed

nd the K day schedule is passed to the simulator, and the model

roceeds to the next time period where it is re-optimized based

n updated demand information. This process is repeated for the

ntire, remaining simulation horizon. The shrinking horizon model

ses the smoothed forecast disaggregation method discussed above

n order to forecast future orders.

Unlike for the rolling horizon model, which optimizes over a

xed time range, each subsequent sub-model becomes smaller

han the previous in the shrinking horizon case. The model is rela-

ively large, particularly early on in the simulation, making it diffi-

ult to scale to longer horizons or for a larger number of products

r greater demand. This could be addressed by finding a middle

round, and using a rolling-horizon model with a larger lookahead

orizon with a shrinking horizon model as seen in Fig. 8 for times

here the lookahead horizon is larger than the remaining simula-

ion time.

. Example

The methods and model discussed in this paper have been tai-

ored to address the specific scheduling needs of an existing site.

he business constraints imposed on this problem differ from the

xisting literature enough to motivate a simplified example to en-

ure clarity in the mind of the reader. To this end, we will examine

 scaled-down, single-stage reactor with only two products and a

andful of orders to better understand the decision making prob-

ems faced by the models. Further, supporting code for this model

an be accessed on GitHub. 2 For this simplified example, we take

he values given in Tables 7 –8 , and assume all product transitions

ccur without off-grade losses. Additionally, note that in this case,

he reactor produces a single order per day of either product A or

roduct B, and has a five-day fixed planning horizon, and a ten-day

ookahead horizon that must be maintained. For simplicity, we will

https://github.com/hubbs5/public_drl_sc

10 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 5. Forecast disaggregation for a uniform forecast.

Table 7

Product data for simulated reactor.

Product Run Rate (Orders/Day) Average Standard Margin ($/Order) Curing Time (Days)

A 1 10 1

B 1 15 1

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 11

Fig. 6. Smoothed forecast disaggregation.

Table 8

Simulation parameters.

Parameter Value Description

H 5 Fixed Planning Horizon

K 10 Lookahead Planning Horizon

D 10 Number of Periods in Simulation

η 10% Percentage of Annual Working Capital Cost

α 25% Daily Late Shipment Penalty

t

a

t

v

a

f

b

H

S

p

s

s

c

his time. Finally, this example will use the same objective function

s the actual problem described in Eq. (1) .

At day 0, the model has no inventory and must begin producing

o meet the demand given in Table 9 . The schedule must be de-
eloped for the next 10 days according with the first 5 days fixed

ccording to the business rules, even though only enough demand

or four days is available.

Given the information we have, the optimal solution would

e to simply make product A. This can be seen by inspection.

owever, we can optimize the deterministic MILP model given in

ection 3.3 over this horizon as well, which yields the schedule

rovided in Fig. 9 .

Likewise, given the orders available to use at day 0 and the

chedule above, we can view the predicted inventory over the

cheduling horizon.

We see in Fig. 10 that net inventory reaches 0 by day 5 and

ontinues to grow at one order per day beyond that.

12 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 7. Stochastic forecast disaggregation.

Table 9

Example order book available at day 0.

Document Number Document Creation Date Order Due Date Product Order Quantity Order Margin ($/Order) Forecast Flag

1 0 3 A 1 10 0

2 0 3 A 1 10 0

3 0 5 A 1 10 0

4 0 4 A 1 10 0

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 13

Fig. 8. Illustration of shrinking horizon model.

Fig. 9. Optimal schedule for simplified example.

Table 10

Example order book available at day 1.

Document Number Document Creation Date Order Due Date Product Order Quantity Order Margin ($/Order) Forecast Flag

1 0 3 A 1 10 0

2 0 3 A 1 10 0

3 0 5 A 1 10 0

4 0 4 A 1 10 0

5 1 4 B 1 15 0

6 1 5 B 1 15 0

v

f

t

t

i

n

w
Moving to day 1, new orders are entered into the system, re-

ealing that the model has not scheduled any product to account

or demand corresponding to product B. Moreover, these orders fall

oo close to the fixed horizon to meet customer requests, and will

herefore incur a penalty as seen in Table 10 .
Re-optimizing at Day 1 while respecting the previous schedul-

ng decisions, we get a new optimal schedule in Fig. 11 .

Our predicted inventory is shown in Fig. 12 . In this case, the

ew orders force the net inventory negative, indicating that losses

ill be accruing on the relevant orders. In complex planning and

14 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 10. Predicted net inventory based on optimal schedule and order book at day 0.

Fig. 11. Optimal schedule for simplified example from day 1.

5

j

e

i

e

i

i

t

p

o

–

r
scheduling problems, these mistakes can continue to compound

over time, leading to larger divergence between the implemented

scheduling decisions and the optimal.

We can do the same with the RL approach. After training

the agent, a simple forward pass through the network enables

us to build the schedule shown in Fig. 13 . In this case, the RL

has been trained on similar demand profiles, therefore it antici-

pates some demand for Product B to arrive, although no demand

has been entered into the system at this time. This gives rise to

planned inventory of Product B as shown in Fig. 14 . Given that

the RL system only has orders for Product A, it prioritizes those

orders, but produces safety stock at the earliest possibility. This

small example problem trains after roughly 50 0 0 episodes which

takes about 110 s to complete using a 2.9GHz Intel i7-7820HQ
CPU. c
. Results and discussion

For the single-stage, industrial system, the RL model was sub-

ected to 50,0 0 0 Monte Carlo training episodes. Each training

pisode lasted for 90 simulated days and had the same schedul-

ng task, with different demand scenarios being generated for each

pisode. As shown in Fig. 15 , the agent begins by randomly select-

ng products to slot into the schedule. The performance early on

s quite poor as the agent loses roughly $50 0,0 0 0 per episode over

he first few thousand training episodes. The agent quickly learns a

roductive policy, however, and begins to improve its performance

ver time. Because the agent continues to explore as it is trained

the entropy loss portion of the loss function encourages explo-

ation – the average performance fluctuates over time as training
ontinues.

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 15

Fig. 12. Predicted net inventory based on optimal schedule and order book at day 1.

Fig. 13. RL schedule for simplified example from day 0.

e

g

5

o

o

i

u

o

C

u

f

s

p

t

p

r

d

d

a

t
The model trained quite readily and without much hyperparam-

ter tuning. The parameters used in training the model above are

iven in Table 11 .

.1. DRL And MILP performance

All models discussed were tasked with scheduling the reactor

ver an identical 90-day period. Because of the stochastic nature

f the model, we report average results as well as direct compar-

sons between models while holding the given scenario constant to

nderstand differences. The MILP models were all solved to a 1%

ptimality gap using Gurobi 8.1 using a 2.9 GHz Intel i7-7820HQ

PU with four cores (Gurobi Optimization LLC, 2020).
Additionally, because all of the models were trained in sim-

lation, we were able to build a deterministic model with per-

ect information that could optimize the schedule over the entire

imulation horizon. This perfect information mixed-integer linear

rogram (PIMILP) yields an optimistic upper bound for the sys-

em, and enables more thorough comparisons of the various ap-

roaches. This is particularly important because most DRL algo-

ithms lack optimality guarantees.

Fig. 16 shows the performance of the DRL agent along with the

eterministic models, two using the previously discussed forecast

isaggregation methods, and one without any forecast. The MILP

nd DRL models solved 10 scenarios and were compared against

he PIMILP. The reported gap is the mean absolute percentage dif-

16 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 14. RL schedule for simplified example from day 0.

Fig. 15. Reinforcement learning training curve.

Table 11

Hyperparameter values used to train the DRL agent.

Parameter Value Description

Discount Factor (γ) 0.95 The scalar value that discounts future rewards back to

the present.

Entropy regularization (β) 10 −4 Multiplier to scale the entropy regularization value.

Higher values encourage more exploration and a

potentially unstable policy, whereas lower values have a

smaller effect and lead to more exploitation of the

current policy.

Actor Learning Rate (απ) 5 × 10 −6 Adjusts the step size for the actor network during

stochastic gradient descent updates.

Critic Learning Rate (αˆ v) 10 −4 Adjusts the step size for the critic network during

stochastic gradient decent updates.

Batch Size 128 Number of batches of training data collected before

updating network weights and biases.

Number of Hidden Nodes per Layer 512 The network trained using a feed-forward architecture

with a constant number of nodes per hidden layer.

Number of Hidden Layers 12 Number of layers between the input layer and output

layer which are fixed by the environment.

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 17

Fig. 16. Reinforcement learning compared to MILP and various forecast disaggregation methods as a percentage of optimality.

Fig. 17. Gantt chart for the RL agent, Deterministic MILP with Smoothed Demand Forecast, Deterministic MILP with Shrinking Horizon, and the Perfect Information Mixed-

Integer Linear Program.

f

t

p

i

f

s

m

t

a

t

s

a

s

l

o

o

f

T

s

a

i

t

c

i

b

t

a

T

a

c

f

t

s

R
erence between each of the solution methods and the results of

he perfect information model which acts as an upper bound.

The forecast disaggregation approaches greatly improved the

erformance over the MILP without a forecast yielding, each yield-

ng an average gap of 62% versus the optimal compared to 100%

or the model without a forecast. The stochastic program yielded

olutions with a 61% gap, but much lower variance than the deter-

inistic methods. The MILP with a shrinking horizon performed

he best, reaching an average gap of 17%, however with larger vari-

nce than the DRL methods - 6.3% and 4.0% respectively - while

he RL system generated schedules yielding a gap of only 19% ver-

us the optimum. This indicates that the DRL system is capable of

ccounting for the uncertainty in the system by training on the

imulation environment.

Examining the schedules (see Fig. 17) we see that the RL agent

earns a cycle from product A to B to D to C, which yields 75 MT

f lost prime production for the cycle. This is a similar cycle as the

ne employed by the deterministic MILP with smoothed demand

orecast early in the simulation when demand is generally lower.
he deterministic model has much shorter cycles, however, often

witching each day, whereas the RL solution has longer campaigns

s it moves through the product portfolio.

The regular switching of the deterministic model leads to lower

nventory levels over the simulation horizon (Fig. 18), but it fails

o build sufficient inventory levels in low-demand situations to ac-

ount for increased demand later. The RL system’s inventory build

s comparably steady as it moves through its cycles. This leads to

etter product availability levels as shown in Fig. 19 . Ultimately,

his improved inventory management translates to fewer delays

nd late penalties for a better overall reward as depicted in Fig. 20 .

hus, while the product availability of the RL system is higher, so

re the inventory costs, which provide a buffer in the face of un-

ertainty.

Table 12 shows the different simulation times and model sizes

or the different approaches explored in this paper. The reported

imes are the average simulation times to complete the 90-day test

imulation. The comparison is not entirely similar given that the

L model is trained in advance on 50,0 0 0 different 90-day scenar-

18 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 18. Inventory over time for RL agent, Deterministic MILP with Smoothed Demand Forecast, Deterministic MILP with Shrinking Horizon, and the Perfect Information

Mixed-Integer Linear Program.

Fig. 19. Product availability for the RL agent, Deterministic MILP with Smoothed Demand Forecast, Deterministic MILP with Shrinking Horizon, and the Perfect Information

Mixed-Integer Linear Program.

t

I

a

c

m

t

a

s

j

e

p

f

m

p
ios then deployed to generate schedules on the test scenarios. The

computational expense, in this case, is paid up front while each ad-

ditional inference during testing is computationally cheap. For ex-

ample, to simulate one training episode, the RL agent takes about

0.8 s, but must do this thousands of times. For inference, the time

is greatly reduced because the RL system only needs to make de-

cisions for one episode and is not required to update the weights

via the computationally intensive backpropagation algorithm. The

MILP algorithms, on the other hand, are only required to solve each

scenario once, but solve 90 smaller, sub-problems as the simula-

tion moves through time.

5.2. Robustness

One of the well-known issues with model-free DRL is the lack

of robustness if there are changes in the environment. This is par-
icularly relevant for a system that is intended to be market-facing.

f customers change their buying habits or prices shift significantly

way from the training regime, performance will drop off.

For this reason, it is important to gauge the performance de-

line of the system when exposed to states and situations that the

odel has not seen in training. The training cases we subjected

he models to begin in a period of low demand, and ramped up to

 peak with higher demand in the last month versus the first and

econd. To test the robustness of the DRL solution, we can sub-

ect it to the same total demand and product mix, but distributed

venly over the simulation horizon to determine whether or not it

erforms as well (see Fig. 21 for an illustration). In short, we move

rom a training simulation with seasonality, to a testing environ-

ent without seasonal demand effects.

Comparing multiple scenarios under this new, uniform demand

rofile to the output of the PIMILP model, we can see the optimal-

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 19

Fig. 20. Cumulative rewards for the RL agent, Deterministic MILP with Smoothed Demand Forecast, Deterministic MILP with Shrinking Horizon, and the Perfect Information

Mixed-Integer Linear Program.

Table 12

Average model sizes and simulation times.

Model Avg. Number of Variables Avg. Number of Binary Variables Avg. Sim Time (s)

Deterministic MILP with No Forecast 16,498 7931 83

Deterministic MILP with Uniform Forecast 33,048 15,746 197

Deterministic MILP with Smoothed Forecast 34,356 16,332 298

Shrinking Horizon MILP 272,028 133,985 4193

Stochastic MILP 918,069 432,913 21,913

Model Training Episodes Avg. Train Time (s) Avg. Sim Time (s)

RL 50,000 40,248 0.021

i

v

m

e

e

b

v

i

d

f

s

F

i

ty gap and decrease from changing the environmental variables

ersus the training environment.

In Fig. 22 , we show the original results for both the DRL

odel alongside one of the simpler and poorer performing mod-

ls, DMILP with Smoothed Forecast, to demonstrate the differ-

nce in robustness between the DRL approach and the model
ig. 21. Average cumulative demand profiles to test robustness of DRL solution. Note the

n the training profile as demand increases to a seasonal peak.
ased, MILP approach. With the new demand scenario, the gap

ersus the original demand environment was 19%, but now comes

n at an 87% gap in the environment it has not seen. The

eterministic MILP improves slightly between the two, rising

rom an average gap of 61% to 59% under this new demand

cenario.
 cumulative testing demand increases at a constant rate while there are inflections

20 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

Fig. 22. Optimality gap for DRL and Deterministic MILP with Smoothed Forecast under training demand profile and under the uniform demand profile.

Fig. 23. Product availability for the RL agent, Deterministic MILP with Smoothed Demand Forecast and the Perfect Information Mixed-Integer Linear Program under the

uniformly distributed demand scenarios.

l

p

T

t

v

w

a

t

s

w

e

M

H

e

t

H

b

Examining the details of a single run under this new scenario,

we see that the DRL agent remains relatively consistent in its

scheduling decisions exhibiting the same cyclic pattern as shown

in Fig. 17 , albeit with a shorter mean cycle time (8.3 days per cy-

cle compared to 12.6 days). This reduction in cycle time, as well

as poorer transition decisions as the agent finds itself facing states

outside of its previous experience, increases the off-grade produc-

tion by a factor of two. The loss in prime product further keeps the

DRL agent from meeting its goals yielding poorer performance over

the course of the simulation as it falls farther behind over time, de-

spite maintaining relatively high product availability (see Figs. 23

and 24). Despite these limitations, the DRL model still outperforms

the MILP without forecast disaggregation on the new demand pro-

file by 29%.

The fragility of the RL policy to changes in the demand dis-

tribution is not uncommon - all of its training data was selected

from a different distribution, thus by shifting it, we see a dramatic

drop in performance. However, it is important to understand the
imitations of RL algorithms. Being model-free, they have fewer ca-

abilities when responding to large changes in the environment.

hese limitations can be addressed by re-training the system on

he new distribution before deployment, or perhaps through de-

elopment of hybrid models which can leverage the best of both

orlds from the machine learning and MILP frameworks. Addition-

lly, providing a system of trained agents that are more responsive

o different regions of the state space or special situations out-

ide of the assumed demand distribution, may prove fruitful as

ell.

While numerous other DRL algorithms exist in the lit-

rature (e.g. A3C, TRPO, PPO, Rainbow, and so forth) (see

nih et al. (2016) , Schulman et al. (2015) , Schulman et al. (2017) ,

essel et al. (2018) respectively), A2C was selected for its relative

ase of implementation and the existence of fewer hyperparame-

ers to tune. Moreover, good results were relatively easy to obtain.

owever, exploration of these other algorithms may yield more ro-

ust policies.

C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982 21

Fig. 24. Cumulative rewards for the RL agent, Deterministic MILP with Smoothed Demand Forecast and the Perfect Information Mixed-Integer Linear Program under the

uniformly distributed demand scenarios.

6

p

a

c

s

r

l

a

d

m

c

D

p

c

t

r

t

a

e

S

m

s

m

m

p

t

D

l

s

m

q

t

w

t

i

p

p

r

t

a

r

s

o

a

p

t

D

c

i

C

W

N

r

a

J

A

R

B

B

B

B
B
. Conclusions

A reinforcement learning model has been developed and pro-

osed for dynamic scheduling of a single-stage multi-product re-

ctor. The proposed approach provides a natural representation for

apturing the uncertainty in a system and outperforms the MILP

chedulers operating with a short receding time horizon for this

eason. The incorporation of a forecast and changing to a longer

ookahead by switching to the shrinking horizon MILP model en-

bles this approach to perform better than all others.

DRL provides a viable and promising approach for chemical pro-

uction scheduling. It is often easier to incorporate uncertain ele-

ents in simulation versus in a mathematical program. This un-

ertainty can be represented by the DRL agent such that, once the

RL agent is trained, it can produce schedules online, that are su-

erior to more computationally intensive methods. The schedule

an be generated almost instantly via a sequence of forward-passes

hrough a deep neural network. This makes DRL for use-cases with

egular and rapid rescheduling a valuable approach, given a system

hat can be simulated.

DRL has obvious advantages, however there are drawbacks

s well. There is no guarantee of optimality with policy gradi-

nt methods apart from the REINFORCE algorithm as shown in

utton et al. (1999) , which can be shown to converge to local opti-

ality in the limit. Additionally, DRL requires a large number of

amples in order to learn a good policy, samples that typically

ust come through interaction with a simulator. This simulator

ust be efficient and can be difficult to build. Finally, the DRL ap-

roach lacks robustness to different, out of sample demand dis-

ributions than seen during training. Thus, if possible to combine

RL and model-based optimization methods. it may be possible to

everage the advantages of both approaches, leading to powerful

cheduling algorithms.

One possible path towards integration may be to use a MILP

odel as an “oracle” during training, which the DRL agent can

uery when there is no clear action probability that dominates. In

his respect, the DRL agent can invoke an expensive solver only

hen needed and learn from the solver to take those actions in

he future without having to consult the oracle. Another possibility

s using the DRL agent to restrict the search space in a stochastic

rogramming algorithm. The agent, once trained, could assign low
robability of receiving a high reward to certain actions in order to

emove those branches and accelerate the search of the optimiza-

ion algorithm.

Future research will explore possibilities for integrating DRL

nd optimization methods, examining DRL in a continuous time

epresentation, and extending DRL to multi-stage and multi-agent

ystems for network optimization approaches. Additional sources

f uncertainty may be considered as well such as maintenance

nd equipment reliability, changes in the prime rates of transitions,

rice fluctuations, and so forth to more accurately mirror the ac-

ual system in question.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Christian D. Hubbs: Conceptualization, Methodology, Software,

riting - original draft. Can Li: Conceptualization, Methodology.

ikolaos V. Sahinidis: Conceptualization, Methodology, Writing -

eview & editing, Supervision. Ignacio E. Grossmann: Conceptu-

lization, Methodology, Writing - review & editing, Supervision.

ohn M. Wassick: Conceptualization, Methodology, Supervision.

cknowledgment

Funding from Dow Chemical is gratefully acknowledged.

eferences

adgwell, T.A. , Lee, J.H. , Liu, K.-h. , 2018. Reinforcement learning overview of recent
progress and implications for process control. In: International Symposium on

Process Systems Engineering, pp. 71–85 .
alasubramanian, J., Grossmann, I., 2003. Scheduling optimization under uncer-

tainty an alternative approach. Comput. Chem. Eng. 27, 469–490. doi: 10.1016/
S0 098-1354(02)0 0221-1 .

alasubramanian, J., Grossmann, I.E., 2004. Approximation to multistage stochastic

optimization in multiperiod batch plant scheduling under demand uncertainty.
Ind. Eng. Chem. Res. 43, 3695–3713. doi: 10.1021/ie030308+ .

ellman, R., 1957. A Markovian decision process. 10.1007/BF02935461 .
ertsimas, D., Brown, D.B., Caramanis, C., 2011. Theory and applications of robust

optimization. SIAM Rev. 53 (3), 464–501. doi: 10.1137/080734510 .

http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0001
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0001
https://doi.org/10.1016/S0098-1354(02)00221-1
https://doi.org/10.1021/ie030308+
https://doi.org/10.1007/BF02935461
https://doi.org/10.1137/080734510

22 C.D. Hubbs, C. Li and N.V. Sahinidis et al. / Computers and Chemical Engineering 141 (2020) 106982

O

P

P

R

S

S

S

S

S

S

S

S

W

W

Z

Birge, J. , Louveaux, F. , 1997. Introduction to Stochastic Programming. Springer, New
York .

Bishop, C.M. , 2006. Pattern Recognition and Machine Learning. Springer, Heidelberg .
Grossmann, I.E., Apap, R.M., Calfa, B.A., García-Herreros, P., Zhang, Q., 2016. Recent

advances in mathematical programming techniques for the optimization of pro-
cess systems under uncertainty. Comput. Chem. Eng. 91, 3–14. doi: 10.1016/j.

compchemeng.2016.03.002 .
Gupta, D., Maravelias, C.T., 2016. On deterministic online scheduling: major con-

siderations, paradoxes and remedies. Comput. Chem. Eng. 94, 312–330. doi: 10.

1016/j.compchemeng.2016.08.006 .
Gurobi Optimization LLC, 2020. Gurobi optimizer reference manual.

Harjunkoski, I., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S., Grossmann, I.E.,
Hooker, J., Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial applica-

tions of production scheduling models and solution methods. Comput. Chem.
Eng. 62, 161–193. doi: 10.1016/j.compchemeng.2013.12.001 .

Harjunkoski, I., Nyström, R., Horch, A., 2009. Integration of scheduling and control-

theory or practice? Comput. Chem. Eng. 33 (12), 1909–1918. doi: 10.1016/j.
compchemeng.2009.06.016 .

Hessel, M. , Modayil, J. , Schaul, T. , Ostrovski, G. , Dabney, W. , Horgan, D. , Silver, D. ,
2018. Rainbow: combining improvements in deep reinforcement learning. AAAI .

Huang, K., Ahmed, S., 2009. The value of multistage stochastic programming in ca-
pacity planning under uncertainty. Oper. Res. 57 (4), 893–904. doi: 10.1287/opre.

1080.0623 .

Jung, J.Y., Blau, G., Pekny, J.F., Reklaitis, G.V., Eversdyk, D., 2004. A simulation based
optimization approach to supply chain management under demand uncertainty.

Comput. Chem. Eng. 28 (10), 2087–2106. doi: 10.1016/j.compchemeng.2004.06.
006 .

Lee, J.H., Shin, J., Realff, M.J., 2018. Machine learning: overview of the recent pro-
gresses and implications for the process systems engineering field. Comput.

Chem. Eng. 114, 111–121. doi: 10.1016/j.compchemeng.2017.10.008 .

Lewis, F.L. , Liu, D. , 2013. Reinforcement Learning and Approximate Dynamic Pro-
gramming for Feedback Control. Wiley, Hoboken, New Jersey .

Li, Y., 2017. Deep reinforcement learning: an overview, 1–70. 10.1007/978-3-319-
56991-8_32

Li, Z., Ierapetritou, M., 2008. Process scheduling under uncertainty: review and
challenges. Comput. Chem. Eng. 32 (4–5), 715–727. doi: 10.1016/j.compchemeng.

20 07.03.0 01 .

Lin, X., Janak, S.L., Floudas, C.A., 2004. A new robust optimization approach for
scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28

(6–7), 1069–1085. doi: 10.1016/j.compchemeng.2003.09.020 .
Mao, H., Alizadeh, M., Menache, I., Kandula, S., 2016. Resource management with

deep reinforcement learning. In: HotNets, pp. 50–56. doi: 10.1145/3005745.
3005750 .

Martinez, Y. , Nowe, A. , Suarez, J. , Bello, R. , 2011. A reinforcement learning approach

for the flexible job shop scheduling problem. In: Coello, C.A. (Ed.), Learning and
Intelligent Optimization. Springer Verlag, pp. 253–262 .

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21 (6),

1087–1092. doi: 10.1063/1.1699114 .
Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,

Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement learning,
48 arXiv:1602.01783 doi: 10.1177/0956797613514093 .

Morinelly, J.E., Ydstie, B.E., 2016. Dual MPC with reinforcement learning. IFAC-

PapersOnLine 49 (7), 266–271. doi: 10.1016/j.ifacol.2016.07.276 .
Mortazavi, A., Arshadi Khamseh, A., Azimi, P., 2015. Designing of an intelligent self-

adaptive model for supply chain ordering management system. Eng. Appl. Artif.
Intell. 37, 207–220. doi: 10.1016/j.engappai.2014.09.004 .
roojlooyjadid, A., Nazari, M., Snyder, L., Takáč, M., 2017. A deep Q-network for the
beer game: a reinforcement learning algorithm to solve inventory optimization

problems1–38. arXiv: 1708.05924
alombarini, J., Barsce, J. C., Martinez, E., 2018. Generating rescheduling knowledge

using reinforcement learning in a cognitive architecture 2 real-time reschedul-
ing in soar cognitive architecture. arXiv preprint.

aszke, A. , Gross, S. , Chintala, S. , Chanan, G. , Yang, E. , DeVito, Z. , Lin, Z. , Desmai-
son, A. , Antiga, L. , Lerer, A. , 2017. Automatic differentiation in PyTorch. NIPS Au-

todiff Workshop .

iedmiller, S. , Riedmiller, M. , 1999. A neural reinforcement learning approach to
learn local dispatching policies in production scheduling. In: IJCAI International

Joint Conference on Artificial Intelligence, vol. 2, pp. 764–769 .
ahinidis, N.V., 2004. Optimization under uncertainty: State-of-the-art and oppor-

tunities. In: Computers and Chemical Engineering, vol. 28, pp. 971–983. doi: 10.
1016/j.compchemeng.2003.09.017 .

and, G., Engell, S., 2004. Modeling and solving real-time scheduling problems

by stochastic integer programming. Comput. Chem. Eng. 28 (6–7), 1087–1103.
doi: 10.1016/j.compchemeng.20 03.09.0 09 .

chneider, J.G. , Boyan, J.A. , Moore, A.W. , 1998. Value function based production
scheduling. In: International Conference on Machine Learning, Madison, Wis-

consin, USA, vol. 15, pp. 522–530 .
chulman, J., Levine, S., Moritz, P., Jordan, M. I., Abbeel, P., 2015. Trust region policy

optimization. arXiv: 10.3917/rai.067.0031 .

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy
optimization algorithms John. arXiv: 10.1016/j.conb.2007.07.004 .

Shobrys, D.E., White, D.C., 2002. Planning, scheduling and control systems: why
cannot they work together. Comput. Chem. Eng. 26 (2), 149–160. doi: 10.1016/

S0 098-1354(01)0 0737-2 .
ilver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G.V.D., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., 2016. Mastering the game of Go with deep neural networks

and tree search. Nature 529 (7585), 4 84–4 89. doi: 10.1038/nature16961 .
ilver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hu-

bert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
Van Den Driessche, G., Graepel, T., Hassabis, D., 2017. Mastering the game

of Go without human knowledge. Nature 550 (7676), 354–359. doi: 10.1038/

nature24270 .
ingh, S. P., Sutton, R. S., 1996. Reinforcement learning with replacing elibility traces.

Stockheim, T. , Schwind, M. , Wolfgang, K. , 2003. A reinforcement learning approach
for supply chain management. 1st European Workshop on Multi-Agent Systems .

Sutton, R. , Barto, A. , 2018. Reinforcement Learning: An Introduction, second ed. MIT
Press, Cambridge, Massachusetts .

Sutton, R.S. , Mcallester, D. , Singh, S. , Mansour, Y. , 1999. Policy Gradient Methods for

Reinforcement Learning with Function Approximation. Adv. Neural Inf. Process.
Syst. 12, 1057–1063 . doi:10.1.1.37.9714

utton Richard, S., 1988. Learning to predict by the method of temporal differences.
Mach. Learn. 3 (1), 9–44. doi: 10.1023/A:1018056104778 .

atkins, C.J.C.H. , 1989. Learning from Delayed Rewards. University of Cambridge
Ph.D. thesis .

illiams, R.J. , 1992. Simple statistical gradient following algorithms for connection-
ist reinforcement learning. Mach. Learn. 8 (3–4), 229–256 .

hang, W. , Dietterich, T. , 1995. A reinforcement learning approach to job-shop

scheduling. In: International Joint Conference on Artificial Intelligence,
pp. 1114–1120 .

http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0005
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0006
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0006
https://doi.org/10.1016/j.compchemeng.2016.03.002
https://doi.org/10.1016/j.compchemeng.2016.08.006
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1016/j.compchemeng.2009.06.016
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0011
https://doi.org/10.1287/opre.1080.0623
https://doi.org/10.1016/j.compchemeng.2004.06.006
https://doi.org/10.1016/j.compchemeng.2017.10.008
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0015
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0015
https://doi.org/10.1016/j.compchemeng.2007.03.001
https://doi.org/10.1016/j.compchemeng.2003.09.020
https://doi.org/10.1145/3005745.3005750
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0019
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0019
https://doi.org/10.1063/1.1699114
http://arxiv.org/abs/1602.01783
https://doi.org/10.1177/0956797613514093
https://doi.org/10.1016/j.ifacol.2016.07.276
https://doi.org/10.1016/j.engappai.2014.09.004
http://arxiv.org/abs/1708.05924
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0024
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0025
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0025
https://doi.org/10.1016/j.compchemeng.2003.09.017
https://doi.org/10.1016/j.compchemeng.2003.09.009
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0028
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0028
http://arxiv.org/abs/10.3917/rai.067.0031
http://arxiv.org/abs/10.1016/j.conb.2007.07.004
https://doi.org/10.1016/S0098-1354(01)00737-2
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0032
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0033
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0034
https://doi.org/10.1023/A:1018056104778
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0036
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0037
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0038
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0038
http://refhub.elsevier.com/S0098-1354(20)30159-9/sbref0038

	A deep reinforcement learning approach for chemical production scheduling
	1 Introduction
	2 Problem statement
	3 Methods
	3.1 Reinforcement learning model
	3.1.1 Reinforcement learning algorithm
	3.1.2 Action selection
	3.1.3 Training
	3.1.4 State

	3.2 Deterministic optimization model
	3.3 Mathematical formulation
	3.3.1 Mass balance
	3.3.2 Transition constraints
	3.3.3 Shipping constraints
	3.3.4 Production constraints

	3.4 Stochastic optimization
	3.4.1 Mass balance
	3.4.2 Transition constraints
	3.4.3 Shipping constraints
	3.4.4 Production constraints
	3.4.5 Non-anticipativity constraints

	3.5 Forecast disaggregation
	3.5.1 Uniform forecast disaggregation
	3.5.2 Smoothed forecast disaggregation
	3.5.3 Stochastic demand forecast

	3.6 Shrinking horizon model

	4 Example
	5 Results and discussion
	5.1 DRL And MILP performance
	5.2 Robustness

	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References

