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a b s t r a c t 

This work proposes a two-level hierarchical constrained control structure for reinforcement learning (RL) 

with application in a Primary Separation Vessel (PSV). The lower level is concerned with servo tracking 

and regulation of the interface level against variances in ore quality by manipulating middlings flow rate. 

At the higher level, with the objective to optimize bitumen recovery rate, a supervisory interface level 

setpoint control is implemented. To prevent sanding, tailings density regulation using tailings withdrawal 

flow rate is proposed. For each case, an asynchronous advantage actor-critic (A3C) based agent is chosen 

to interact with a high-fidelity PSV model to learn the near optimal control strategy through episodic 

interactions. Each of the three control loops is sequentially learnt. In the interface level control loop, a 

behavioral cloning based two-phase learning scheme to promote stable state space exploration is pro- 

posed. The proposed hierarchical structure successfully demonstrates improved bitumen recovery rate by 

manipulating the interface level while preventing sanding. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Canada has the third-largest proven oil reserves in the world.

hese oil reserves exist primarily in the form of oil sands; a

oose formation of sand grains or solid sandstone with clay, in-

erspersed with bitumen, a heavy and viscous form of crude oil.

itumen can be extracted and processed to produce crude oil

 Cleveland and Morris, 2014 ). The Canadian oil sands industry has

 capacity of producing 166.3 billion barrels of crude oil prod-

cts ( Government of Canada, 2018 ). Sales from oil sands produc-

rs alone added up to CAD$40 billion in 2016 ( CAPP, 2016 ). The

evenue and employment opportunities generated contribute sig-

ificantly to the national economy. 

One-fifth of the total oil sands production is based on open-

it ore extraction. It starts with the mining phase where oil sands

re is shoveled out of the ground. The mined ore is then crushed

nd transported for the extraction phase. For extraction, heat and

hemicals are added to the crushed ore to form a slurry mixture.

his mixture is then sent to a gravity separation vessel known as

he Primary Separation Vessel (PSV). Once the slurry is fed into

he PSV through a feed stream, it forms three distinct layers due

o the difference in their densities. These layers are known as the
∗ Corresponding author. 
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roth layer, the middlings layer, and the tailings layer. The process

escribed is illustrated by means of a block diagram in Fig. 1 . 

The froth layer that contains mostly bitumen (around 60% bitu-

en, 10% solids, and 30% water), floats to form the top layer and

verflows to upgrading for further treatment. The heaviest particles

recipitate at the bottom forming the tailings layer which is with-

rawn for further processing before being disposed into a tailings

ond. The remaining composition contains mostly water (59% wa-

er, 24% bitumen, and 17% solids) and forms the middlings layer in

etween the froth and the tailings layer. A middlings side stream

s pumped from the middle of the vessel to a secondary separa-

ion phase for further treatment to recover the leftover bitumen

hat does not float to the top froth layer. 

A highly efficient PSV achieves maximum recovery of bitumen

elative to water and solid particles. It reduces the additional pro-

essing load on the downstream separation processes. This is ow-

ng to the fact that high-quality froth obtained from primary sep-

ration requires less processing and energy to remove the remain-

ng solids and water. Hence, the PSV plays a major role in gravity-

ased separation of bitumen from oil sands. Optimal recovery of

itumen through froth, and overall efficiency of the extraction pro-

ess, plays a crucial role in the economic and environmental im-

act that the oil sands industry creates ( Gilbert, 2004 ). Hence, op-

imal operation of PSV can help achieve environmental and finan-

ial targets. 

Hence, with the objective of improving the bitumen recov-

ry rate, the first process variable to be considered is the froth-
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Fig. 1. Block Diagram of the Ore Handling Process. 
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middlings interface level which directly affects the bitumen re-

covery rate and has to be regulated within an operational range.

Otherwise, it can result in either reducing the quality of the froth

being recovered ( Li et al., 2011 ), or losing bitumen to the tailings

layer causing further contamination of the tailings pond ( Masliyah

et al., 1981 ). Besides improving the bitumen recovery, it is crucial

to control the density of the tailings layer which is to be main-

tained below a certain operational value to avoid excess sand bed

build-up in the vessel bottom ( Masliyah et al., 1984 ). This can lead

to complete pipeline plugging, also referred to as the ’sanding’

phenomenon, particularly if it is associated with a lower tailings

withdrawal flow rate. 

The theoretical and experimental work reported in Masliyah et

al., 1981 provides the foundation for modeling the PSV. This forms

the basis for evaluation of the separation performance of PSV in

general. More specifically, control oriented as well as operating

range oriented studies have also been reported. A typical control

problem was developed in Masliyah et al. (1984) with classical

multi-loop Proportional Integral (PI) controllers for interface level,

and tailings density. However, improving the bitumen recovery was

not considered in the control objective. 

In Liu et al. (2015) , an improved economic model predictive

controller (MPC) scheme was applied on a PSV model. The objec-

tive was to maximize the overall recovery rate of bitumen without,

however, considering the sanding problem. In Gilbert (2004) , opti-

mal input trajectories were calculated off-line for different known

ore grade transitions. The actual implementation of these optimal

trajectories requires the PSV operators to have prior knowledge of

the ore quality which limits the applicability of such open-loop

control only to known ore grades. 

Based on the existing literature, it is concluded that factors

such as ore grade, feed flow rate, assumed particle size distribu-

tion, and other uncertainties related to modeling assumptions are

uncontrollable. They constitute sources of uncertainties and distur-

bances. Consequently, it impacts the density of the tailings and the

middlings layer, resulting in reduced bitumen recovery, and affects

separation performance of the PSV in general. None of the existing

works actually have taken into consideration the impact of unpre-

dicted nature of all different disturbances on the separation perfor-

mance. Therefore, we cope with such challenges by using a model

free approach like RL in order to provide a generalized solution

to such a complex problem. Morever, the recovery rate has direct

implication on the economies of this extraction scheme. The sec-

ondary extraction via middlings adds up to the cost. To minimize

this impact, the control scheme is formulated as a hierarchical

structure to optimize the bitumen recovery. This is done through

the manipulation of the froth-middlings interface level. Also, the
ensity of the tailings layer is regulated to prevent sanding in the

ailings layer. 

Reinforcement learning (RL) has gained popularity as a control

cheme in recent times due to its ability to learn through trial and

rror. RL algorithms learn by interacting directly with the environ-

ent to sample the optimal actions in order to achieve a specified

oal ( Sutton and Barto, 2017 ). In the RL context, the action selec-

ion is carried out by the agent, and the process with which the

gent interacts is the environment. The framework of their interac-

ion is a Markov decision process (MDP). In a MDP, there are states

hat the environment can assume, actions that the agent can take,

nd the reward that is obtained by virtue of taking a particular

ction in the current observed states. The agent’s state to action

apping vector is known as the policy while the cumulative long-

erm rewards are called the value/action-value function. 

RL borrows its formal structure from optimal control where the

bjective is to design a controller to minimize an objective func-

ion of a dynamical system’s behavior over time ( Sutton et al.,

991 ). The approach towards solving this problem considers the

tate to generate actions and then the value function is used to

mprove the choice of actions for the dynamical system. This is

onsidered to satisfy Bellman optimality. It is from here that the

iscrete stochastic version of the optimal control structure, MDP,

ails from. Employing temporal-difference (TD) learning to find the

ptimal policy for a MDP in the 1980’s resulted in the reinforce-

ent learning structure that is now widely utilized ( Sutton and

arto, 2017 ). 

Q-learning, which considers the action-value function (Q-

unction) in learning the policy was instrumental in the initial pop-

larity of RL ( Watkins and Holloway, 2014 ). It was, however, lim-

ted by the curse of dimensionality. A solution to this problem was

roposed in the form of neural network based function approxima-

ors to estimate the Q-function (DQN) for higher dimensional state

paces in RL problems ( Mnih et al., 2015 ). This enabled control

f continuous state space environments with discrete, finite action

paces. Continuous action space optimization was made possible

ith the introduction of deterministic policy gradient (DPG) al-

orithm, which employed a neural network approximator for the

olicy, enabling continuous state to action mapping ( Silver et al.,

014 ). DPG had the ability to control continuous states through

ontinuous actions. However, not only was it computationally ex-

ensive, it also suffered from large variance in its gradients. This

s attributed to the Monte-Carlo type learning leading to uncor-

elated samples. The sample efficiency was further improved in

eep deterministic policy gradient (DDPG) which combined DPG

nd DQN in an actor-critic type model-free architecture for solving

ore than 20 simulated physics tasks ( Lillicrap et al., 2015 ). 
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Actor-critic algorithms constitute of an actor which represents

he policy and a critic that represents the action-value function.

hey employ a Monte-Carlo kind of scheme where learning oc-

urs over experience. Experience is gained from multiple repeated

pisodes to regress an approximation for returns in the form of the

ction-value function in actor-critic methods ( Nguyen et al., 2018 ).

his allows the actor-critic algorithms to be model-free ( Sutton and

arto, 2017 ). In off-policy schemes, the local policy interacts with

he environment, from which the rewards and consequently the

eturns are calculated. Based on the returns, the local policy pulls

he global policy to optimize the returns. Every update to the ac-

or is preceded by an update to the critic. The update to the critic

s based on minimizing a mean square error (MSE) criterion in

redicting the returns, meant to improve the estimate from the

ction-value function. Using this sequential approach to learning

n actor-critic, convergence to a near optimal policy can be guar-

nteed ( Sutton and Barto, 2017 ). 

Continuous space control was demonstrated using DDPG on

 variety of 3D tasks ( Schulman et al., 2015 ), a combination of

QN and DDPG for mobile robot control ( Tai et al., 2017 ), stochas-

ic value gradients (SVG) on several physics tasks ( Heess et al.,

015 ), and an asynchronous variant of actor-critic on Atari domain

 Mnih et al., 2016 ). Due to these successful RL implementations in

arious domains, it makes sense to extend it to process control ap-

lications. Drawing analogy between the two, the goal of the RL

gent in the process control domain would be to keep a multivari-

ble process within safe operational limits while maintaining it at

he setpoint despite process disturbances and measurement noise

 Shin et al., 2019 ). 

The ability of RL algorithms to self-learn from direct interaction

ith the process data make them suitable for use with nonlinear

rocesses where deriving the process model might not be possible

r accurate ( Spielberg et al., 2017 ). Due to their self-learning na-

ure, they also have the ability to adapt to process disturbances

nd shifts in operating conditions. Previously, a successful con-

rol of thermostat scheduling for office space in a discrete action

pace setting has been reported ( Wang et al., 2017 ). Also, continu-

us space optimization using a policy gradient based approach has

lso been reported ( Wang et al., 2018 ). These schemes were based

n on-policy proximal actor-critic setup. 

A model-based RL method is used with deep neural network

DNN) approximators to address the finite horizon optimal con-

rol problem in Kim et al., 2020 . The control problem is formu-

ated in Hamiltonian-Jacobi-Bellman (HJB) format with illustra-

ion on a nonlinear batch reactor and 1-dimensional diffusion-

onvection-reaction process. The authors in Lee, Jong Min and

ee, Jay H. (2005) propose and contrast two approximate dynamic

rogramming approaches using function approximation, a model-

ased approach and model-free Q-learning for data-driven control

f nonlinear processes implemented on a CSTR. While these two

apers address continuous tracking control using DNNs and a near-

st neighbour local averager, they are not concerned with produc-

ion or economic optimization. A factorial policy based RL solution

or production optimization of large-scale chemical plant was pre-

ented in Cui, Yunduan and Zhu, Lingwei and Fujisaki, Morihiro

nd Kanokogi, Hiroaki and Matsubara, Takamitsu (2018) . The op-

imization was carried out using model-free RL and implemented

n a vinyl acetate monomer (VAM) plant to maximize the VAM

ield and quality while maintaining plant stability. Actor-critic was

mployed in Ge, Yulei and Li, Shurong and Chang, Peng (2018) to

nd the optimal Alkali-Surfactant-Polymer injection control strat-

gy to enhance oil recovery taking the net present value (NPV) as

he initial performance index. The work in Cui, Yunduan and Zhu,

ingwei and Fujisaki, Morihiro and Kanokogi, Hiroaki and Matsub-

ra, Takamitsu (2018) and Ge, Yulei and Li, Shurong and Chang,

eng (2018) uses RL for optimal control, but does not take into
ccount tracking control and relies on conventional controllers for

hat. 

Nian et al. employed contextual bandit for fault detection and

QN for fault tolerant control of a Wood Berry distillation col-

mn ( Nian et al., 2019 ). These works concentrate on tracking con-

rol, optimal control or fault tolerant control individually. This work

ims to provide a comprehensive solution that tackles both track-

ng control and optimal control. It proposes an asynchronous ad-

antage actor-critic (A3C) based solution for the optimal control

nd tracking of the PSV as motivated previously. The contribu-

ion of this paper comes from the proposed hierarchical control

cheme that tackles the multiple objectives of the PSV. The hierar-

hical, cascade type structure is proposed for improving the bitu-

en recovery rate through froth-middlings interface level tracking

hile regulating the tailings density to prevent sanding. As a novel

pproach for interface tracking, a semi-supervised scheme based

n behavioural cloning is employed during training for safe explo-

ation of the action space. 

The rest of the paper is arranged as follows: Section 2 de-

ails the high fidelity PSV model used, Section 3 discusses

he multi-loop RL control architecture and the experimental

etup, Section 4 shares the results and discussions, and finally

ection 5 highlights the main conclusions and sets directions for

uture work. 

. PSV Process model 

.1. Process description 

Mass balance with gravity separation principles used in the PSV

odel in this work are all based on the work in Gilbert (2004) and

ts references. The gravity separation principles employed and the

odels presented in this section are taken from Masliyah et al.,

981 . The following main assumptions are considered in the model

evelopment. The materials’ species present in the PSV are bitu-

en, solids, and water (labelled by the subscript j that takes b, s, w

espectively). They are considered to be present in three constant

izes: small, medium, and large. The bitumen and coarse solid par-

icles are assumed to be spherical; whereas, the fine solids follow

latelets’ shape. The density of species (bitumen, water, and solids

articles) are all assumed to be constant and the viscosity of the

iddlings layer is assumed to be that of water. 

Each layer is assumed to be perfectly mixed, contains continu-

us medium, and modelled using mass balance principles with in-

eractions between layers through froth-middlings and middlings-

ailings interfaces. This interaction is characterized by considering

articles’ movement between layers to follow steady-state settling

elationships (Stokes’ law). It will be briefly revisited in the forth-

oming subsections in combination with hindered settling models

or suspension of particles following the reference Concha and Al-

endra (1979) . The froth-middlings interface is considered to be

obile and particles can move back and forth through it. While,

he middlings-tailings interface is static and particles only move in

 downward direction. The downwards direction is considered to

e the positive direction of particles movement along with one-

imensional assumed flow. 

In the mass balance equations presented hereafter, no material

eneration is assumed and can be expressed as expounded in the

ollowing subsections. The notation used is presented in Table 1 . 

.2. Froth layer 

The volume of the froth layer V f is assumed to be a function of

he interface velocity v I . This is because the top of the froth layer is

ssumed to be fixed and matches the top of the PSV. It is described

y Eq. (1) where A represents the vessel cross-sectional area.
vessel 
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Fig. 2. PSV Schematic. 

Table 1 

Primary Separation Vessel Model Notation. 

Parameter Description [unit] 

i ∈ f, m, t froth, middlings, and tailings 

j ∈ b, s, w bitumen, sand, and water 

k ∈ 1, 2, 3 small, medium, and large particle size 

I F−M froth-middlings interface level [m] 

F fd feed flow rate [ m 

3 s −1 ] 

F fl flood water flow rate [ m 

3 s −1 ] 

F f froth overflow [ m 

3 s −1 ] 

F m middlings withdrawal flow rate [ m 

3 s −1 ] 

F m nominal middlings withdrawal flow rate [ m 

3 s −1 ] 

F t tailings withdrawal flow rate [ m 

3 s −1 ] 

F t nominal tailings withdrawal flow rate [ m 

3 s −1 ] 

V i volume of i th layer [ m 

3 ] 

V i SP 
volume setpoint of i th layer [ m 

3 ] 

αi 
j 

volume fraction of species j in layer i 

φ j flux of species j [ m 

3 s −1 ] 

A vessel vessel cross sectional area [ m 

2 ] 

v I froth-middlings interface velocity [ ms −1 ] 

v i 
j 

settling velocity of species j in layer i [ ms −1 ] 

ρ j density of species j [ kgm 

−3 ] 

ρ i density of layer i [ kgm 

−3 ] 

d k 
j 

particle diameter size k of species j [ m ] 

g gravitational constant [ m 

2 s −1 ] 

e t error term [ m ] 

�, ε settling velocity correction factors 

η dynamic viscosity [ kgm 

−1 ] 
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dV f 

dt 
= A v essel v I (1)

As shown in Fig. 2 , a species j ’s transport occurs as 1) a flux φj 

through the interface with the middlings ( equation (3) ) and 2)

leaves the top of the PSV with a flow rate of F f . Applying mass bal-

ance principles, the volumetric fraction of a species j in the froth
ayer ( α f 
j 
) is described in Eq. (2) . 

dα f 
j 

dt 
= 

1 

V f 

(φ j − α f 
j 
F f − α f 

j 
A v essel v I ) (2)

j = 

{
αm 

j 
A v essel (v I − v m 

j 
) , v I > v m 

j 

α f 
j 
A v essel (v I − v m 

j 
) , v I ≤ v m 

j 

(3)

here j ∈ b, s . αm 

j 
is the volumetric fraction of a species j in the

iddlings layer entering the froth layer. This occurs when the in-

erface velocity v I is greater than the settling velocity v m 

j 
of species

 in the middlings layer. 

As indicated by Gilbert (2004) and the reference within, the

ettling velocity v m 

j 
is calculated by equation (4) . This equation

orrects the free settling velocity v f ree 
j 

by Concha’s correlation

 Concha and Almendra, 1979 ). This correction is considered in or-

er to account for the suspension resulting from the presence of

ther particles in a layer, so the settling of a particle is hindered

s indicated in Eq. (4) : 

 

m 

j = v f ree 
j 

(1 − 1 . 45 

∑ 

αparticles ) 1 . 83 

1 + 0 . 75 

1 
3 

(4)

he free settling velocity itself v f ree 
j 

was developed by

wanson (1967) and Swanson (1975) and is based on Stokes’

quations for free-settling as shown in Eq. (5) : 

 

f ree 
j 

= 

4 
3 

gd 2 (ρ j − ρi ) 

θ j (2 d 
3 
2 ( 

gρ j ρi 

3 
) 

1 
2 + 

√ 

48 ε j η) 
(5)

here the shape factors of a species j ∈ b, s , is represented by the

arameters θ j and ε j . g is the gravitational constant and η is the

iscosity of water, and d refer to the particle diameter of a species.

hree particlesâ sizes are considered for bitumen and three for
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and particles as indicated previously. The shape factor is assumed

o be spherical for bitumen and for coarse solid particles and as-

umed to be platelets for the fine particles (clays). 

The suspension in a layer is assumed to be uniform and its den-

ity is calculated as the weighted summation of speciesâ densities

n it as represented in Eq. (6) : 

i = ρw 

αi 
w 

+ ρb α
i 
b + ρs α

i 
s (6) 

here i ∈ f, m, t denotes froth, middlings, and tailings respectively.

he subscripts w, b and s indicate the species, namely water, bitu-

en, and sands respectively. ρ j indicates the density of a species j

ither bitumen or sand particle. 

The interface velocity v I is modelled as the Wallis shock-

ave equation ( Eq. (7) ) for a first order approximation as follows

 Wallis, 1969 ): 

 I = 

∑ 3 
k =1 α

m 

bk 
v m 

bk 
− ∑ 3 

k =1 α
f 

bk 
v f 

bk ∑ 3 
k =1 α

m 

bk 
− ∑ 3 

k =1 α
f 

bk 

(7) 

here k is the index of particle size (3 sizes were considered) and

gain αi 
j 

is the volume fraction of species j in layer i . 

.3. Middlings layer 

Similar to the volume of the froth layer, the middlings layer

olume V m 

is assumed to be only a function of the interface ve-

ocity v I as the middlings-tailings interface is stationary and only

he froth-middlings interface is mobile. Thus, the middlings layer

s represented as in Eq. (8) . 

dV m 

dt 
= A v essel v I (8) 

s shown in Fig. 2 , a species j ’s transport in the middlings layer

ccurs as a 1) flux φj through the interface with both, the froth

ayer and the tailings layer as indicated in Eq. (10) , 2) feed injected

lurry with flow rate F fd , and 3) as a withdrawal that leaves the

iddlings layer with the withdrawal flow rate F m 

. Consequently,

sing mass balance principles, the volumetric fraction of a species

 ∈ b, s in the middlings layer ( αm 

j 
) is described as given in Eq. (9) .

dαm 

j 

dt 
= 

1 

V m 

(α f d 
j 

F f d − αm 

j F m 

− αm 

j A v essel v t j + αm 

j A v essel v I + φ j ) (9)

j = 

{ 

−αm 

j 
A v essel (v I − v m 

j 
) , v I > v m 

j 

−α f 
j 
A v essel (v I − v m 

j 
) , v I ≤ v m 

j 

(10) 

here α f d 
j 

is the volumetric fraction of species j in the feed

tream, and v t 
j 

is the hindered settling velocity of a particle of

pecies j in the tailings layer also calculated using Eq. (4) . 

.4. Tailings layer 

The volume of the tailings layer is constant as the middlings-

ailings interface is considered stationary and this simplifies the

odel equations. As shown in Fig. 2 , a species j transport occurs

s a 1) flux φj through the middlings-tailings interface and 2) as a

ithdrawal that leaves with the withdrawal flow rate F t from the

ottom of the PSV. The volumetric fraction of species j ∈ b, s in the

ailings layer ( αt 
j 
) is then described as given in Eq. (11) . 

dαt 
j = 

1 

(αm A v essel v t − F t α
t ) (11)
dt V t 
j j j b  
.5. Feed equation 

As shown in Fig. 2 , with a flow rate of F ore , ore is fed to a

ixer of volume V mix to be first mixed with flood water of flow

ate F fl before being fed into the PSV. Thus, the volumetric fraction

f species j in the feed stream ( α f d 
j 

) is described in Eq. (12) . 

dα f d 
j 

dt 
= 

1 

V mix 

(αore 
j F ore − α f d 

j 
(F ore + F f l )) (12)

he following flow rate balance is considered to calculate and con-

train the overflow stream: 

 f d = F f l + F ore 

 f = F f d − F m 

− F t 

uch that: 

 f ≥ 0 . 

.6. Recovery rate 

The efficacy of the PSV in extracting a bitumen rich froth di-

ectly affects the economic impact of the oil sands industry by de-

ermining the load on the downstream processes. This effective-

ess is represented by the bitumen recovery rate RR . It depends

n the bitumen content in the froth α f 

b 
and ore α f d 

b 
and the cor-

esponding froth overflow rate F f and ore flow rate F ore as repre-

ented in Eq. (13) . 

R = 

∑ 

α f 

b 
F f ∑ 

αore 
b 

F ore 
(13) 

. RL based control 

.1. Markov decision process 

As previously motivated, the RL framework comprises of: a RL

gent that is the learner in the process (analogous to the con-

roller) and the environment (analogous to the plant including the

ewarding mechanism). The agent interacts with the environment

o optimize a certain facet of its behavior skewed by the designer’s

hoice of reward. This framework is represented by a MDP that

ollows the Markov property ( Littman et al., 2013 ). It assumes that

he present state of the environment is sufficient to make the opti-

al decision, i.e. it contains the relevant historical information. The

DP encapsulates the agent-environment interaction in discrete

ime steps within the finite time learning episode t ∈ N . The termi-

al state of an infinite horizon optimization RL setup is based on

n episodic approach. In the following subsections, the projection

f PSV’s state space into the action space (middlings flow rate F m 

,

roth-middlings interface level setpoint I F −M SP 
, tailings flow rate F t )

ased on the rewarding mechanism is described using this MDP

tructure. 

The specific case of lower level froth-middlings interface level

ontrol is used as an example to understand MDP in this subsec-

ion. It is assumed that at each time instant t , there is a set of

bservable states s t ∈ S that the environment can assume, such

s s t = [ I F −M 

, I F −M SP 
, F m 

] . There is also a set of actions a t ∈ A the

gent can choose from, given the state observation s t , to manipu-

ate the F m 

to track the interface level. This is done in accordance

ith its current policy π ( a t | s t ). By virtue of the action a t , the PSV

ransitions to a new state s t+1 and emits a scalar reward r t asso-

iated with being in the new state and the action that had been

aken, such as in Eq. (14) . The rewards are accumulated over time

y following the policy π . They are then corrected by a discount
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Fig. 3. Markov Decision Process Representation for Lower Level Interface Tracking. 
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factor γ which helps to keep the returns bounded. This determines

the relative importance of future rewards and is represented in the

form of returns R t as given in Eq. (15) . Returns in this context are

a direct feedback on the agent’s performance at each state with

reference to the terminal goal. They are calculated by considering

the deviation from the setpoint over time. Their estimation, given

only the states, is also known as the value function V ( s ) as shown

in Eq. (16) . If the action taken (the flow rates chosen) is also con-

sidered in obtaining the expectation of returns, they constitute the

action-value function Q ( s, a ) given in Eq. (17) . MDP setup for the

lower loop corresponding to interface level control in the hierar-

chical architecture is illustrated in Fig. 3 . 

r t = − | I F −M 

(t) − I F −M SP 
(t) | 2 − | �F m 

| 2 (14)

R t = 

n ∑ 

k =0 

γ k (− | I F −M 

(t + k ) − I F −M SP 
(t + k ) | 2 − | �F m 

| 2 ) (15)

 (s ) = E π [ R t | s ] (16)

Q(s, a ) = R t + γ ∗ V (s ) (17)

3.2. Actor-Critic 

Actor-Critic combines the benefits of DQN and DPG ( Shin et al.,

2019 ) to allow the state and action sets in the MDP context to tran-

scend from discrete to continuous state and action spaces. Neural

networks are employed as function approximators to implement

the policy πθA 
(a t | s t ) represented by the actor, and the value func-

tion V θC 
(s t ) represented by the critic (which is monotonic), where

θA , θC represent the neural network parameters for the actor and

critic respectively. The objective of actor-critic is to improve the

accuracy in estimating the returns using critic, followed by opti-

mizing the estimated returns by updating the actor ( Eq. (18) ). The

learning gradient of the policy is considered an approximate solu-

tion to the Bellman optimality equation ( Eq. (19) ). A baseline term

limits the variance in the gradients of the neural network approxi-

mators aiding in convergence ( Eq. (20) ) ( Lillicrap et al., 2015 ). 

max θA 
J(θA ) = E(R t | πθA 

) (18)

∇ θA 
J(θA ) = E π [ 

N ∑ 

t=0 

∇ θA 
log πθA 

(a t | s t )[ R t ]] (19)

A (s t ) = R t − V (s t ) (20)

A set of λ tuples containing the state, action, action-value and the

reward are recorded in the experience replay buffer for each sam-

ple time t until the buffer is full. The experience replay buffer
olds the information required to calculate the gradient from

osses. Since the objective of the critic is accurate estimation of the

eturns, the critic parameters are updated by means of the critic

oss function as shown in Eq. (21) . The returns R t are calculated

rom the rewards stored in the experience replay buffer, while the

eturns estimate (the action-value function) is obtained by passing

he state/action information to the critic network. 

in 

θC 

J(θC ) = 

N ∑ 

t=0 

|| R t − V θC 
(s t ) || 2 (21)

fter the network parameters’ update in the critic network, the

ctor is updated by means of the actor network gradient derived

rom its loss. The actor loss is adjusted by the advantage function

o reduce variance such as in Advantage Actor-Critic (A2C) where

he critic action-value replaces x ( s t , a t ) with A ( s t , a t ) calculation as

resented in Eq. (22) . 

 θA 
J ( θA ) = E π

[ 

N ∑ 

t=0 

∇ θA 
log πθA 

( a t | s t ) 
[
A θC 

( s t ) 
]] 

(22)

.3. Exploration 

Policy π can either be deterministic ( Eq. (23) ), that is, the pol-

cy maps the state observations s t directly to the actions a t , or

tochastic ( Eq. (24) ), where the policy samples a probability dis-

ribution described by μt , σ t from which the action is sampled

 Eq. (25) ). Stochastic policies inherently promote exploration mak-

ng it suitable for improved convergence for continuous space,

onlinear chemical processes. Whereas, in the case of determin-

stic policies, exploration is encouraged by means of schemes such

s ε-greedy or ε-soft. 

 t = πθA 
(s t ) (23)

t , σt = πθA 
(s t ) (24)

 t ∼ N(μt , σt ) (25)

he theme of exploration and exploitation is central to reinforce-

ent learning. Exploitation is when the agent chooses the ac-

ion known to result in the highest returns, while exploration is

he agent taking an equal probability action to explore the action

pace. Furthermore, Shannon’s entropy H ( π ) is introduced in the

ctor loss calculation to encourage exploration in the stochashtic

ormat ( Eq. (26) ). Higher entropy may result in delayed conver-

ence while preventing convergence to a local optima. The actor
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Fig. 4. Pseudocode for A3C adapted from Mnih et al. (2016) for the PSV. 
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oss is hence represented as given in Eq. (27) where β is a hyper-

arameter representing the tradeoff between optimizing the ad-

antage function and exploration ( Fortunato et al., 2017 ). 

(π ) = −
∑ 

t 

P (a t ) log P (a t ) (26)

 θA 
J(θA ) = E π [ 

N ∑ 

t=0 

∇ θA 
[ log πθA 

(a t | s t )[ A θC 
(s t )]] − β ∗ H(π ) (27) 

.4. Asynchronous advantage actor-critic 

The learning approach differs slightly between on-policy al-

orithms and off-policy algorithms. On-policy algorithms interact

ith the environment using the same policy that they update to

onverge towards the optimal policy. Off-policy algorithms inter-

ct with the environment using a behavior policy, while a sep-

rate target policy is updated to find the optimal policy. Asyn-

hronous advantage actor-critic (A3C) is an instance of such off-

olicy scheme where a global actor-critic network is updated us-
ng the experience gained through multiple local actor-critic be-

avior policies working asynchronously. Each local actor-critic in-

eracts with its own local copy of the environment (in this case the

SV and the rewarding mechanism) to gain the experience. This

ids exploration in the state/action space which is essential for de-

elopment of a generalized solution for nonlinear process control

pplications. By employing multiple local copies of actor-critic and

ts corresponding environment, A3C redistributes the learning be-

ween multiple workers by making use of parallel computing. This

lso leads to improved and stable convergence ( Mnih et al., 2016 ).

he pseudocode of the A3C adopted from Mnih et al. (2016) for the

SV is given in Fig. 4 . The sequence repeats itself for each worker

or each learning episode except for the first time in which each

orker interacts with the environment, and no updates are made

o the worker networks. As seen in Fig. 4 , the A3C scheme would

ave higher degree of exploration, so the global policy is general-

zed owing to the asynchronous learning. Hence, the near optimal

lobal policy is assumed to be available at the end of the stipulated

pisodes. 
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Fig. 5. Multiloop Control of PSV. 
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3.5. Hierarchical multiloop control 

The supervisory layer of the hierarchical agent overlooks opti-

mization of the bitumen recovery rate (RR). The RR is optimized

through changes in the froth-middlings interface level setpoint

I F −M SP 
. A lower level RL agent manipulates the interface level I F −M 

to track the setpoint changes provided by this agent. In addition,

to ensure safe operation of the PSV, an RL agent regulates the tail-

ings density ρt below a set threshold to prevent sanding in the

tailings. This would otherwise lead to depletion of the middlings

or froth layer, leading to poor or no recovery. The control structure

is illustrated in Fig. 5 . The reward mechanism of each RL agent, the

states to the actor and the critic, and the loss functions determine

the learning of each agent and comprise the setup. The setup over-

looking each objective is explained in Subsections 3.5.1 to 3.5.3 . 

3.5.1. Low level RL - Interface level control 

Control of the froth-middlings interface level is achieved

through manipulation of middlings flow rate F m 

. The interface

level I F −M 

depends directly on the froth volume V f as given in

equation (28) , where A vessel is the area of the vessel. A finite differ-

ence type simulation with a sample time of 1 h (with one minute

iterations in the inner loop) is executed. A new action �F m 

is cho-

sen by the actor based on the state observations s 
IL A 
t every 1 h. The

states observed by the actor and the critic, that is the input vec-

tor, are given in Eq. (29) . Since a stochastic policy is followed, the

output of the actor is an action probability distribution as shown

in Eq. (30) . The normalized action is sampled from the distribu-

tion and scaled to the PSV’s practical operating range, shown in

Eq. (31) . The action then updates the middlings flow rate F m 

as

shown in Eq. (32) , where F m s represents the steady state middlings

flow rate. 

I F −M 

(t) = 

V f (t) 

A v essel 

(28)

s IL t = [ I F −M 

(t) , I F −M SP 
(t) , F m 

(t)] (29)

μIL 
t , σ

IL 
t = πθIL 

(s IL t ) (30)

�F m 

(t) ∼ N(μIL 
t , σ

IL 
t ) (31)

F m 

(t) = F m s 
+ �F m 

(t) (32)

The output of the critic estimates returns R IL t in the form of the

value function V θC 
(s t ) ( Eq. (33) ). 

ˆ R 

IL = V θ (s IL t ) (33)
t IL 
The reward function, given in Eq. (34) , is shaped to achieve the

ultiple control objectives. The first term included intends to min-

mize the deviation of the interface level from the setpoint (han-

led in terms of the froth-middlings interface level deviation given

n Eq. (35) ). The second focuses on minimizing the controller ef-

ort. The third term F breach 
m 

is a soft constraint for maintaining

he action within operational bounds through penalization as pre-

ented in Eq. (36) . It ensures that through the course of RL learn-

ng, it would learn not to breach the upper/lower bound in order

o optimize the rewards. 

 

IL 
t = − | �I F −M 

(t)) | 2 − | �F m 

(t) | 2 −F breach 
m 

(34)

I F −M 

(t) = I F −M 

(t) − I F −M SP 
(t) (35)

 

breach 
m 

= 

{ 

0 , i f (0 . 8 F m s 
≤ F m 

(t) ≤ 1 . 2 F m s 
) 

| F m 

− 1 . 2 F m s 
| , i f (F m 

> 1 . 2 F m s 
) 

| F m 

− 0 . 8 F m s 
| , i f (F m 

< 0 . 8 F m s 
) 

(36)

he critic loss, given in Eq. (21) , employs the value function

 V θIL 
(s IL t ) ). Actual returns are calculated from the rewards obtained

rom Eq. (34) . The actor loss is calculated with the advantage func-

ion values from the updated critic as shown in equation (22) . The

esults obtained are shared in Section 4 . 

.5.2. Supervisory RL - Recovery rate optimization 

The recovery rate ( RR ) depends on the bitumen content in the

roth ( α f 

b 
) and ore ( α f d 

b 
), and the corresponding froth overflow rate

 F f ) and ore flow rate ( F ore ) as given in Eq. (13) . Since the bitumen

ontent in the ore and the ore flow rate are beyond control, the

roth-middlings interface level ( I F −M 

) is considered to address re-

overy rate. 

The sampling time considered to update the interface level set-

oint I F −M 

is 2 hours. This is in adherence to industrial practice

ince that is the frequency at which the ore quality measure-

ents from the lab will be available. The input state vector is pro-

ided to the actor and the critic every 2 hours, and it is given in

q. (37) . These states are the recovery rate at the given time RR ,

he baseline recovery rate RR nom 

taken from Liu et al. (2015) , and

he middlings flow rate F m 

. A stochastic policy is followed again,

o the output of the actor is an action probability distribution,

s shown in Eq. (38) . The normalized control action, change in

roth-middlings interface level setpoint �I F −M SP 
, is sampled from

he given distribution ( Eq. (39) ) and scaled to a practical operating

ange ( Eq. (40) ), that is ± 1.2 m . The range for setpoints for froth-

iddlings interface level is also set between the operating limits

f 18.8 m to 28.2 m . 

 

RR 
t = [ RR, RR nom 

, F m 

(t)] (37)
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Fig. 6. Phase 1 of Coerced Learning. 
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RR 
t , σ RR 

t = πθRR 
(s RR 

t ) (38) 

I F −M SP 
(t) ∼ N(μRR 

t , σ RR 
t ) (39) 

1 . 2 ≤ �I F −M SP 
(t) ≤ 1 . 2 (40)

The instantaneous rewards reflect the objective to maximize the

ecovery rate and maintain the system’s stability by minimizing

he magnitude of the action taken. The reward reflected is positive

n the case when the recovery rate is above the nominal recovery

ate RR SP and negative otherwise, as given in equation (41) . They

re used in the actual returns R RR 
t calculation. 

 

RR 
t = | �RR − RR nom 

| 2 − | �I F −M SP 
| 2 (41) 

RR = RR − RR nom 

he critic loss ( Eq. (21) ) and actor loss ( Eq. (22) ) extract informa-

ion from the supervisory RL agent in a similar manner as the pre-

ious subsection and follow the same sequence of update. The re-

ults are shared in the next section. 

.5.3. Sanding prevention 

Accumulation of coarse solids in the tailings underflow ad-

ersely affect the pipe health and can choke the PSV. This phe-

omenon is known as sanding, and it occurs when the tailings

ensity ( ρt ) increases beyond a certain threshold, causing solids

o settle quicker than they can be removed. Through control of the

ailings flow rate ( F t ), the tailings density ρt can be regulated be-

ow the sanding threshold, which is the third objective this work

ooks to optimize. The sanding threshold is given as 1650 kgm 

−3 

n literature Gilbert (2004) . However, in the current study a lower

hreshold of 1480 kgm 

−3 is chosen as a tighter constraint. With a

ame sampling time of 1 h, the states observed s SC 
t are given in

q. (42) . The output of the actor is a probability distribution as

hown in Eq. (43) from which the action �F t is sampled every 1 h

 Eq. (44) ). The action updates the tailings withdrawal flow rate F t 
s shown in Eq. (45) , where F t s represents the steady state tailings

ow rate. 

 

SC 
t = [ ρt , ρt SP 

, F t (t)] (42) 

SC 
t , σ SC 

t = πθSC A 
(s SC A 

t ) (43) 

F t (t) ∼ N(μSC 
t , σ SC 

t ) (44) 

 t (t) = F t s + �F t (t) (45)
The actual instantaneous rewards are given in equation (46) and

urther expanded in Eqs. (46) and (47) . They would be used to

alculate the actual returns used in the critic loss function repre-

ented in Eq. (21) , which will then be used to calculate the actor

oss as shown in Eq. (22) . 

ρt = ρt − ρt SP 

 

SC 
t = − | �ρt | 2 − | �F t (t) | 2 −F breach 

t (46) 

 

breach 
t = 

{ 

0 , 0 . 8 F t s ≤ F t (t) ≤ 1 . 2 F t s | F t − 1 . 2 F t s | , F t > 1 . 2 F t s | F t − 0 . 8 F t s | , F t < 0 . 8 F t s 

(47) 

Simulation details and results are provided in Section 4 . 

.5.4. Coerced learning 

Another novel contribution of this paper is leveraging the exist-

ng control strategy to initially teach the RL agent to learn and ex-

lore in the stable operational region of the state/action space. This

s especially useful when dealing with a nonlinear process such as

he PSV. This is an adaptation of the imitation learning concept

nto this work. The strategy developed has been termed coerced

earning and was implemented by learning from an interactive ex-

ert demonstrator namely learn from existing control strategy. 

The training is carried out in 2 phases. In Phase 1, the ac-

ion taken by the actor-critic is limited subject to a defined

ound of the expert demonstrator’s action. This is achieved by

dding an additional factor in reward calculation in the first few

pisodes. In this phase, a demultiplexer chooses between the RL

gent’s action a RL 
t and the expert controller’s action a C t as given in

quation (48) and illustrated in Fig. 6 . The RL agent’s action is eval-

ated for the regular reward if it is within ± 5% of the action

hat the expert demonstrator would choose for the given measure-

ents. A penalizing mechanism considering the distance of the RL

gent’s action from the bounds is utilized otherwise. Beyond these

ounds, the coerced learning factor cc factor penalizes the actions

aken by the RL agent. This is represented in equation (49) , where

 represents the complete practical range of actions. The penalty

s hence proportional to the deviation between the action taken by

he RL agent and the expert demonstrator. If the RL agent’s action

ies within the acceptable range, the reward is proportional to the

eviation from the setpoint in the case of setpoint tracking. 

 t = 

{
a C t , 0 . 95 a C t < a RL 

t < 1 . 05 a C t 

a RL 
t , otherwise 

(48) 

 t = 

{− | I F −M SP 
− I F −M 

| , 0 . 95 a C t < a RL 
t < 1 . 05 a C t 

cc 
A −| a C −a RL | , otherwise 

(49) 
t t 
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Fig. 7. Phase 2 of Coerced Control Training. 
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After a specified number of episodes, the training switches to

phase 2. In this phase, the RL agent’s learning is independent of

the expert demonstrator, as shown in Fig. 7 . Compared to this, in

behavior cloning, the learner assumes the demonstrator’s policy to

be optimal and aims to imitate it by copying the actions it takes

in given states. This is, thus, a semi-supervised learning scheme

where the RL agent leverages experience from the expert demon-

strator (like a conventional controller) to define the direction for

exploration to ensure that the exploration happens within a stable

region while control objectives are met. The impact of introduc-

ing this factor on the training and on-line execution along with its

wider implications for control are discussed in Section 4 . 

4. Results & discussion 

4.1. Infrastructure 

For this study, a high fidelity model of the PSV was considered.

The PSV simulation as well as the RL code was implemented us-

ing Tensorflow v. 1.9.0 in Python 3.7.1. Windows 10 64-bit OS run-

ning on a Lambda computer with Intel i9-9820x processor with 20

threads was utilized for the A3C based learning. 

Details of the input and output vectors to the actor as well as

the critic have been elaborated in Section 3.5 for the hierarchical

architecture based agents as well as sanding prevention scheme.

Fully connected feedforward neural networks are used as function

approximators for both the actor and the critic. There is 1 hidden

layer for the actor, in all cases, which contains 200 nodes, and it

is fully connected to the output layer, with a nonlinear activation

function applied to its output. The output layer of the actor con-

sists of a mean and standard deviation as shown in Fig. 4 , from

which the actions are sampled. The nodes corresponding to the

mean ( μt ) have a tanh activation function applied in the output

layer. The nodes corresponding to the standard deviation ( σ t ) have

a softplus activation function applied in the output layer. Similarly

the critic is structured with an input layer fully connected to 1 hid-

den layer with 100 nodes using a tanh activation function, which

is in turn fully connected to the output layer. The sample time for

each policy is mentioned in the corresponding sections. 

4.2. Low level RL - Interface level control 

4.2.1. Setup 

To comprehensively illustrate the performance of the RL agent

in tracking the froth-middlings interface level setpoint, it is

compared to the conventional auxiliary controller taken from

Liu et al. (2015) . It is a proportional controller with gain p = −10 −7 

given in Eq. (51) , where F m s represents the steady state middlings

flow rate. In a similar fashion to the RL agent, its control output
akes into account the deviation of the interface level from its set-

oint to determine the error term ( e t ) as given in Eq. (50) . 

 t = �I F −M 

(t) = I F −M 

(t) − I F −M SP 
(t) (50)

 m 

= F m s 
+ p.e t (51)

s mentioned in Section 3.5.4 , training occurred over two distinct

hases, termed coerced learning. In phase 1 of coerced learning

he RL agent’s action was limited to a defined bound from the ex-

ert demonstrator’s (conventional controller) action. In phase 2, it

as allowed to explore the action space freely. The sampling time

or the control action taken by both the RL agent and the conven-

ional controller is 1 h. The RL agent is trained for a total of 20,0 0 0

pisodes (constituting 40 0 0 hours each), out of which, the first

500 episodes are spent in phase 1 and the remaining are spent

n phase 2. 

.2.2. Results 

Servo tracking based on versatile direction and magnitude

hanges to interface level setpoint I F −M SP 
is carried out. The set-

oint change is instigated once every 400 hours. All process and

anipulated variables are recorded for quantitative assessment. 

Without coerced learning, the actions taken by the RL agent

n the initial episodes led the PSV to the unstable region from

hich it could not recover. This hindered learning and eventually

he convergence to the optimal policy. Coerced learning enabled

he RL agent to learn from the conventional controller to find a

table operating region within an empirically determined number

f episodes, as shown in Fig. 8 . Subplots (a-d) of Fig. 8 depict a

tage wise improvement in the policy gradients towards the con-

entional strategy. As evident from the subplots, the action selec-

ion improves as more training episodes elapse. This corresponds

o the RL agent learning to take actions within the stable operat-

ng region, denoted by the upper and lower bounds on subplots

a-d) of Fig. 8 . Here, simulation 1 had resulted in a policy with ac-

ion selection within limits well within 500 episodes of learning.

imulation 2 took a long time to converge to satisfy the boundary

riteria. Based on this, in order to cater to the worst case scenarios,

hase 1 was run for 1500 episodes. 

In phase 2, the rewarding structure is based only on the control

bjective for interface level. Uncertainty of ± 10% is introduced to

he middlings flow rate F m 

to correspond to the actuator distur-

ances in real scenarios. Best policy is based on the best cumula-

ive rewards obtained in any episode in phase 2. As illustrated in

ig. 9 , the RL agent has obtained the best projection of the state

pace into the action space. As evident from the figure and met-

ics such as mean squared error (MSE) and intergral of absolute

rror (IAE), the RL agent tracks the setpoint better in comparison

o the conventional controller. Furthermore, the ability of the RL
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Fig. 8. Phase 1 of Coerced Learning: control action taken by 4 different RL agents relative to expert demonstrator at (a) 0 episodes, (b) 500 episodes, (c) 10 0 0 episodes, and 

(d) 1500 episodes of training. 
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gent to track the setpoint in the presence of disturbances rela-

ive to the conventional controller is tested. White noise of magni-

ude ± 30% of the nominal bitumen content in the ore ( αore 
b 

) is in-

luded. The results obtained are displayed in Fig. 10 . Hence, the RL

gent displays successful servotracking abilities in the presence of

aried bitumen content in ore. The RL agent generalizes well over

arying operating conditions, controlling the interface level to track

he setpoint. The control performance is assessed by MSE, IAE, and

ariance of control (VC), which are provided in Table 2 . 

As is also visible in Fig. 9 and Fig. 10 , the RL agent significantly

utperforms the conventional controller in terms of MSE and IAE

s presented in Table 2 The lower MSE conveys the RL agent’s abil-

ty to maintain lower variance of the interface level I F −M 

from the

etpoint I F −M SP 
overall while the lower IAE shows that less error is

ccumulated over time. This is true for both the cases: with con-

tant ore quality and with varying ore quality. This shows the ef-

ectiveness of coerced learning in leveraging imitation learning to

u  
earn from the conventional controller in the phase 1 of training

nd eventually outperforming it without the need for model infor-

ation. The RL agent, however, has a greater variance of control

VC) in both cases. Although the VC is within the acceptable range,

his hints that the conventional controller is smoother. 

.3. Supervisory RL - Recovery rate optimization 

.3.1. Setup 

The bitumen recovery rate is presented in Section 2.6 . The

andle used to address the recovery rate RR was chosen to be

he froth-middlings interface level I F −M SP 
. The sampling interval

s 2 hours corresponding to the frequency at which lab samples

re available ( Section 3.5.2 ). The action space of the supervisory

L agent is to vary the froth-middlings interface level setpoint

I F −M SP 
which then prompts the lower level RL agent to manip-

late the middling flow rate �F m 

to track the updated setpoint,
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Fig. 9. Froth-middlings interface setpoint tracking results. 
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completing the hierarchy. A lower level strategy, involving contin-

uous space state/action pair, would require exhaustive exploration.

This is evidently achieved by the A3C scheme. However, at the hi-

erarchical level, with a stable lower loop, the agent could possibly

require less rigor while training. To understand this, a less data ef-

ficient on-policy (policy gradient (DPG)) agent and the off-policy

(A3C) agent are deployed here. 

4.3.2. Results 

Both the RL agents (DPG and A3C) were trained for 10,0 0 0

episodes. Here, an episode constitutes of 100 hours with a sam-

pling interval of 1 h. The interface level setpoint I F −M 

is updated

every time a new ore composition data becomes available. The

results are displayed in Fig. 11 relative to the regulated inter-

face level. Fig. 11 subplot (a) displays the recovery rate RR while

Fig. 11 subplot (b) displays the control action �I F −M SP 
taken by the

supervisory RL agents to maximize the recovery rate. Fig. 11 sub-

plot (c) indicates the control action �F m 

taken by their corre-
ponding low level RL agent to track the updated setpoint. The RR

eaks above 1 and is explained through the observation that the

roth volume ( V f ) decreases in accordance with the interface level

etpoint changes directed by the supervisory RL agent in the hi-

rarchical control scheme. It then finally settles to a value around

he open loop interface level value as the supervisory RL agents in

he hierarchical control scheme ordains a final froth-middlings in-

erface setpoint. The overall RR relative to the regulated interface

evel is presented in Table 3 . 

From Fig. 11 and Table 3 , it is clear that the RL based hierar-

hical control schemes are able to achieve a significantly higher

verage recovery rate RR as compared to the regulated interface

evel. It is able to do this while maintaining the change in set-

oint ( �I F −M SP 
), the interface level ( I F −M 

), and the middlings flow

ate ( F m 

) within operational limits. Since there is stable interface

racking at the lower level, the supervisory RL is able to take ac-

ions that maintain the PSV in a stable state, leading to a stable
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Fig. 10. Froth-middlings interface setpoint tracking results with varying ore quality: (a) Interface level, (b) Middlings withdrawal flow rate, and (c) Ore quality. 

Table 2 

Froth-middlings interface setpoint tracking with uncertainty results. 

Control Scheme Mean Squared Integral Absolute Variance of 

Error Error Control 

Constant RL Controller 0.24 1100.32 3.10e-08 

ore quality Conventional Controller 0.64 2154.20 2.54e-08 

Varying RL Controller 0.31 1408.59 3.23e-08 

ore quality Conventional Controller 0.84 2594.64 2.63e-08 
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Fig. 11. Recovery rate optimization results: (a) Recovery rate, (b) Interface level, and (c) Middlings withdrawal flow rate, and (d) Training rewards. 

Table 3 

Recovery rate optimization results. 

Control Scheme Average Recovery Rate 

DPG RL Controller 0.8650 

A3C RL Controller 0.8653 

Open loop 0.76113 
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RR optimization scheme. Owing to this, both the DPG and A3C

agents converged to a similar policy with near optimal perfor-

mance. However, the DPG agent required more episodes initially

to converge. Another interesting observation was that the variance

in A3C agent’s rewards was 15% higher than that of the DPG agent,

indicating active exploration, which is a preferred attribute in RL.

This is evident from subplot (b) of Fig. 11 . Also, it is possible to
nfer that the A3C scheme is more sample efficient inherently as

ompared to the DPG scheme. 

.4. Sanding prevention 

.4.1. Setup 

Sanding prevention is implemented as a safety measure to en-

ure regular PSV function during interface level tracking. The tail-

ngs density ( ρt ) is regulated through the tailings flow rate ( F t ).

his control is activated when the tailings density exceeds a set

anding threshold. The sanding prevention RL agent then manipu-

ates the tailings density by action ( �F t ) to bring the tailings den-

ity below the set threshold. The threshold used in this experiment

s set at 1480 kgm 

−3 . This low level sanding prevention RL agent is

uilt to co-exist with the low level interface level control RL agent

eported in Section 4.2 . A similar sample time is followed here. The

wo loops are sequentially executed during simulation. 
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Fig. 12. Sanding prevention results: (a) Interface level and tailings density, and (b) Tailings flow rate. 
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.4.2. Results 

The sanding prevention RL agent was trained for 20,0 0 0

pisodes of 40 0 0 hours each. A control action ( �F t ) was chosen

very 1 h. While the setpoint was tracked by the low level inter-

ace level control RL agent detailed in Section 4.2 by determining a

ontrol action ( �F m 

), the tailing density is controlled through the

on interacting low level sanding prevention RL agent determining

 control action ( �F t ) concurrently. The results obtained are shown

n Fig. 12 . As the subplot (a) of Fig. 12 shows, the low level sanding

revention RL agent is able to successfully bring the tailings den-

ity ( ρt ) below the sanding threshold every time it goes beyond

he threshold during interface level changes. These correspond to

he changes in tailings flow rate ( F t ) at the times when the control

s activated as shown in subplot (b) of Fig. 12 . 

. Conclusions 

In this work, a RL based control strategy was developed to im-

lement effective hierarchical control for PSV in presence of dis-
urbances in the middlings flow rate and uncertainty in ore com-

osition. The Supervisory A3C based RL agent manipulated the in-

erface level set point to improve the bitumen recovery rate. The

esulting lower level RL agent for servo tracking and ore quality

ariance oriented regulation of interface level was implemented

sing an A3C based middlings flow rate manipulation. A sanding

revention scheme was also implemented using a separate A3C

ased RL agent. The A3C based global RL agents learn the optimal

iddlings and tailings flow rates to obtain each defined objective.

he RL agents map the state space on to the action space through

he experience gained by repeated interactions with a high fi-

elity model of the PSV. The existing conventional control strat-

gy was leveraged using a variant of behaviour cloning, termed as

oerced learning. This initially assisted the RL agent in discover-

ng the stable operating region of the action space given the non-

inear nature of the gravity-based separation process. From there,

he RL agent was able to independently learn the optimal actions

o be taken in the range to achieve its goals. The lower level RL

gent for interface level control demonstrated better performance
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in terms of IAE and MSE for stable and varying ore quality rela-

tive to the conventional controller. The supervisory RL agent also

demonstrated a higher bitumen recovery rate than reported with

conventional control in keeping with the economic optimization

objectives. Furthermore, to evaluate the impact of the hierarchical

structure, two different supervisory RL agents, a DPG and a A3C

agent were trained. While both agents converged on a near op-

timal policy due to the stable lower level interface tracking, the

A3C based agent displayed faster convergence and higher explo-

ration. The low level RL agent for sanding prevention was also able

to maintain the tailings density below the set threshold to pre-

vent sanding amidst tracking the setpoint changes in the interface

level. 
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