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A B S T R A C T

Machine-to-Machine (M2M) communication is a promising technology that may realize the Internet of
Things (IoTs) in future networks. However, due to the features of massive devices and concurrent access
requirement, it will cause performance degradation and enormous energy consumption. Energy Harvesting-
Powered Cognitive M2M Networks (EH-CMNs) as an attractive solution is capable of alleviating the escalating
spectrum deficient to guarantee the Quality of Service (QoS) meanwhile decreasing the energy consumption
to achieve Green Communication (GC) became an important research topic. In this paper, we investigate
the resource allocation problem for EH-CMNs underlaying cellular uplinks. We aim to maximize the energy
efficiency of EH-CMNs with consideration of the QoS of Human-to-Human (H2H) networks and the available
energy in EH-devices. In view of the characteristic of EH-CMNs, we formulate the problem to be a decentralized
Discrete-time and Finite-state Markov Decision Process (DFMDP), in which each device acts as agent and
effectively learns from the environment to make allocation decision without the complete and global network
information. Owing to the complexity of the problem, we propose a Deep Reinforcement Learning (DRL)-based
algorithm to solve the problem. Numerical results validate that the proposed scheme outperforms other schemes
in terms of average energy efficiency with an acceptable convergence speed.
. Introduction

Machine-to-Machine (M2M) communication as a promising technol-
gy to realize Internet of Things (IoTs) has attracted great attention
rom both industry and academia. Different with conventional Human-
o-Human (H2H) communication, M2M communication is expected to
rovide ubiquitous connectivity among various heterogeneous devices
y means of autonomous communication and networking technologies
ithout human intervention [1,2]. However, such type of communica-

ion further poses challenges to the issues of spectrum scarcity and high
nergy consumption due to it normally involves massive and concurrent
ccess requirement. Although Third Generation Partnership Project
3GPP) continues to promote prospective communication technologies
o alleviate the escalating spectrum deficient and decrease the energy
onsumption, the resource allocation strategy for a large number of
evices which provide various types of service in heterogeneity has
ot been well investigated. At the meantime, several pioneering ef-
orts and researches relevant to resource allocation problem in M2M
ommunication have been conducted in [3–7], but these works are
ainly focusing on the network performance such as packet loss ratio,
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delay and throughput. Seldom works take into account of energy con-
sumption and the influence on the H2H communication [8]. Therefore,
conceiving an energy-efficient and interference-manageable resource
allocation strategy for M2M communication is essential.

Cognitive M2M communication is a novel technology that integrates
cognitive radio into M2M communication to enable devices learn from
the environment and utilize the unoccupied licensed spectrum to im-
prove the spectrum efficiency meanwhile avoiding the interference to
primary human users. Along with spectrum efficiency, another major
concern in M2M communication is the energy efficiency issue. M2M
communication as a key enabler of realizing IoTs has involved a
massive number of sensor-likewise devices. These devices have the
inherent nature of limited energy supplies and the difficulty of batteries
recharging. In addition to further improving energy efficiency, Energy
Harvesting (EH) is an appealing solution. EH is a technology that en-
ables devices to collect energy from ambient sources [9]. Various types
of energy sources can be exploited as energy supplies, for instance,
solar, thermal, wind and electromagnetic wave [10,11]. However, ow-
ing to the fluctuation of ambient energy and the immaturity of energy
conversion technology, the available energy of each device will become
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Fig. 1. Network model.

a vital factor in the designing of resource allocation strategy in Energy
Harvesting-Powered Cognitive M2M Networks (EH-CMNs).

To response this, we propose an energy efficient resource allocation
strategy for EH-CMNs in this paper. The goal of the strategy is to
maximize the average energy efficiency of devices in EH-CMNs by
jointly consider the transmission power control, time slot allocation,
transmission mode and relay selection with the constraints of con-
ventional H2H communication and the energy status of EH-devices.
We formulate the problem as a decentralized Discrete-time and Finite-
state Markov Decision Process (DFMDP), in which each device acts as
agent and effectively learns from the environment to make allocation
decision without having complete and global network information.
Owing to the complexity of the problem, we also propose a Deep
Reinforcement Learning (DRL) algorithm to solve the problem and find
the optimal allocation strategy in the formulated model. Numerical
results validate that the proposed scheme outperforms other schemes
in terms of average energy efficiency. Meanwhile, the proposed DRL
algorithm can obtain higher convergence speed as compared to the
classical Q-Learning algorithm.

The remainder of this paper is organized as follows. Section 2
gives a detailed literature survey on the most relevant existing works.
After that, our network model is presented in Section 3. Section 4
provides a high-level description of the corresponding energy efficiency
maximization problem and the proposed DRL algorithm. In Section 5,
the simulation setting and results are discussed. Finally, we give the
conclusions in Section 6.

2. Related work

Conventionally, resource allocation strategy plays a significant role
in improving spectrum efficiency and energy efficiency. However, due
to the different features between H2H and M2M communications, the
resource allocation schemes designed for H2H networks (either IEEE-
based networks or 3GPP/3GPP2-based networks) cannot be directly
applied to M2M communication. In this section, we review a number
of previous research activities related to the issues and the enabling
technologies. When a massive number of devices attempt to access a
spectrum simultaneously will result collisions. The collided devices will
wait for a random time period before next attempt to access. 3GPP
in [12] investigated the radio access network improvements for devices
707
in M2M communication underlaying LTE and several potential efforts
are proposed to address the overload problem in Physical Random
Access Channel (PRACH). In [13], a group-based M2M access scheme
is proposed to enhance the efficiency in random access network by
using multiple connections among different devices in the same group.
Simulation results shown that this scheme enables to improve the
random access performance in the condition of the workload is high.
Similarly, another group-based random access scheme for cellular M2M
communications is proposed in [14] to reduce collisions during the
random access procedure. The core idea of this scheme is to make
use of multiple beams to divide M2M devices into different groups
and utilizing the spatial selectivity of beams to limit the interference
among different groups. In [15], an information-centric networking
for M2M communications is investigated from design and deployment
perspectives. The goal of this scheme is to ensure the easy interop-
erability with the European Telecommunications Standards Institute
(ETSI) M2M specifications. Therefore, a test-bed is also developed
to showcase the viability of this scheme. Experimental results shown
that the device resources consumption has been improved. Moreover,
as a key technology to overcome the spectrum efficiency problem,
cognitive M2M communication has attracted interests from researchers
worldwide. A comprehensive survey on the major characteristics, re-
search issues, and challenges in cognitive M2M communication from
a practical design and implementation perspective is provided in the
works of [16] and [17]. In addition, authors of [18] studied the value of
cognitive M2M to traditional cellular networks from the prospective of
economic. However, these above-mentioned works mainly concentrate
on the enhancement of spectrum efficiency, and the energy efficiency
issue is ignored. Generally, M2M communications have the character-
istics of limited power supply and a massive number of machine-type
communication devices deployed in heterogeneity scenarios, therefore
the shortcoming of energy efficiency should be highly considered.
According to the investigation in [19], the network throughput of M2M
communication is mainly limited by the energy budget in each device.
Furthermore, some researchers intended to investigate the integration
of energy harvesting and M2M communications. An EH-assisted and
social-aware transmission protocol for M2M communication is pro-
posed in [20]. The authors of [21] proposed three different spectrum
access schemes for EH-M2M communication with the goal of improving
the performance in terms of throughput, delay and energy efficiency.
However, this work did not consider the co-channel interference caused
by spectrum sharing. In [22], a joint power control and time allocation
scheme is proposed to minimize the energy consumption for M2M
communication. The authors formulated the problem to two strategies:
Non-Orthogonal Multiple Access (NOMA) and Time Division Multi-
ple Access (TDMA). However, this work did not take into account
of transmission mode and relay selection. In [23], a joint channel
selection, peer discovery, power control and time allocation scheme is
proposed to maximize the energy efficiency of the transmitter in M2M
communication. However, the high computation complexity against
the original intention of saving energy in this work. Furthermore, the
convergence speed of the proposed algorithm is not evaluated as well.

3. Network model descriptions

In this section, we first depict the network model of the proposed
EH-CMNs, which is then followed by the details on data transmis-
sion model, energy harvesting model and energy efficiency model in
EH-CMNs.

3.1. Network model

In this treatise, we consider a scenario of EH-CMNs underlaying a
single cellular network, as illustrated in Fig. 1. Base Station (BS) is
located at the center of the cell with radius R, while N Cellular Users
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Fig. 2(a). Influence of 𝛼 and 𝛾 on energy efficiency (𝛼 = 0.9 and 0.5, 𝛾 = 0.1).
Fig. 2(b). Influence of 𝛼 and 𝛾 on energy efficiency (𝛼 = 0.9 and 0.5, 𝛾 = 0.5).
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(CUs) are denoted as 𝑐𝑖 (𝑖 ∈ {1, 2,… , 𝑁}) and M machine-type commu-
ication devices are denoted as 𝑑𝑗 (𝑗 ∈ {1, 2,… ,𝑀}) are uniformly

distributed in the coverage area. Each M2M pair has a transmitter
(DU_Tx) and a receiver (DU_Rx). For simplicity, we only consider
machine-type communication devices are equipped with EH function,
and CUs are still supported by traditional battery power. Moreover,
in order to improve the network resource efficiency, we assume that
both direct transmission and cooperative transmission modes are sup-
ported by the devices. For simplicity, we suppose that only two-hop
transmission is supported by the cooperative transmission mode in this
model. There are three main reasons for making this assumption: (1) as
the number of transmission hops increase, the network throughput will
be increased. However, it will lead to the network resource allocation
problem becomes more complex. Although the proposed DRL algorithm
in this paper enables to find the optimal allocation strategy in such case,
it may involve extra computational latency, which is a tradeoff issue
between energy efficiency and latency; (2) each device is powered by
 M

708
the harvested energy, the status of the available energy of each device
is changing dynamically, if a transmission link includes more hops,
it may increase the probability of transmission instability; (3) unlike
conventional multi-hops wireless sensor networks, the proposed M2M
network is underlaying the cellular network, if a specific device cannot
access the network via 2 hops or accessing the network at the cost of
more energy consumption, this device can be treated as a CU and it will
be assigned with a fixed cellular spectrum. The relay device is denoted
as DU_Rly. We define a binary parameter 𝛼𝑑𝑗 ∈ {0, 1} 𝑗 ∈ (1, 2,… ,𝑀) to
ndicate that which transmission mode that is utilized recently by the
th device. 𝛼𝑑𝑗 = 1 denotes that the jth device is in direct transmission
ode, while 𝛼𝑑𝑗 = 0 indicates that the jth device is in cooperative

ransmission mode. In MAC layer, TDMA-based access mechanism is
mployed, in which each transmission frame can be divided into mul-
iple time slots. These time slots can be assigned to the devices, whether
hey operate in direct transmission or cooperative transmission modes.

eanwhile, it should be noted that the transmission mode of each



Y.-H. Xu, Y.-B. Tian, P.K. Searyoh et al. Computer Communications 160 (2020) 706–717

d
s
r
t
t
t
n
W
𝜏

{
t
t

k
M
m
t
o
i
T

i
D
f
o
p
t
t
M
a
d
t

Fig. 2(c). Influence of 𝛼 and 𝛾 on energy efficiency (𝛼 = 0.9 and 0.5, 𝛾 = 0.9).
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evice is determined by the resource allocation strategy in the proposed
cheme. For example, after the proposed scheme finds the optimal
esource allocation strategy, in which a specific device is determined
o transmit data in direct mode, then the device will use the certain
ime slot (which is also determined by the resource allocation strategy)
o transmit data. We suppose that each transmission frame includes K
umber of time slots and the time slot set is denoted as 𝜓 = (1, 2,… , 𝐾).
e set 𝑡0 = 0 and 𝑡𝐾 = 𝑇 . The duration of each slot is denoted as
𝑘 = 𝑡𝑘 − 𝑡𝑘−1∀𝑘 ∈ 𝜓 .

In case of direct transmission, we define a binary parameter 𝛽𝑘𝑑𝑗 ∈
0, 1} , (𝑗 ∈ (1, 2,… ,𝑀),∀𝑘 ∈ 𝜓) to indicate which time slot is assigned
o a specific device. 𝛽𝑘𝑑𝑗 = 1 denotes that the kth time slot is assigned
o the jth device for direct transmission, while 𝛽𝑘𝑑𝑗 = 0 means the

th time slot is not assigned to the jth device for direct transmission.
ore specifically, another two reasonable assumptions are made in this
odel: (1) each device can only receive data from one device at each

ime slot; (2) in each time frame, each device only be assigned at most
ne time slot for transmission. The purpose of these two assumptions
s to maintain the fairness of transmission opportunity of each device.
hus, we can derive two constraints as Eqs. (1) and (2):
𝑁𝑀
∑

𝑗=1
𝛽𝑘𝑑𝑗 ≤ 1, 𝑘 ∈ 𝜓 (1)

𝐾
∑

𝑘=1
𝛽𝑘𝑑𝑗 ≤ 1, 𝑗 ∈ (1, 2,… ,𝑀) (2)

In case of cooperative transmission, we assume that the K time slots
n a transmission frame are allocated to both DU_Tx-DU_Rly and DU_Rly-
U_Rx links. This assumption is mainly to be used to guarantee the

airness between direct transmission and cooperative transmission, to
btain the optimal resource allocation strategy. Similarly, we define a
arameter 𝛿𝑘𝑑𝑗→𝑑𝑟 ∈ {0, 1} , (𝑗, 𝑟 ∈ (1, 2,… ,𝑀),∀𝑘 ∈ 𝜓) as an indicator
hat the kth time slot is allocated to jth device for transmitting data
o the rth device, which is selected as the relay of the jth device.
eanwhile, 𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ∈ {0, 1} (𝑗, 𝑟, 𝑧 ∈ (1, 2,… ,𝑀),∀𝑘 ∈ 𝜓) is denoted

s the indicator that the rth device forwards the data from the jth
evice to the zth device at the kth time slot. In this model, we suppose

hat each DU_Tx only can select one DU_Rly during any time slot in a
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ransmission frame and each DU_Rly can only forward data from one
U_Tx during any time slot in a transmission frame. Thus we can obtain

wo constraints as Eqs. (3) and (4):
𝑁𝑀
∑

𝑟=1,𝑟≠𝑗
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1,

𝑁𝑀
∑

𝑗=1,𝑗≠𝑟
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1 (3)

𝑁𝑀
∑

𝑗=1,𝑗≠𝑟
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≤ 1,

𝑁𝑀
∑

𝑟=1,𝑟≠𝑗
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≤ 1 (4)

Furthermore, due to each link can only be assigned at most one time
lot, we can obtain constraint as Eq. (5):
𝐾
∑

=1
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1,

𝐾
∑

𝑘=1
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≤ 1 𝑗 ≠ 𝑟 (5)

Another aspect to note is that the data transmission from DU_Tx
o DU_Rly should be prior to the transmission from DU_Rly to DU_Rx.
herefore, we can obtain Eq. (6):
𝑥
∑

=1
𝛿𝑘𝑑𝑗→𝑑𝑟 −

𝐾
∑

𝑘=𝑥+1
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≥ 0, 𝑥 ∈ (1, 2,… , 𝐾 − 1) (6)

.2. Data transmission model

In this model, each CU in cellular network is pre-assigned up-
ink spectrum resource with the bandwidth of B, which is orthogonal
utually. Reasonably, we suppose that each cognitive M2M pair can
ultiplex the uplink spectrum that assigned to CUs as the secondary
ser temporally. We can derive the instantaneous Signal to Interference
lus Noise Ratio (SINR) of ith CU as Eq. (7).

𝐼𝑁𝑅𝑐𝑖 ,𝑘 =
𝑝𝑖,𝑘 ⋅ 𝑔𝑘𝑐𝑖−𝐵𝑆

∑

𝑑𝑗∈𝑀 𝑝𝑗,𝑘 ⋅ 𝑔𝑘𝑑𝑗−𝐵𝑆 + 𝑛0
(7)

According to Shannon’s theorem, we can get the instantaneous
transmission rate of ith CU as Eq. (8).

𝑅 = 𝐵 ⋅ log
(

1 + 𝑆𝐼𝑁𝑅
)

(8)
𝑐𝑖 ,𝑘 2 𝑐𝑖 ,𝑘
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Furthermore, we can get the long term average transmission rates
f CUs as Eq. (9):

𝑐 = lim
𝐾→∞

𝑠𝑢𝑝 1
𝐾

𝐾
∑

𝑘=1

𝑁𝐶
∑

𝑖=1
E[𝑅𝑐𝑖 ,𝑘] (9)

here, 𝑝𝑖,𝑘 and 𝑝𝑗,𝑘 are the instantaneous transmission powers of the
th CU and jth M2M device in kth time slot, respectively. 𝑔𝑘 denotes
he channel gain among i, j and BS (𝑖 ∈ 𝑁, 𝑗 ∈𝑀), and 𝑛0 is the noise
ower, which equals to 𝐵⋅𝜌𝑛, where 𝜌𝑛 is the density of noise. Moreover,
n order to guarantee the transmission rate of the primary CUs, the
alue of 𝑅𝑐 should attain the minimum transmission rate threshold
𝑅𝑡ℎ.

In M2M communication, various devices with different functions
ay have different transmission rate requirements. In this network
odel, we denote 𝑅𝑗 as the transmission rate of the jth device and it

an be expressed as Eq. (10):

𝑗 = 𝛼𝑑𝑗 ⋅ 𝑅𝑗
𝑑 +

(

1 − 𝛼𝑑𝑗
)

⋅ 𝑅𝑗
𝑐 , 𝑗 ∈

(

1, 2,… , 𝑁𝑀
)

(10)

where, 𝑅𝑗 𝑑 is the transmission rate of the jth device in direct transmis-
sion mode, and 𝑅𝑗 𝑐 denotes the transmission rate of the jth device when
transmitting data to destination via relay device. Based on the above
analysis, we can derive the instantaneous SINR of direct transmission
and cooperative transmission. Eqs. (11)–(13) give the instantaneous
SINR of direct link, DU_Tx-DU_Rly link and DU_Rly-DU_Rx link in the
th time slot, respectively.

𝐼𝑁𝑅𝑑𝑗,𝑘 =
𝑝𝑑𝑗,𝑘 ⋅ 𝑔𝑑𝑗−𝑑𝑧

∑𝑁𝑀
𝑗1=1,𝑗1≠𝑗

∑𝑁𝑀
𝑟=1,𝑟≠𝑗,𝑗1

𝛿𝑘𝑑𝑗1→𝑑𝑟
⋅ 𝑝𝑠𝑗1 ,𝑟,𝑘 ⋅ 𝑔𝑑𝑗1−𝑑𝑟 + 𝑛0

(11)

here, 𝑝𝑑𝑗,𝑘 denotes the instantaneous transmission power of the jth
evice in the kth time slot when transmitting data to the zth device
hich is the destination device of the jth device, 𝑔𝑑𝑗−𝑑𝑧 is the channel
ain between the jth device and the zth device, 𝑝𝑠𝑗1 ,𝑟,𝑘 denotes the
nstantaneous transmission power of 𝑗1th device in the kth time slot
hen transmitting data to rth device, which is selected as the relay of

he 𝑗1th device, 𝑔𝑑𝑗1−𝑑𝑟 is the channel gain between the 𝑗1th device and
th device.

𝐼𝑁𝑅𝑠→𝑟𝑗,𝑟,𝑘 =
𝑝𝑠→𝑟𝑗,𝑟,𝑘 ⋅ 𝑔𝑑𝑗−𝑑𝑟
𝐼𝑠→𝑟𝑗,𝑟,𝑘 + 𝑛0

(12)

𝑠→𝑟
𝑗,𝑟,𝑘 =

𝑁𝑀
∑

𝑗1=1
𝑗1≠𝑗, 𝑟

𝑁𝑀
∑

𝑟1=1
𝑟1≠𝑗,𝑗1 , 𝑟

𝛿𝑘𝑑𝑗1→𝑑𝑟1
⋅ 𝑝𝑠→𝑟𝑗1 ,𝑟1 ,𝑘

⋅ 𝑔𝑑𝑗1−𝑑𝑟

+
𝑁𝑀
∑

𝑗1=1
𝑗1≠𝑗, 𝑟

𝛽𝑘𝑑𝑗1
⋅ 𝑝𝑑𝑗1 ,𝑘 ⋅ 𝑔𝑑𝑗1−𝑑𝑟 +

𝑁𝑀
∑

𝑗1=1
𝑗1≠𝑗, 𝑟

𝑁𝑀
∑

𝑟1=1
𝑟1≠𝑗,𝑗1 , 𝑟

𝛿𝑘𝑑𝑗1→𝑑𝑟1→𝑑𝑧
⋅ 𝑝𝑟→𝑑𝑗1 ,𝑟1 ,𝑘

⋅ 𝑔𝑑𝑟1−𝑑𝑟

here, 𝑝𝑠→𝑟𝑗,𝑟,𝑘 denotes the instantaneous transmission power of the jth

evice when transmitting data to the rth device, which is selected as its
elay in the kth time slot. 𝑝𝑟→𝑑𝑗,𝑟,𝑘 denotes the instantaneous transmission
ower of rth device in the kth time slot when forwarding data from
th device to the destination.𝐼𝑠→𝑟𝑗,𝑟,𝑘 is the total instantaneous interference
f the DU_Tx-DU_Rly link in the kth time slot. The expression of 𝐼𝑠→𝑟𝑛,𝑚,𝑘
ncludes three items, the first item indicates the interference from other
U_Tx-DU_Rly links, the second item is the interference from direct

ransmission between DU_Tx and DU_Rx, and the three item represents
he interference from DU_Rly-DU_Rx links.

𝐼𝑁𝑅𝑟→𝑑𝑗,𝑟,𝑘 =
𝑝𝑟→𝑑𝑗,𝑟,𝑘 ⋅ 𝑔𝑑𝑟−𝑑𝑧
𝐼𝑟→𝑑𝑗,𝑟,𝑘 + 𝑛0

(13)

𝑟→𝑑
𝑗,𝑟,𝑘 =

𝑁𝑀
∑

𝑗1=1
𝑗1≠𝑟

𝑁𝑀
∑

𝑟1=1
𝑟1≠𝑟,𝑗1

𝛿𝑘𝑑𝑗1→𝑑𝑟1
⋅ 𝑝𝑠→𝑟𝑗1 ,𝑟1 ,𝑘

⋅ 𝑔𝑑𝑗1−𝑑𝑟

here, 𝐼𝑟→𝑑𝑗,𝑟,𝑘 is the total instantaneous interference between the relay
evice and destination device when rth device is selected as the relay
f jth device in the kth time slot.
710
According to Shannon’s theorem, we can obtain the transmission
ate of direct link as given in Eq. (14):

𝑗
𝑑 =

𝐾
∑

𝑘=1
𝛽𝑘𝑑𝑗 ⋅ 𝐵 ⋅ log2(1 + 𝑆𝐼𝑁𝑅𝑑𝑗,𝑘) (14)

The transmission rate of the cooperative mode 𝑅𝑗 𝑐 can be divided
nto two parts: one is the transmission rate of DU_Tx-DU_Rly link 𝑅𝑗 𝑐,𝑠→𝑟
nd another is the transmission rate of DU_Rly-DU_Rx link 𝑅𝑗 𝑐,𝑟→𝑑 , as
hown in Eqs. (15) and (16):

𝑅𝑐,𝑠→𝑟𝑗 =
𝑁𝑀
∑

𝑟=1
𝑟≠𝑗

𝐾
∑

𝑘=1
𝛿𝑘𝑑𝑗→𝑑𝑟 ⋅ 𝐵 ⋅ log2(1 + 𝑆𝐼𝑁𝑅𝑠→𝑟𝑗,𝑟,𝑘) (15)

𝑐,𝑟→𝑑
𝑗 =

𝑁𝑀
∑

𝑟=1
𝑟≠𝑗

𝐾
∑

𝑘=1
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ⋅ 𝐵 ⋅ log2(1 + 𝑆𝐼𝑁𝑅𝑟→𝑑𝑗,𝑟,𝑘) (16)

However, in cooperative transmission mode, the transmission rate
f the path between DU_Tx and DU_Rx is limited by the smaller trans-
ission rate of DU_Tx-DU_Rly link and DU_Rly-DU_Rx link. Hence, the

ransmission rate of the cooperative mode is 𝑅𝑗 𝑐 = min(𝑅𝑗 𝑐,𝑠→𝑟, 𝑅𝑗 𝑐,𝑟→𝑑 ).

.3. Data serving model

In this scenario, we make the assumption that the data are stored
n the form of packets in the buffer of the device. The arrived data at
ach device follows an independently and identically distributed (i.i.d.)
equence with average rate of 𝜆𝑑 [24]. Practically, we assume that
he buffer of device is finite and served in first in first out fashion.

e denoted 𝐷𝑄𝑘𝑑𝑗 as the instantaneous data queue length at the jth
evice in time slot k. The maximum traffic queue length of devices is
epresented by 𝐷𝑄𝑚𝑎𝑥𝑑𝑗

. Accordingly, we can obtain the update function
f the instantaneous data queue length as Eq. (17):

𝑄𝑘𝑑𝑗 =

min

{

𝐷𝑄𝑚𝑎𝑥𝑑𝑗
, 𝐷𝑄𝑘−1𝑑𝑗

− min

{⌊

𝛼𝑑𝑗 ⋅ 𝑅𝑗
𝑑 + (1 − 𝛼𝑑𝑗 ) ⋅ 𝑅𝑗

𝑐

𝑃𝑆𝑑𝑎𝑡𝑎
⋅ 𝜏𝑘

⌋

,

𝐷𝑄𝑘−1𝑑𝑗

}

+ 𝐴𝑘−1𝑑𝑗

}

(17)

here, 𝑃𝑆𝑑𝑎𝑡𝑎 is the traffic packet size with the unit of bits/packet,
𝛼𝑑𝑗 ⋅𝑅𝑗

𝑑+(1−𝛼𝑑𝑗 )⋅𝑅𝑗
𝑐

𝑃𝑆𝑑𝑎𝑡𝑎
⋅ 𝜏𝑘 is the number of instantaneous served packets of

transmission link of jth device in time slot 𝑘−1 𝑎𝑛𝑑 𝐴𝑘−1𝑑𝑗
is the arriving

traffic packets of the jth device in time slot 𝑘 − 1.

3.4. Energy harvesting model

We denoted E𝑗, k as the energy harvested by the jth device in the
th time slot.{E𝑗,1,E𝑗,2,… ,E𝑗, t ,… ,E𝑗, K} is the time sequence of energy

harvested in a transmission frame. It is also i.i.d. sequence with average
rate of 𝜆e. We denote 𝐸𝑄𝑘𝑑𝑗 as the instantaneous energy queue length at
the jth device in the kth time slot. The maximum energy queue length of
devices is represented by 𝐸𝑄𝑚𝑎𝑥𝑑𝑗

. Therefore, we can obtain the update
function of the instantaneous energy queue length as Eq. (18):

𝐸𝑄𝑘𝑑𝑗 = min
{

𝐸𝑄𝑚𝑎𝑥𝑑𝑗
, 𝐸𝑄𝑘−1𝑑𝑗

− min
{⌈ 𝑝𝑗,𝑘−1

𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦
⋅ 𝜏𝑘

⌉

, 𝐸𝑄𝑘−1𝑑𝑗

}

+E𝑗,𝑘−1

}

(18)

here, 𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦 is the energy packet size with the unit of Joules/packet.
𝑗,𝑘−1 denotes the transmission power of the device in the 𝑘−1th time

slot. According to the transmission mode, 𝑝𝑗,𝑘−1 can be set to one of
𝑝𝑑 , 𝑝𝑠→𝑟 and 𝑝𝑟→𝑑 .
𝑗,𝑘−1 𝑗,𝑟,𝑘−1 𝑗,𝑟,𝑘−1
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a
e

f

𝛼

s

It is worth noting that, because the capacity of the energy stor-
ge device is finite, two constraints can be derived from Eq. (18) as
xpressed in Eqs. (19) and (20):
𝐾
∑

𝑘=1

⌈ 𝑝𝑗,𝑘−1
𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦

⋅ 𝜏𝑘

⌉

≤
𝐾
∑

𝑘=1
𝐸𝑄𝑘𝑑𝑗 ,∀𝐾 ∈ {1, 2,…} (19)

𝐾
∑

𝑘=1
𝐸𝑄𝑘𝑑𝑗 −

𝐾
∑

𝑘=1

⌈ 𝑝𝑗,𝑘−1
𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦

⋅ 𝜏𝑘

⌉

≤ 𝐸𝑄𝑚𝑎𝑥𝑑𝑗
,∀𝐾 ∈ {1, 2,…} (20)

Eq. (19) depicts that the current available energy cannot exceed
the total energy in the battery. Eq. (20) expresses that the total energy
stored in the battery cannot exceed the maximum battery capacity.

3.5. Energy efficiency model

In this paper, we define the energy efficiency of EH-CMNs as the
ratio of the transmission rate to the consumed transmission power.
Eq. (21) gives the energy efficiency of the j-th device in time slot k.

𝐸𝐸𝑘𝑑𝑗 =
𝛼𝑑𝑗 ⋅ 𝑅𝑗

𝑑 + (1 − 𝛼𝑑𝑗 ) ⋅ 𝑅𝑗
𝑐

𝑝𝑗,𝑘
∀𝑗 ∈ (1, 2,… ,𝑀) ,∀𝑘 ∈ 𝜓 (21)

Therefore, the average energy efficiency of the overall EH-CMNs is
presented as follows:

𝐸𝐸 = 1
𝑀

⋅
𝐾
∑

𝑘=1

𝑀
∑

𝑗=1
𝐸𝐸𝑘𝑑𝑗 (22)

The corresponding EE maximization problem can be formulated as
ollows:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑑𝑗 ,𝛽

𝑘
𝑑𝑗
,𝛿𝑘𝑑𝑗

,𝑝𝑗,𝑘 ,
𝐸𝐸 (23)

.t.
𝑀
∑

𝑗=1
𝛽𝑘𝑑𝑗 ≤ 1, 𝑘 ∈ 𝜓,

𝐾
∑

𝑘=1
𝛽𝑘𝑑𝑗 ≤ 1, 𝑗 ∈ (1, 2,… ,𝑀)

𝑀
∑

𝑟=1,𝑟≠𝑗
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1,

𝑀
∑

𝑗=1,𝑗≠𝑟
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1

𝑀
∑

𝑗=1,𝑗≠𝑟
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≤ 1,

𝑀
∑

𝑟=1,𝑟≠𝑗
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≤ 1

𝐾
∑

𝑘=1
𝛿𝑘𝑑𝑗→𝑑𝑟 ≤ 1,

𝐾
∑

𝑘=1
𝛿𝑘𝑑𝑟→𝑑𝑧 ≤ 1𝑗 ≠ 𝑟

𝑥
∑

𝑘=1
𝛿𝑘𝑑𝑗→𝑑𝑟 −

𝐾
∑

𝑘=𝑥+1
𝛿𝑘𝑑𝑗→𝑑𝑟→𝑑𝑧 ≥ 0, 𝑥 ∈ (1, 2,… , 𝐾 − 1)

lim
𝐾→∞

𝑠𝑢𝑝 1
𝐾

𝐾
∑

𝑘=1

𝑁
∑

𝑖=1
E[𝑅𝑐𝑖 ,𝑘] ≥ 𝑇𝑅𝑡ℎ

𝐾
∑

𝑘=1

⌈ 𝑝𝑗,𝑘−1
𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦

⋅ 𝜏𝑘

⌉

≤
𝐾
∑

𝑘=1
𝐸𝑄𝑘𝑑𝑗 ,∀𝐾 ∈ {1, 2,…}

𝐾
∑

𝑘=1
𝐸𝑄𝑘𝑑𝑗 −

𝐾
∑

𝑘=1

⌈ 𝑝𝑛,𝑘−1
𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦

⋅ 𝜏𝑘

⌉

≤ 𝐸𝑄𝑚𝑎𝑥𝑑𝑗
,∀𝐾 ∈ {1, 2,…}

𝑝𝑑𝑗,𝑘 ≤ 𝑝𝑚𝑎𝑥𝑗 ∀𝑗 ∈ (1, 2,… ,𝑀) ,∀𝑘 ∈ 𝜓

𝑝𝑠→𝑟𝑗,𝑟,𝑘 ≤ 𝑝𝑚𝑎𝑥𝑗 𝑗, 𝑟 ∈ (1, 2,… ,𝑀) , 𝑗 ≠ 𝑟,∀𝑘 ∈ 𝜓

𝑝𝑟→𝑑𝑗,𝑟,𝑘 ≤ 𝑝𝑚𝑎𝑥𝑗 𝑗, 𝑟 ∈ (1, 2,… ,𝑀) , 𝑗 ≠ 𝑟,∀𝑘 ∈ 𝜓

4. Problem formulation and optimization algorithm

From the energy efficiency maximization problem, we can see that it
is a multi-objectives optimization problem. Simultaneously, because the
variables 𝑝𝑛,𝑘 are continuous, while 𝛼𝑆𝑛 , 𝛽

𝑘
𝑆𝑛
, 𝛿𝑘𝑆𝑛 are binary, the problem

(23) is a mixed integer nonlinear programming problem, which cannot
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be directly solved by convex optimization methods. Even if we can
transform the original problem into a tractable convex optimization
problem, the problem still requires the prior network information.
Furthermore, from Eqs. (17) and (18), we found that both the traffic
packet and the energy packet are only related to current arrivals and
the previous remainders. Thus, we can formulate problem (23) as the
DFMDP [25]. More specifically, our scenario can be formulated to
either centralized or decentralized DFMDP. However, in the centralized
DFMDP, BS should acquire all information about the network to make
the optimal decision. In this situation, BS will face a large-scale state–
action exploratory space that may result network signaling overhead
and redundancy. Therefore, we formulated the problem to be a de-
centralized DFMDP. Meanwhile, due to the reason that the massive
number of devices will be deployed in M2M network in future IoTs,
the RL-based algorithm such as classical Q-learning algorithm cannot
satisfy the requirement of delay-sensitive applications. Therefore, in
this paper, we intend to propose a DRL-based algorithm to solve the en-
ergy efficiency problem. DRL is capable of improving the learning rate
by utilizing Deep Neural Networks (DNNs) replaces classical greedy
algorithm to train the learning process.

4.1. DFMDP model

Typically, a DFMDP is defined by a tuple (S, A, p, r), where S is a
finite set of states, A is a finite set of actions, p is a transition probability
from state s to state 𝑠′ (∀𝑠 ∈ 𝑆,∀𝑠′ ∈ 𝑆) after action a(∀𝑎 ∈ 𝐴) is
performed, and r is the immediate reward obtained after a(∀𝑎 ∈ 𝐴)
is executed [26]. We denote 𝜋 as a policy that is a mapping from a
state to an action. Our goal is to find the optimal policy denoted as
𝜋∗ to maximize the reward function over a finite time in the DFMDP.
Therefore, the detailed tuple in our proposed model is designed as
follows:

(1) The state of each device 𝑑𝑗 in the kth time slot can be denoted
as 𝑠𝑘𝑑𝑗 ∈ 𝑆. In this model, 𝑠𝑘𝑑𝑗 contains two parts: 𝐷𝑄𝑘𝑑𝑗 and
𝐸𝑄𝑘𝑑𝑗 . They are the data and energy queue lengths of jth device
at the beginning of the kth time slot, respectively. To ensure
the completeness of the exploration of state space, 𝐷𝑄𝑘𝑑𝑗 and
𝐸𝑄𝑘𝑑𝑗 are specified to be an integer and take the values of
[0, 1,… , 𝐷𝑄𝑚𝑎𝑥𝑑𝑗

] and [0, 1,… , 𝐸𝑄𝑚𝑎𝑥𝑑𝑗
], respectively.

(2) The action a (∀𝑎 ∈ 𝐴) in this scenario should be the resource allo-
cation strategy, which includes transmission mode 𝛼𝑑𝑗 , time slot
allocation 𝛽𝑘𝑑𝑗 , relay selection 𝛿𝑘𝑑𝑗 and power allocation 𝑝𝑗,𝑘. To
make sure the integrity of the exploration of action space, 𝑝𝑑𝑗,𝑘,
𝑝𝑠→𝑟𝑗,𝑟,𝑘 and 𝑝𝑟→𝑑𝑗,𝑟,𝑘 should be subject to the maximum transmission
power 𝑝𝑚𝑎𝑥𝑗 .

(3) The reward r is the immediate reward corresponding to current
state–action pair, which is given in Eq. (22).

However, the traditional value-based algorithms such as Monte
Carlo [27] and Temporal Difference (TD) [28] algorithms have some
shortcomings in practical applications, for instance, they cannot handle
the tasks in continuous action space efficiently and the final solution
may not be global optimal. Therefore, we intend to adopt a policy-
based algorithm in this work. The goal of the proposed algorithm is to
find out the optimal policy 𝜋∗(𝑠𝑘𝑑𝑗 ) → 𝐴 for each state in each device’s
complete state–action space. By this way, we can obtain the energy
efficiency performance under the influence of random and fluctuant
data and energy arriving model.

4.2. Deep reinforcement learning algorithm

To address the formulated DFMDP problem, the classical Q-learning
algorithm is an effective tool [29]. As we mentioned previously, our
goal is to find the optimal policy 𝜋∗(𝑠𝑘 ) → 𝐴 for each user to maximize
𝑑𝑗
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Table 1
Simulation parameters setting.

Parameters Value

R 800 m
Distance of two devices Random distributed in [20, 50]
𝑁 [1:1:30]
𝑀 [6:2:60]
B 180 kHz
𝜌𝑛 −174 dBm/Hz
𝑝𝑚𝑎𝑥𝑖 20 dBm
𝑝𝑚𝑎𝑥𝑗 17 dBm
𝜆𝑑 [1:1:8] packet/time slot
𝜆𝑒 [1:1:8] packet/time slot
𝜓 200
𝜏𝑘 0.5 ms
𝑃𝑆𝑑𝑎𝑡𝑎 8 bits/packet
𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦 0.0005 J/packet
𝐷𝑄𝑚𝑎𝑥

𝑑𝑗
50 packets

𝐸𝑄𝑚𝑎𝑥
𝑑𝑗

50 packets
𝑇𝑅𝑡ℎ∕𝐵 8 bps/Hz and 12 bps/Hz

the energy efficiency, the Q-learning algorithm also can be a candidate
algorithm to obtain the solution. The core idea behind the Q-learning
algorithm is to first define the value function 𝑉 𝜋 (𝑠𝑘𝑑𝑗 ) → 𝑟 that represent
the expected value gotten by policy 𝜋 from each state 𝑠𝑘𝑑𝑗 ∈ 𝑆. The
value function 𝑉 𝜋 for policy 𝜋 quantifies the goodness of the policy via
an infinite horizon and discounted MDP. To simplify the discussion, we
use 𝑉 𝜋 (𝑠) to represent 𝑉 𝜋 (𝑠𝑘𝑑𝑗 ) and which can be expressed as Eq. (24):

𝑉 𝜋 (𝑠) = E𝜋

[ ∞
∑

𝑘=0
𝛾 ⋅ 𝑟𝑘

(

𝑠𝑘, 𝑎𝑘
)

|𝑠0 = 𝑠

]

= E𝜋
[

𝑟𝑘
(

𝑠𝑘, 𝑎𝑘
)

+ 𝛾 ⋅ 𝑉 𝜋 (𝑠𝑘+1
)

|𝑠0 = 𝑠
]

(24)

Because we aim to find the optimal policy 𝜋∗, the optimal action
at each state can be found by means of the optimal value function, as
Eq. (25):

𝑉 ∗ (𝑠) = 𝑚𝑎𝑥
𝑎𝑘

{

E𝜋
[

𝑟𝑘
(

𝑠𝑘, 𝑎𝑘
)

+ 𝛾 ⋅ 𝑉 𝜋 (𝑠𝑘+1
)]}

(25)

If we denoted 𝑄∗ (𝑠, 𝑎) ≜ 𝑟𝑘
(

𝑠𝑘, 𝑎𝑘
)

+ 𝛾 ⋅E𝜋 [𝑉 𝜋 (𝑠𝑘+1
)

] as the optimal
Q-function, the optimal value function can be rewritten as 𝑉 ∗ (𝑠) =
𝑚𝑎𝑥𝑎{𝑄∗ (𝑠, 𝑎)}. The 𝑄∗ (𝑠, 𝑎) can be obtain through iterative process
according to Eq. (26).

𝑄𝑘+1
(

𝑠𝑘, 𝑎𝑘
)

= 𝑄𝑘
(

𝑠𝑘, 𝑎𝑘
)

+ 𝛼
[

𝑟𝑘
(

𝑠𝑘, 𝑎𝑘
)

+𝛾𝑚𝑎𝑥𝑄𝑘
(

𝑠𝑘, 𝑎𝑘+1
)

−𝑄𝑘
(

𝑠𝑘, 𝑎𝑘
)]

(26)

where, 𝛼 is the learning rate to determine the impact of new in-
formation to the existing Q-value, and 𝛾 ∈ [0, 1] is the discount
factor.

However, the Q-learning algorithm can get the optimal policy when
the state–action spaces are small. Practically, such as in our compli-
cated model, the spaces are normally large. As a result, Q-learning
algorithm may insufficient to find the optimal policy within the ac-
ceptable time. Hence, we implement a Deep Q-Network (DQN) to
replaces the Q-table in the classical Q-learning algorithm as a DRL-
based algorithm to derive the approximate value of 𝑄(𝑠𝑘, 𝑎𝑘). Therefore,
the Q-value of DQN in kth time slot can be rewritten as 𝑄(𝑠𝑘, 𝑎𝑘, 𝜔),
where 𝜔 is the weight of DNN. After the approximation, the optimal
policy 𝜋∗(s) will be presented by Eq. (27):

𝜋∗ (s) = arg𝑚𝑎𝑥
𝑎𝑘

𝑄∗ (𝑠𝑘, 𝑎𝑘+1, 𝜔
)

(27)

where, 𝑄∗ (𝑠, 𝑎) is the optimal Q-value via DNN approximation. DQN
will choose the approximated action 𝑎𝑘+1 = 𝜋∗

(

𝑠𝑘+1
)

. Then the approx-
imated

∼
𝑄(𝑠𝑘, 𝑎𝑘) can be given as Eq. (28):

∼
( 𝑘 𝑘 ) ( 𝑘 𝑘 ) ( 𝑘+1 𝑘+1 )
𝑄 𝑠 , 𝑎 , 𝜔 = 𝑟 𝑠 , 𝑎 , 𝜔 + 𝛾𝑚𝑎𝑥𝑎𝑘+1 [Q 𝑠 , 𝑎 , 𝜔 ] (28)
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The value of 𝜔 is updated by minimizing the loss as expressed
in Eq. (29). We present the proposed DRL-based resource allocation
algorithm in our formulated model in Algorithm 1.

L = E

[

(∼
𝑄
(

𝑠𝑘, 𝑎𝑘, 𝜔
)

− Q
(

𝑠𝑘+1, 𝑎𝑘+1, 𝜔
)

)2
]

(29)

5. Simulation results and analysis

In this section, we compare the proposed scheme with other three
schemes: (1) direct transmission-only scheme; (2) random power allo-
cation scheme; and (3) classical Q-learning resource allocation scheme.
To verify the effectiveness of the proposed scheme, we evaluate the
performance in terms of energy efficiency and the convergence speed.

5.1. Simulation setting

In simulation, we consider a scenario of EH-CMNs underlaying
cellular network, in which cognitive-enabled devices and CUs are de-
ployed randomly in a cellular cell with the radius of 800m. BS is located
at the center of this topology. The communication range between
two devices is randomly set between [20, 50] m and a minimum
distance between CU and M2M pairs is set to 200 m in order to
avoid serious interference. Simultaneously, we suppose that only M2M
devices are equipped with the energy harvesting function, and the
energy harvesting process is Poisson-distributed with a rate 𝜆𝑒 at arrival
instants 𝑡𝑘. The traffic arriving process is also Poisson-distributed with
a rate 𝜆𝑑 at arrival instants 𝑡𝑘. The DQN framework has no prior
knowledge about them. We set 150 time instants for each episode and
the energy efficiency will be averaged to reduce the instability. The
DNN utilized in DQN framework contains two fully connected hidden
layers, in which 64 neurons and 32 neurons are set respectively. The

implementation of DNN is carried out by using Tensorflow 1.0. For



Y.-H. Xu, Y.-B. Tian, P.K. Searyoh et al. Computer Communications 160 (2020) 706–717

e
p
w
f
s

5

(
e

e
e
t

Fig. 3. The optimization process for energy efficiency.
Fig. 4. Energy efficiency versus different number of CUs with 𝑇𝑅𝑡ℎ∕𝐵 = 8 bps/Hz.
t

M

ach configuration, we generate 100 independent runs and average the
erformance of energy efficiency. Moreover, the confidence intervals
ith 95% probability are also provided in each performance evaluation

igure. All of the detailed simulation variables used in this paper are
ummarized in Table 1.

.2. Results and analysis

1) The influence of learning rate 𝛼 and discount factor 𝛾 on energy
fficiency

In order to avoid other factors influencing the performance, we first
valuate the influence of learning rate 𝛼 and discount factor 𝛾 on energy
fficiency. We implement a scenario in which one CU and one direct
ransmission-only M2M pair are deployed. The M2M pair multiplexes
 i
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he uplink spectrum resource of the CU with 𝜆𝑒 = 3 and 𝜆𝑑 = 5.
Figs. 2(a), 2(b) and 2(c) show the average energy efficiency under
different values of 𝛼 and 𝛾. From the results, we can see that either the
decrease of learning rate 𝛼 or the increase of discount factor 𝛾 will cause
the instability of energy efficiency in the proposed resource allocation
algorithm. This is because a smaller 𝛼 leads to less exploration. In
such case, the proposed algorithm increasingly concentrates on the
DNN which has more immediate effect in increasing the users’ utility.
Contrarily, a smaller 𝛾 means that the policy gives priority to the
immediate reward and a larger value of 𝛾 causes more foresight
in the policy updating. Therefore, from the long term perspective,
a larger 𝛾 will increase the average utility in the long term [30].

oreover, another interesting finding can be obtained from Fig. 2(c)
s that although a large value of 𝛾 can increase energy efficiency
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Fig. 5. Energy efficiency versus different number of CUs with 𝑇𝑅𝑡ℎ∕𝐵 = 12 bps/Hz.
Fig. 6. Energy efficiency versus different number of devices deployed.
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rom the long term perspective, in the case of conjunction with 𝛼, a
arger 𝛼 will get a fast convergence speed, but the energy efficiency
luctuates largely after convergence and meanwhile a smaller 𝛼 will
ause a slow convergence speed, but the energy efficiency is more
table. Furthermore, we also tried some more complex scenarios in
hich more M2M devices are deployed, but the influences of learning

ate 𝛼 and discount factor 𝛾 are similar. For simplicity and ease of
nderstanding, we only demonstrate this scenario and we can obtain a
ivid result that the proposed algorithm performs better in the case of
higher 𝛼 and lower 𝛾 . Consequently, we set 𝛼 = 0.9 and 𝛾 = 0.1,

espectively, in the following simulations.
Comparison between the proposed DRL algorithm and Q-learning

lgorithm
Fig. 3 illustrates the optimization processes for energy efficiency of

he proposed DRL algorithm and Q-learning algorithm. The simulation
 o
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esult gives two observations. First, Q-learning algorithm performs bet-
er than DRL algorithm before 70 episodes. This is because the fact that
n the first 70 episodes, DRL algorithm also selects actions randomly
nd stores the feedbacks into replay memory. After 70 episodes, DRL
lgorithm starts to learn from the experience. It is worth noting that the
roposed DRL algorithm is unstable initially. However, as the episodes
ncrease, the performance trends to stable. Second, Q-learning algo-
ithm performs quite stable after 50 episodes rather than 100 episodes
or the proposed algorithm in this scenario, which indicates that Q-
earning algorithm achieves convergence faster than the proposed DRL
lgorithm. Nevertheless, the proposed DRL algorithm remain obtains
he better energy efficiency performance within an acceptable time.
2) The influence of the number of CUs with different QoS constraints

Figs. 4 and 5 present the energy efficiency for different number
f CUs with the QoS constraints of spectral efficiency 𝑇𝑅 ∕𝐵 =
𝑡ℎ
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Fig. 7. Energy efficiency versus different energy harvesting rate 𝜆𝑒.
e
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8 bps/Hz and 𝑇𝑅𝑡ℎ∕𝐵 = 12 bps/Hz, respectively. From the results, it
can be observed that the proposed algorithm has the higher energy
efficiency as compared to the direct transmission-only scheme. This
is because the proposed scheme takes into consideration of both di-
rect and cooperative transmission modes and the optimal transmission
mode can be selected by the DRL algorithm. Compared with the random
power allocation scheme, the proposed scheme jointly considers the
transmission mode, relay selection and allocated time slot to determine
the level of transmission power rather than the random allocation in
the random power allocation scheme. It also can be observed that
the random power allocation scheme has the worst energy efficiency.
Remarkably, the performance of Q-learning algorithm initially is better
than the proposed DRL algorithm. However, as the number of CUs
increases to 10, the DRL algorithm outperforms Q-learning algorithm.
There are two reasons for this observation: (1) when the number of CUs
is small, the resource allocation problem is simpler. However, the DRL
algorithm has the more computation complexity as compared to the
Q-learning algorithm. Thus, the energy efficiency is lower; (2) as the
number of CUs increases meanwhile the DRL algorithm starts to learn
from the experience rather than the replay memory, the performance
of the DRL algorithm goes up. Another interesting find in this simu-
lation is that as the number of CUs increases to 14, the performance
of the direct transmission mode-only scheme overs Q-learning-based
scheme. This is because more devices are implemented will reduce
the distance between two devices. It is worth noting that even if the
direct transmission mode-only scheme does not support cooperative
transmission, it still adopts DRL algorithm to obtain relative optimized
energy efficiency. Moreover, with the conjunction of Figs. 4 and 5, we
can see that the higher energy efficiency can be obtained with the lower
CUs QoS constraint (𝑇𝑅𝑡ℎ∕𝐵 = 8 bps/Hz). This is due to the fact that
smaller of 𝑇𝑅𝑡ℎ∕𝐵 means less 𝑝𝑖, which results less interference to M2M
communication, the energy efficiency will increase.
(3) The influence of the number of devices deployed

Fig. 6 gives the average energy efficiency for a different number
of devices deployed in EH-CMNs. In this evaluation, the number of
CUs constantly set to 10 and they are randomly deployed in the
scenario. Simulation results depict that the proposed DRL algorithm
has the highest energy efficiency among the Q-learning scheme, the di-
rect transmission mode-only scheme and the random power allocation

scheme. Initially, when the number of devices is small, the proposed
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DRL scheme, Q-learning scheme and direct transmission mode-only
scheme have the similar performance. However, as more devices are
deployed, the DRL scheme outperforms other two schemes. Meanwhile,
from the results we can see that the average energy efficiency reaches
the highest point for most algorithms (except the random power allo-
cation algorithm) as the increase of the devices. However, while the
number of devices further increases, the energy efficiency is reduced.
Interestingly, it can be observed that the proposed DRL scheme enables
to maintain the widest range of the number of deployed devices with
the highest energy efficiency. Another valuable finding is that the av-
erage energy efficiency of devices under direct transmission mode-only
scheme reduces drastically and goes to the lowest value approximate
at 31 bits/J. This is because when the number of devices is larger,
the distance between DU_Tx and DU_Rx is larger, which causes higher
nergy consumption. Thus, a significant conclusion can be obtained is
hat the transmission mode selection makes an important contribution
o the energy efficiency improvement.
4) The influence of energy harvesting rate 𝜆𝑒

Fig. 7 presents the energy efficiency with different energy harvest-
ing rates 𝜆𝑒. In this simulation, the data arrival rate 𝜆𝑑 is set to 3 to
emulate the small bursty data of M2M communication in IoTs. From the
results, it is clear that the proposed DRL scheme and Q-learning scheme
can obtain relatively higher energy efficiency. With the increase of 𝜆𝑒,
the energy efficiency is improved sharply. This is because more energy
can be harvested in each time slot with the higher 𝜆𝑒. Meanwhile, we
found that DRL scheme always has the highest energy efficiency along
with the increase of 𝜆𝑒, the reason is due to that it enables to obtain
an optimal correlation between energy harvesting time, transmission
mode, relay selection, and power allocation. Finally, we found that
the random resource allocation scheme does not change the energy
efficiency. This is because it does not take into account the available
energy when allocating transmission power.

6. Conclusion

The main motivation of this paper is to study the resource allocation
scheme for EH-CMNs. Unlike the traditional M2M communications, the
available energy will be another vital issue that should be considered
in the resource allocation. Specifically, with the goal of maximizing

the average energy efficiency, we formulate the resource allocation
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problem to be a decentralized DFMDP, in which the transmission
mode, relay selection, allocated time slot, power allocation, and energy
constraint of each device are considered. Owing to the high com-
plexity of the problem, we also propose a DRL algorithm to solve
the maximization problem. Through extensive simulations, it is shown
that the proposed scheme enables each agent adaptively learns from
environment to enhance the energy efficiency significantly for different
network settings. Additionally, the proposed DRL algorithm with the
low convergence speed is more suitable for the scenarios of EH-CMNs.
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