
Computer Communications 154 (2020) 331–346

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Wireless control using reinforcement learning for practical web QoE
Henrique D. Moura ∗, Daniel F. Macedo, Marcos A.M. Vieira
Computer Science Department, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil

A R T I C L E I N F O

Keywords:
Wireless network
Software defined network
Reinforcement learning
Q-Learning
Multi-armed bandit
Quality of Experience

A B S T R A C T

Wireless networks show several challenges not found in wired networks, due to the dynamics of data
transmission. Besides, home wireless networks are managed by non-technical people, and providers do not
implement full management services because of the difficulties of manually managing thousands of devices.
Thus, automatic management mechanisms are desirable. However, such control mechanisms are hard to
achieve in practice because we do not always have a model of the process to be controlled, or the behavior
of the environment is dynamic. Thus, the control must adapt to changing conditions, and it is necessary to
identify the quality of the control executed from the perspective of the user of the network service. This article
proposes a control loop for transmission power and channel selection, based on Software Defined Networking
and Reinforcement Learning (RL), and capable of improving Web Quality of Experience metrics, thus benefiting
the user. We evaluate a prototype in which some Access Points are controlled by a single controller or by
independent controllers. The control loop uses the predicted Mean Opinion Score (MOS) as a reward, thus the
system needs to classify the web traffic. We proposed a semi-supervised learning method to classify the web
sites into three classes (light, average and heavy) that groups pages by their complexity, i.e. number and size
of page elements. These classes define the MOS predictor used by the control loop. The proposed web site
classifier achieves an average score of 87% ± 1%, classifying 500 unlabeled examples with only fifteen known
examples, with a sub-second runtime. Further, the RL control loop achieves higher Mean Opinion Score (up
to 167% in our best result) than the baselines. The page load time of clients browsing heavy web sites is
improved by up to 6.6x.

1. Introduction

Over the past 20 years, IEEE 802.11-based (Wi-Fi) wireless networks
have become commonplace on office and campus environments, and it
is the most common method of Internet access for home stations [1].
However, the wireless medium is subject to performance problems,
such as packet loss, delay, and low connection speed, often caused
by interference of other Wi-Fi networks, signal propagation issues,
and misconfiguration. Vendors sell commercial wireless controllers that
centralize Wireless Local Area Network (WLAN) configuration, but they
are closed platforms, which rely on the vendor’s initiative to implement
new features. Furthermore, network operations and management re-
main cumbersome. Comsa et al. [2] highlight that the main challenge in
wireless networks is to achieve higher user satisfaction. Furthermore, it
is important to provide a good QoE for the user, because 40% of visitors
will abandon a web site that takes more than 3 s to load, and from
those, 80% will not return [3]. As a consequence, expert management
systems are required to compensate for the dynamic nature of the
wireless medium, and to maintain an acceptable user experience at all
times, demanding little to no human interaction [4].

∗ Corresponding author.
E-mail addresses: henriquemoura@dcc.ufmg.br (H.D. Moura), damacedo@dcc.ufmg.br (D.F. Macedo), mmvieira@dcc.ufmg.br (M.A.M. Vieira).

Auto-configuration and auto-optimization capabilities can be added
to the wireless network using Software Defined Networking (SDN) with
minimal or no human administration [4,5]. There are two prerequi-
sites for auto-optimization: a control loop algorithm that reads the
environment and acts on the network, and metrics representative of
the QoE experienced by the users. A control loop can employ RL for
sequential optimization problems, allowing an agent to interact with
an unknown environment, without a system model. Other methods
such as Bayesian learning could be used, however, these methods
work better when the amount of data is large [6], and they require
some assumptions, e.g. the prior distribution. However, a model-free
approach that performs satisfactorily with a little amount of data is
preferable, since users do not tolerate under-performing systems for
even short periods.

There are still many open challenges to build an automatic control
loop based on QoE. First, it is necessary to map how the network
characteristics influence the QoE perceived by the user. QoE is sub-
jective, and the characteristics of the flows change over time with the
evolution of the services. Further, the flows must be classified using
a very small subset of labeled data. Once we can map the network

https://doi.org/10.1016/j.comcom.2020.02.032
Received 21 October 2019; Received in revised form 7 February 2020; Accepted 9 February 2020
Available online 25 February 2020
0140-3664/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2020.02.032
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.02.032&domain=pdf
mailto:henriquemoura@dcc.ufmg.br
mailto:damacedo@dcc.ufmg.br
mailto:mmvieira@dcc.ufmg.br
https://doi.org/10.1016/j.comcom.2020.02.032

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

characteristics into QoE, we must overcome the second challenge: the
intelligent system should learn online, while minimizing the disruptions
to the users. Learning requires exploring new actions, and some of them
may reduce the QoE. Thus, the system must reduce its impact on the
production network by learning effectively. Finally, the third challenge
deals with distributed decision making. In a WLAN, several intelligent
APs will compete with each other for wireless medium resources.
Hence, what is the processing cost and performance in a centralized,
decentralized or cooperative approach? The main advantages of the
proposed method to the literature are that the RL method used does not
need to know the system model, the learning method reacts to changes
in the network conditions (adapts to a non-stationary environment),
and seeks to continuously improve user satisfaction.

This article presents a closed control loop for Wi-Fi networks,
using RL and SDN, which optimizes the Web QoE. To the best of our
knowledge, our work is the first that uses SDN to control 802.11-based
wireless networks using RL with a QoE metric as feedback. The main
contributions of this article are:

• We propose a power control and channel selection scheme using
a model-free approach to maximize the Web QoE. The proposed
architecture is shown in Fig. 1. We propose an SDN control loop
based on Q-Learning (QL) (item 3 of Fig. 1). It is compared with
a fixed configuration and with control loops using greedy ap-
proaches. A prototype was developed and tested under three real
scenarios: (i) a single controller manages one Access Point (AP);
(ii) two APs are managed by independent controllers; and (iii) one
controller coordinates two APs. The RL approaches showed lower
regret (better QoE) than the baselines considered in this article.
Our best result improved the QoE by 167% when compared to
the baselines. QL showed worse values than Multi-armed Bandit
(MAB) (best improvement of 84%), but faster convergence time.
The control loops improve the QoE metric as well as the global
average page load time by 5.6x in a SA scenario, and 6.6x in MA
scenario.

• We investigate the trade-offs of a distributed versus centralized
decision approach in Sections 3.3 and 3.4, showing better perfor-
mance in a centralized approach, since the controller has a better
view of what happens to the network. However, the distributed
approach needs fewer controller resources, since the search space
increases significantly in the centralized approach. The decen-
tralized approach reached the maximum MOS faster in all six
combinations, but the centralized approach got better regret in
four out of six combinations of web site types.

• We propose a web site classifier based on the similarity to three
labeled web sites in [7], employing a semi-supervised learning
algorithm called Transductive Support Vector Machine Algorithm
Based on Spectral Clustering (TSVMSC) [8]. This classifier is
applied to the control loop in two steps: an online, and an off-
line process, to provide faster responses to user requests. They
correspond to items 1 and 4 of Fig. 1. This classifier selects the
predictor proposed by [7] (item 2 of Fig. 1). To the best of
our knowledge, this is the first time this approach is applied to
site classification. Also, we incorporated state-of-the-art enhance-
ments to the original TSVMSC proposal: (a) inferring the number
of clusters by rotating on the eigenvectors of the similarity matrix,
(b) using centroid distance of clusters with labeled and unlabeled
data to define the class approximation, and (c) using a fast heuris-
tic to obtain the Transductive Support Vector Machine (TSVM)
margin. The web site classifier is evaluated using experimental
data, varying the regularization parameters and the size of the test
set. It achieves an accuracy score of 87%±1% with 500 unlabeled
examples and 15 labeled examples, in a one-second execution,
which shows the viability of the classifier. It is also compared to
classical machine learning classification methods.

Table 1
Key symbols used in the article.

Symbol Description

𝜈 Number of features of the TSVMSC classifier
𝑋 Features for the labeled examples
𝑌 Labels of the labeled examples
𝑛̀ Number of unlabeled examples in the TSVMSC classification
x∗𝑖 Vector of features on the unlabeled data 𝑖
𝑋∗ Matrix R𝑛̀×𝜈 of unlabeled data x𝑖 as rows
𝜎 Parameter that controls the width of the neighborhood in the

distance matrix generation
𝐶 Regularization parameter for labeled data in TSVMSC classification
𝐶∗ Regularization parameter for unlabeled data in TSVMSC

classification
𝑐𝑛 Centroids for the labeled data, where the index

𝑛 ∈ {𝑙𝑖𝑔ℎ𝑡, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, ℎ𝑒𝑎𝑣𝑦}
𝑐𝑢 Centroids for the unlabeled data, where the index 𝑢 ∈ {1,… , 𝐾}
𝐾 Number of clusters discovered by the spectral clustering procedure
𝑐 Loop parameter that represents the evaluated class

This work is an extension of [9]. The main differences are: (i)
in [9] we assume that the web sites are already classified into different
types, based on their User Interface (UI) style. This article removes this
requirement, as it proposes and evaluates a web site classifier. (ii) we
propose a new control mechanism, based on Q-Learning; and (iii) we
evaluate a second baseline, based on a greedy algorithm; and (iv) we
evaluate the gains in MOS during the learning phase as well as the
stationary state, in which the learning algorithms have a more refined
hypothesis.

The remainder of this article is organized as follows. Section 2
describes the proposed architecture. Section 3 discusses the results of
our prototype using three case studies. Related work is discussed in
Section 4. Finally, Section 5 concludes the article.

2. System architecture

This section presents the proposed architecture. We have used an
SDN-based approach to implement an intelligent control loop based on
a QoE predictor. By decoupling the data plane from the control plane,
the SDN controller can run more complex algorithms, which would be
prohibitive in the limited processors of existing APs. Further, the SDN
controller has a full view of the network, furthermore, it can reach
better decisions than distributed algorithms. Section 3 compares the
performance of the proposed solution in a centralized scenario (one
control loop for the entire network) against a distributed scenario (one
control loop for each AP). For clarification, we list in Table 1 the key
symbols used in this section.

The control loop is built on top of a software-defined wireless
network controller (in our case, the Ethanol [10] communication layer).
Both programs run in the same host, and both run as POX [11] modules.
Note that the control loop is independent of Ethanol, so any southbound
interface could be employed to control the APs and wireless stations.
The main parts of the SDN controller are numbered in Fig. 1, and
explained below:

1. On-line classification of the web sites requested by users.
In this step, the requested web site is classified by the proposed
site classifier into one of the three classes (light, average or heavy)
proposed in Hora et al. [7]. This classification will be detailed
in Section 2.2.

2. MOS Predictor. QoE represents the user’s satisfaction or discom-
fort using a given service [12], and it is perceived subjectively.
It is measured using a MOS value.1 Because we cannot inquire
the users about their satisfaction, we use a MOS predictor,
which estimates the QoE that will be obtained when the network

1 MOS is a measure used in QoE domain [12] that ranges from 1 to 5.

332

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Fig. 1. Proposed architecture. Boxes in yellow did not exist in [9]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

configuration is changed. The predictor used in our work was
proposed in [7]. This predictor map the PHY rate and medium
busy time into the expected MOS of the web page using Support
Vector Regression (SVR). The first parameter represents the link
quality, while the second indicates medium availability. Hora
et al. [7] have identified three distinct classes of web sites, which
have different responses to the PHY rate and medium busy time.
They are called light, medium and heavy, and are related to the
number of images and other elements in the web page. Hence,
the authors derived three SVR models, one for each class. In their
evaluation, the authors have shown that the predictors adhered
to real values up to 93% in a validation set with data from APs
deployed in 4880 residential customers of a large Asian-Pacific
Internet Service Provider (ISP), consisting of 23,000 devices and
a total of 180 million samples.

3. Adjustment of the wireless network parameters to improve
Web QoE. Using RL, the controller adjusts the transmission
power and the wireless channel so that it maximizes the QoE for
the given web site type. This is explained in detail in Section 2.3.

4. Periodic update of the web site classifier. The web site clas-
sification model is recalculated periodically, using off-line train-
ing, as shown in Section 2.2. This update is necessary because
the proposed classifier is trained with very few labeled data, and
new web sites improve the precision of the classifier. Online
learning was avoided due to the need for fast responses, as
described in Appendix.

5. AP configuration interface/API. The architecture’s data plane
uses Ethanol [10], an SDN architecture for IEEE 802.11 networks
that configures and manages wireless resources. Ethanol controls
IEEE 802.11 APs as well as wireless stations that fully implement
the IEEE 802.11/2016 standard. The control plane can config-
ure any IEEE 802.11 parameter that Ethanol exports, such as
the channel frequency, the transmission power, among others.
Other southbound interfaces could be used, however Ethanol was
chosen because of the author’s familiarity with the platform and
because it provides the functionality necessary to carry out the
proposed experiments.

2.1. The choice of a model-free approach

Models of the IEEE 802.11 channel dynamics, such as those of
Bianchi and others, usually model aspects such as throughput and delay
in specific situations (e.g. on a saturated channel, or non-saturated
channel with a fixed packet generation rate). Beyond that, physical
layer effects such as multipath fading are very hard to model accu-
rately. Another aspect of channel dynamic models is the fact that they
rely on optimization models. Such models are expensive to re-run on
real-time. Meanwhile, RL is less expensive to run, since the updates
of the state transitions are performed locally (i.e. only at the current
state).

Next, channel dynamics models can infer the Quality of Service
(QoS) of the channel and not the QoE. QoE depends on user perception,

so to use WiFi channel models in a QoE-aware control loop, one would
first have to derive models that map QoS into QoE perception.

Instead of relying on two separate models (i.e. a channel dynamics
model and a QoS to QoE mapping model), this work directly maps
the effect of actuation into the end-user QoE. Since there are no pre-
existing models in the literature to map the QoE of an application into
actionable parameter changes, we adopted a model-free approach in
which the system learns the relation of states and actions.

2.2. Classifying the web site type

The first step in the control loop is the selection of which MOS
predictor to use. In our work, we used the predictors proposed by Hora
et al. [7]. The authors defined three predictors, one for each type
(class) of a web site. They divided the web sites into three types:
light, average, and heavy. The light web site represents a web site
with very lightweight pages, such as the front page of search engines
(e.g. Google). On the other hand, a heavy web site represents pages with
many objects/images, e.g. Amazon. An average web site represents a
site with intermediary complexity, like Facebook. Each web site type
presents a different response to the controlled wireless parameters,
hence the type and intensity of the controller’s actuation in the network
depend on the web site type.

Hora et al. [7]’s proposal has two shortcomings: they exemplify each
class with only one web site (as shown above), and they do not classify
arbitrary web sites into the defined classes. Hence, it is critical for a
production system to classify other web sites based on similarities with
the examples provided by the authors.

Because of the reasons above, we developed a web site classi-
fier. Since there are few labeled examples, the classifier must deal
with a problem called low-density separation, which attempts to place
boundaries in regions where there are few data points (labeled or
unlabeled) [13]. We tackled this problem through semi-supervised
learning using TSVMSC.

Our system periodically probes the reference web sites (Google,
Amazon, and Facebook), collecting information such as page load time,
page size, and Round-Trip Time (RTT). This step is labeled (4) in Fig. 1.
These probes provide the labeled data. The number of probes must be
kept low, so that this learning process does not to compete with normal
system activity.

During the operation of the control loop, due to the need for rapid
responses, a target web site is classified online using the TSVMSC
trained model whenever the user accesses a web site. This is per-
formed in the box labeled (1) in Fig. 1. TSVMSC is a classifier that is
trained in two steps: the first clusters the unlabeled data using Spectral
Clustering (SC), and the second uses a modified TSVM to label the
data in each cluster. These two steps are explained in more detail
below. Because this method considers both labeled data and unlabeled
data, it is expected that its results are better than classic supervised
and unsupervised methods. We compared the classification results of
TSVMSC with some classic methods in Appendix.

The proposed web site classifier uses TSVMSC, which is composed
of two phases: (1) a clustering phase – SC and (2) a classification phase
– TSVM. They are described below:

1. SC: The SC [14] phase generates clusters among the unlabeled
data. It uses the eigenvalues of the data similarity matrix to per-
form dimensionality reduction before clustering. The similarity
matrix is the normalized Euclidean distance between every un-
labeled data. The number of clusters generated by SC is selected
using a technique proposed in §3 in [15], which analyzes the
eigenvectors of the similarity matrix. The Laplacian is rotated
so there is more than one non-zero entry in some of the rows.
The authors define a cost function based on the Laplacian values,
and minimizing this cost over all possible rotations will provide
the best alignment with the canonical coordinate system. The
number of clusters is the one that provides the minimal cost.

333

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Notice that this number can be greater than three (the number
of web site classes). The classifier then obtains three centroids
𝑐𝑛 using the labeled data, using Euclidean distance. The centroid
𝑐𝑢 is then calculated for each cluster of unlabeled data, and the
Euclidean distance between 𝑐𝑢 and the labeled data centroid 𝑐𝑛
determines the cluster label (light, average or heavy).

2. TSVM: The clustered unlabeled data provides an approximation
of the proportion of positive examples for each class among
the unlabeled examples, which is necessary for the next step
– TSVM [16]. TSVM generates a classifier for each class, using
both labeled and unlabeled examples. Since this problem is NP-
hard [16], the QN-S3VM heuristic [17] was used. This is a
modified Support Vector Machine (SVM) where the unlabeled
data patterns are taken into account by searching for a partition
of these patterns into two classes. This step interactively anneals
the influence of the unlabeled part in the SVM cost function.
An estimated number of positive examples is needed to run
QN-S3VM. Among the labeled examples, those of the class 𝑐 in
evaluation receive a value 𝑦𝑖 = 1, while the others receive a
value 𝑦𝑖 = −1. Among the unlabeled examples, those belonging
to the clusters classified in class 𝑘 are counted, providing an es-
timate of the number of positive examples among the unlabeled
set. Therefore, we generate three classifiers using a One-vs-Rest
approach. TSVM has two regularization parameters, 𝐶 and 𝐶∗.
The first one accounts for the margin over the label data, i.e, it is
the cost of the SVM. The second parameter creates a margin over
the unlabeled data. These parameters are analyzed in Appendix.

Ties between the classifiers are broken by classifying the web site
into the class with more rigorous QoE requirements, i.e., heavy and
average, in this order. This step is 𝑂(𝜈) because it depends only on
the number of features – 𝜈. Also, the features obtained from the last
accesses are stored for the off-line step, which retrains the classifier,
improving the results.

Appendix shows the evaluation of the classifier used in our exper-
iments, and also compares it with other traditional machine learning
methods. The proposed classifier shows an accuracy of 0.8720, an
F1 score of 0.8944, a precision of 0.9912, and a recall of 0.8148.
The proposed classifier presented the best accuracy among the tested
algorithms. The second best obtained an accuracy of 0.553, about
40% less than the proposed classifier. However, its training time was
only better than Gaussian Process (GP), however this should not be a
problem, since the classifier is trained offline.

2.3. QoE maximization using reinforcement learning

Once the web sites are classified by our proposed classifier, we can
use Hora et al. [7]’s predictors to infer which action should be taken
to improve the user’s QoE. We use RL for that end. For each flow,
the predictor provides an estimate of the MOS perceived by the user.
Our proposal uses a reward function based on those estimates (i.e. the
average of the MOS of the users of an AP) to provide feedback to
the learning algorithm. Table 2 shows the symbols introduced in this
section.

Fig. 2 shows the proposed control loop. The agent (in our case
the controller) receives information about the environment’s state s.
Based on this information, the agent takes an action a, the environment
changes to a new state s’, and the agent receives a reward r. These
terms will be explained in the following sections. The control loop
maximizes the QoE of Web traffic using Q-Learning (QL).

The exploration technique used in this article is called 𝜖–greedy
[18]. It balances exploration (searches for better responses), and ex-
ploitation (reuses the best results so far). The control loop follows with
a probability equal to (1−𝜖) a greedy strategy that considers the action
that maximizes the discounted return in the current state. On the other
hand, with a probability equal to 𝜖, it selects a random action, thus

Table 2
Symbols used in the article (continuation).

Symbol Description

s, s Current state
s’, s’ Next state (after the action a)
a, a Selected action in state s
r, 𝑟𝑡, 𝑟 Reward received when in state s perform the action a
𝑡 Current timestep
𝜖 Controls the exploration rate in the 𝜖-greedy algorithm
𝑀𝑂𝑆𝑖,𝑡 MOS perceived by the station 𝑖 at the timestep 𝑡
𝑀 Number of connected wireless stations with web flow
𝑄∗ Optimal Q-value
𝑄(𝑠, 𝑎) Estimated Q-value for state s and action a
𝛼 Learning rate
𝛾 Discount rate

Fig. 2. The agent-environment interaction in reinforcement learning.
Source: Adapted from Sutton and Barto [18].

testing other actions that may be better than the best action known to
date. Because the environment may not be stationary, we do not anneal
the 𝜖, which guarantees that the algorithm will always explore [19,20].
However, adjusting the value of 𝜖 allows the control loop to follow a
better approximation of the best action if the system is stable for a long
time. This aspect needs further research and will be addressed in future
work.

QL is a simple method, which has convergence guarantees. The
same cannot be said of approaches with approximation functions such
as Deep QL. Since the states are discretized in our approach, the state
matrix grows linearly with the number of APs. For 200 APs, the Q-
matrix occupies about 1 MB of memory, which can be handled by our
devices. Thus, for medium-sized deployments, this approach does not
suffer from the curse of dimensionality. Also, the adopted approach
allowed us to see that the convergence is fast using QL. However,
an approximation function would help the exploration phase, since
extrapolates the estimates to unexplored points in the state space. This
approach will be explored in future work.

The control loop is modeled as follows:

2.3.1. Reward
For a time 𝑡, we define the reward as the average MOS of the

connected stations’. Given that a wireless station 𝑖 perceives the 𝑀𝑂𝑆𝑖,𝑡,
which is the QoE approximation calculated in time 𝑡 using Hora et al.’s
predictor, the reward used in the control loop is: 𝑟𝑡 =

1
𝑀

∑𝑀
𝑖=1 𝑀𝑂𝑆𝑖,𝑡,

where 𝑀 is the number of connected wireless stations with web flows.
Another option, which we intend to evaluate in future work, is the use
of the concept of fairness proposed by Jain [21], to guarantee a more
balanced MOS between the stations.

Because Hora et al. signed an NDA, they could not disclose the
trained SVM predictor parameters. However, they provided the heat
map values generated by these predictors for each of the classes, i.e., we
have an approximation of the prediction function. The heat maps were
provided as a two-dimensional array of size 63 (PHY medium busy) x
23 (average PHY bitrate). Since the MOS values provided by the authors
are discrete, and the values read from the APs are continuous, the MOS
used in the experiments is calculated as a linear regression of neighbor
points, as shown in Fig. 3. The figure shows how this process is done.
When the control loop reads the current state of the environment (𝑃𝑒𝑛𝑣),
it identifies the closest neighbor points (suppose they are 𝑃1 to 𝑃4).
These points define a plane, and the MOS value that corresponds to
𝑃𝑒𝑛𝑣 is interpolated from this plane. The MOS predictor is used in our

334

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Fig. 3. How MOS is calculated in our evaluation.

proposal as a black box, thus if a better or more suitable predictor
appears, it can be used instead.

The MOS predictor uses two features (Medium Busy, and trans-
mission PHY bitrate), and uses an SVR with non-linear kernel. The
models learn similar boundaries in all different classes. The predictor
in Hora et al. [7] predicts MOS equal 5 for the web sites when the
Wi-Fi conditions are perfect, i.e., medium busy near 0 and PHY bitrate
is at maximum. Similarly, when either PHY bitrate is close to 0 or
Medium Busy is close to 100%, the predicted MOS is 1. However,
the requirements for MOS > 3 differ significantly per visited web site.
Complex web sites require much better Wi-Fi conditions than light
ones. The area where the predicted MOS is maximum (for example,
the green area in Fig. 3) is much bigger using the light predictor than
the other ones, meaning (as expected) that this site type requires fewer
network resources to provide good results to the user.

2.3.2. States
A discrete representation of the system state variable is a three-

dimensional vector, which is represented by the tuple (𝐴𝑃𝑖𝑑 , PHY
medium busy, average bitrate), where 𝐴𝑃𝑖𝑑 is the controlled APs, and the
other two values represent the inputs of the QoE predictor, respectively
the current level of medium usage (in percentage) and the average
bitrate of all connected users in 𝐴𝑃𝑖𝑑 (in percentage of the maximum
bitrate supported by the AP). PHY medium busy, and average bitrate are
discretized considering the heat map values provided by Hora et al.
As an example, consider a scenario with two APs. The controller reads
from these APs the following 𝑃𝐻𝑌 𝑚𝑒𝑑𝑖𝑢𝑚 𝑏𝑢𝑠𝑦, and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑡𝑟𝑎𝑡𝑒
values: (0.25, 0.75), and (0.25, 0.76), respectively. The tuple (1, 25, 75)
would represent the first AP and its environmental condition discretized
to the nearest value in the heat map, while the tuple (2, 25, 75) would
represent the state of the second AP. Thus, the state matrix used by the
QL algorithm has 𝑛 × 63 × 23 states, where 𝑛 is the maximum number
of APs.

2.3.3. Actions
Actions are selected in a parameterized timely basis (1 s). Two

factors need to be considered to define the interval between actions
in the controller: (1) the total control loop execution time, which
consists of communication and processing time in the controller and
devices; and (2) If the controller makes a channel change decision, it is
necessary to wait for the Channel Switch Announcement message (CSA)
time. Thus we have adopted a conservative period of 1 𝑠, so that these
activities can be performed successfully. However, this period can be
adjusted by the user.

The controller alters two Wi-Fi parameters, so an action a is rep-
resented by the tuple (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑜𝑤𝑒𝑟, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙). For
each controlled parameter, the control loop can increase, decrease
or maintain the current value. The transmission power is altered
by 1 dBm increments, while the channel is changed by 1. Thus, for
example, if the AP is in channel 9 with transmission power equal to 10
dBm, an action that increases the transmission power, and decreases the

Fig. 4. Network layout of the experiment.

channel, changes the AP to channel 8 with transmission power equal
to 11 dBm. Hence, there are nine2 possible actions in 𝐀, where 𝑎𝑖 =
(𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝑡𝑥 𝑝𝑜𝑤𝑒𝑟). When the parameter reaches the maximum (or the
minimum) of the wireless network card, the action does nothing. The
range of valid transmission power values is from 1 dBm to 15 dBm and
the channel can assume values between 1, and 11 (the valid 2.4 GHz
range in Brazil). These ranges can be adjusted by the administrator. An
invalid move receives a penalty of −1.

2.3.4. Q -value and its representation
The Q-value is important in the QL method because it allows the

agent to estimate the optimal value denoted by 𝑄∗ from its experiences.
The agent selects actions based on their Q-values, and 𝑄(𝑠, 𝑎) is boot-
strapped using the Bellmann Equation [18,20]: 𝑄(𝑠, 𝑎) = (1−𝛼)𝑄(𝑠, 𝑎)+
𝛼
(

𝑟 + 𝛾 max𝑎′ 𝑄(𝑠′, 𝑎′)
)

. 𝑠 is the current state where the agent takes an
action 𝑎, which makes the environment transit to a new state 𝑠′. 𝛼 is
the learning rate, and 𝛾 is the discount rate used to keep the recurrent
sum bounded.

We use a matrix to represent 𝑄(𝑠, 𝑎), thus it maps a state and an
action to the expected return 𝑄∗. It keeps the value for each state s and
action 𝑎 ∈ 𝐀. The 𝑄-value is stored in a four-dimensional matrix – three
dimensions for state, plus one for action, because we have flattened the
action space in an 𝐀 set, defined in the previous section.

3. Control loop evaluation

A prototype was created containing two Ethanol APs and two wire-
less stations. We use stations that recognize CSA messages, which are
used by an AP in a Basic Service Set (BSS) to advertise its new channel
before changing channels. This way the station can accelerate the
migration to the new channel, reducing the disconnection time.

In the experiment, the station continuously downloads a live web
page from the Internet, requesting a new page when the previous
one ends downloading. Fig. 4 shows a diagram of the network. The
controllers and the APs are connected to a gigabit Ethernet network,
which forwards control data. The APs also use the Ethernet links to
forward the station traffic to/from the Internet using NAT. The devices
are aligned, and the distances are shown in Fig. 4.

The controllers are dual-core Intel i5 PCs with 16 GB of RAM. The
stations are PCs with Dual Core Pentium 2.4 GHz CPUs, 2 GB of RAM,
and a RT3062 802.11n wireless card. Because Ethanol runs on Linux,
the APs are ASUS notebooks with Intel i7 CPU @ 1.80 GHz, 8 GB of
RAM, and Atheros AR9485 wireless NICs. This equipment is shown in
Fig. 5.

The experiments are performed in an environment with more than
60 other APs. We have no control over these APs, which operate
concurrently with our experiments. The control loop must handle co-
channel interference generated by these devices. Also, in our two-APs
scenarios, the control loop must also deal with co-channel interference

2 There are two types of actions, and three actions each, generating nine
distinct combinations.

335

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Fig. 5. Equipment.

of managed APs during startup, because control loop experiments start
both APs on the same channel and power, and, during the experiment,
the control loop can also select actions that put both APs on interfering
channels.

Hora et al. rank web sites into three classes, and the experiment
has two clients, thus there are six possible traffic combinations. The
traffic is not simulated, that is, the stations download live pages over
the Internet using a modified version of the Ghost.py web browser
(https://github.com/jeanphix/Ghost.py). The stations download pages
from the example web sites defined by Hora et al.: Google, Facebook,
and Amazon. For each combination, the experiment is repeated 30
times, stopping the run if both stations reach the maximum MOS or
if a timeout occurs (30 min). Three metrics were collected: conver-
gence time,3 average MOS, and regret.4 Results in this section show
the average as well as the 95% confidence interval using Student’s
t-distribution.

The experiments begin with the system having no previous knowl-
edge – all values in 𝑄(𝑠, 𝑎) are equal to 0. 𝛼 is set to 0.5, so there is
an equilibrium between what is already learned and the new reward,
𝜖 = 0.05, so 5% of the control loop’s choices are exploratory, and 𝛾 =
0.8. Due to the lack of space, we are not showing the tests performed
to obtain these values. Each iteration of our learning algorithm occurs
with one-second intervals, thus the state and the reward are also
collected with this granularity.

3.1. Baselines

To compare our results we came up with two baselines described
below. To collect the data for each combination of web site types, the
experiment was run 30 times. Each run takes 20 min.

• Many commercial controllers provide an ‘‘Auto Channel’’ feature,
i.e, they automatically configure the APs to mitigate the interfer-
ence between them. This baseline thus gives an idea of how our
proposed method compares with a commercial controller.
This baseline is called ‘‘Automatic Channel Selection (ACS) base-
line’’ in the figures. It uses a heuristic provided in the hostapd
code, called ACS (see https://wireless.wiki.kernel.org/en/users/

3 The convergence time is the time it taken to reach the maximum MOS
for all stations.

4 It measures how much reward, on average, the system is losing by not
obtaining the maximum MOS Since the maximum reward is five, we can
compare the strategies using QL and the baseline to an optimal strategy that
would always ensure the maximum reward (i.e. regret equals to zero).

documentation/acs for details). This heuristic evaluates the valid
channels’ interference and occupation at the hostapd initializa-
tion, and selects the channel with lowest interference factor.
Every 5 s, Ethanol requests the controlled AP to measure the
inputs for this heuristic. If there is a better channel (i.e. less busy),
it requests the AP to switch to this channel.
The period to run the ACS procedure was manually selected,
trying to beat the QL performance. This implementation depends
heavily on the amount of time spent gathering the survey data. It
should be noticed that this is a costly procedure, because when
the AP is scanning the channel it cannot forward traffic. In the
current hostapd implementation, this procedure is only executed
during hostapd startup.
ACS can be suboptimal because short traffic bursts may be missed.
It also has to be performed several times to obtain statistically
meaningful data. Thus, there is a tradeoff between channel inter-
ference measurement, the quality of the information obtained and
the AP’s traffic forwarding performance. In our implementation,
there are five samples, one for each second. Some commercial
solutions use a secondary wireless card for scanning. This feature,
however, is present only in high-end devices.

• We also use a simpler setup that we called ‘‘Fixed baseline’’, used
in [9]. This baseline corresponds to the behavior of most SOHO
wireless installations, where the administrator configures each
device individually, selecting a channel during its setup, and that
remains static for a long period, i.e., until the administrator recon-
figures the AP. APs are started on a randomly selected channel,
and with maximum transmission power. This step resembles the
operations of APs using hostapd (https://w1.fi/hostapd/).
This baseline is justified because using the maximum power on a
single AP is the best local strategy, since it increases the Signal
to Interference plus Noise Ratio (SINR) for its stations, regardless
of the station’s flow characteristics. The existence of other APs,
managed by other administrators who do not interact with each
other, allows us to model the configuration task as a game similar
to the prisoner’s dilemma, where administrators greedily employ
the maximum power (defect) or selflessly lower their device’s
transmission power (cooperate). This game’s dominant equilib-
rium is for both players (AP administrators) to defect, i.e., both
APs are configured at maximum power. Further, this setting is
typical for non-technical users, since standalone commercial APs
usually ship with maximum transmit power.

• In a previous work [9], we proposed an RL control loop based
on MAB. MAB is a special class of RL for sequential optimization
problems, where the agent only keeps track of the return distri-
butions of each action, thus there is no state. The method used
is based on confidence intervals [22], i.e., the algorithm learns
the reward distribution for each action, but at the same time
estimates the confidence of that distribution. Thus, it deals with
the exploration-exploitation dilemma without hyperparameters.
It explores actions that it has the least confidence, thus learning
more about the reward for this action (and increasing the confi-
dence in its estimate). On the other hand, it exploits actions with
higher reward estimates.

Some commercial wireless controllers have auto power capabilities,
but these solutions, such as Meraki (https://documentation.meraki.
com/MR/Radio_Settings/Auto_TX_Power), control only APs from their
brand. In this way, those controllers do not cooperate with other
wireless systems in the same coverage area. Thus, we decided to set
the baselines with a fixed transmission power.

3.2. Single agent experiment

This experiment uses one controller that manages one AP. Two
wireless clients connect to this AP. The control is centralized, so this is
an RL scenario with a single agent (SA), resembling a home network.

336

https://github.com/jeanphix/Ghost.py
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://wireless.wiki.kernel.org/en/users/documentation/acs
https://w1.fi/hostapd/
https://documentation.meraki.com/MR/Radio_Settings/Auto_TX_Power
https://documentation.meraki.com/MR/Radio_Settings/Auto_TX_Power
https://documentation.meraki.com/MR/Radio_Settings/Auto_TX_Power

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table 3 shows the number of iterations when both wireless stations
reach MOS = 5. It compares the results obtained using QL, and MAB.
The table rows are the combinations of the three web site classes,
shown in the first and second columns. The next columns show the
average number of iterations with the 95% confidence interval and the
regret for each control loop and the baselines. As each iteration occurs
in approximately one second, these values also approximate the time
spent to reach this limit. We observe that the scenarios with at least
one light page presented the shortest convergence times using QL. This
occurs because the page download requires fewer network resources,
so the controller can quickly reach the maximum MOS for this client.
On the other hand, the scenarios with heavy web sites presented the
longest convergence times and largest confidence intervals. Notice that,
on average, QL is faster to reach the maximum MOS, but, in most cases,
MAB obtains lower medians.

The confidence interval presents large variations mostly due to very
few runs (outliers). For example, in a light–heavy case, one run took
481 iterations to converge, while all others took at most 61 iterations.
Notice also that none of the baselines reached the maximum MOS in
either of the stations after 30 min of experimentation.

Fig. 6 shows the Cumulative Distribution Function (CDF) of the
MOS. This Figure also shows the results obtained using MAB [9]. Due
to space limitations, we only show the worst (Fig. 6-A) and the best
(Fig. 6-B) results. The worst and best curves were selected based on the
comparison with the ‘‘Fixed baseline’’. RL approaches achieve the worst
results in Fig. 6-A. In this Figure, the ‘‘ACS baseline’’ outperforms QL
and MAB, but both are better than the ‘‘Fixed baseline’’. However, when
both stations access light web sites, only 40% of the QL’s measurements
are better than the ‘‘Fixed baseline’’. This behavior is expected, since
the APs in this baseline work at maximum power, improving the bitrate.
Meanwhile, QL and MAB perform exploration, thus these algorithms
select worse settings during the experiment, which impacts the overall
result. Improving the exploration mechanism should provide better
results, but this is still an open topic in RL. However, for the ‘‘Fixed
baseline’’ configuration, the stations are unable to reach the maximum
MOS during the execution. On the other hand, in cases where one
station accesses a heavy web site, the control loop results are better
than the fixed baseline. The overall MOS for the QL control loop is, on
average, improved by 47.5% if compared to the ‘‘Fixed baseline’’, and
10.5% compared to the ‘‘ACS baseline’’.

Table 3 shows the average regret with a 95% confidence interval.
This table shows that QL-controlled experiments provide lower average
regret in all cases when compared to the ‘‘Fixed baseline’’, and partic-
ularly in heavy scenarios. Notice that a 100% reduction is equal to an
optimal regret (equal to zero). The the light–average case achieved the
highest reduction of the experiment, equal to 76%. QL has worse per-
formance than MAB and beats the ‘‘ACS baseline’’ in half of the cases.
Comparing the results with ‘‘ACS baseline’’, we notice that the regret
is reduced to 1.77 in the light–heavy case using QL. MAB [9] achieves
smaller regrets when compared to QL for all combinations, however,
QL converges, on average, faster for all combinations. This is due to the
exploration strategies used in each method. QL explores faster, in this
way it reaches a state where both stations get MOS maximum faster,
but because the environment is dynamic, MAB obtains better MOS than
QL. Dealing with the exploration and exploitation phases is a dilemma
in RL. We think that better controlling this behavior should improve
QL results. It is important to highlight that there is no learning period
for the baselines, because they use a fixed configuration. In this way,
the results in Table 3 could be improved if we consider only the values
when the system stabilizes. This topic is discussed in Section 3.5.

The controller and the AP exchange, on average, 193 ± 92 control
messages per experiment (about 509.2 kB).5 7.7 MB were downloaded
in the experiment with lower traffic, both light web sites, while the

5 This value considers the sizes of all the frames transmitted in the network,
which are captured using 𝑡𝑐𝑝𝑑𝑢𝑚𝑝, including the three-way TCP handshake.

higher traffic experiment downloads 280 MB. Those values correspond
to all web content downloaded in the experiment. In the worst case
overhead, i.e both light web sites, is about 6.5%, and in the best case,
it is less than 0.2% of the useful traffic. Notice that the control messages
are not transmitted in the wireless medium, only the (web) data is
transmitted in the wireless medium, and the off-line web site classifier
traffic only affects the controller.

3.3. Multi-agent experiment

This scenario simulates a deployment with multiple APs, such as a
shopping center, a condominium, etc., and each AP is managed by a
different administrator who does not exchange information with other
administrators. This experiment uses two independent controllers that
do not exchange information. The APs are started on the same channel
and with the same power.

Table 4 shows the number of iterations until convergence. The
convergence time increases as the stations demand more resources
from the Internet, so the scenarios where the light web site is involved
present smaller convergence time than heavy web site cases. In the
average–heavy configuration, for example, the confidence interval is
larger because there are two extreme cases where the convergence
time was very long. This situation is expected, since the algorithm is
always started without any knowledge of the environment, the channel
is selected randomly, and the power starts with the minimum.

Fig. 7 shows the worst (7-A) and best (7-B) results for the MOS
CDF, when compared to the ‘‘Fixed baseline’’. The RL approach reaches
greater MOS than the baseline in most cases. The exceptions occur in
less than 10% of (light–light) and (average– average) experiments. Note
that the baseline used maximum transmission power and has a higher
probability of APs being in non-interfering channels.

Table 4 shows the average regret with a 95% confidence interval for
the MA experiment. QL provides lower average regret in all cases when
compared to the ‘‘Fixed baseline’’, corroborating the results shown in
Fig. 7. The overall MOS in this experiment is, on average, improved
by 47.6% if compared to the ‘‘Fixed baseline’’. QL wins from ‘‘ACS
baseline’’ in three combinations: light–light, light–heavy, and heavy–
heavy. Thus QL loses by 1.2% when compared to the ‘‘ACS baseline’’
(averaging all results). However, MAB outperformed the ‘‘ACS base-
line’’ on average by 18.1%. MAB showed smaller regrets than QL in
all six combinations (Table 4), but QL converges faster, and page load
time is smaller in 4 cases, while the other two are statistically a tie.
The better convergence time is due to the QL exploration strategy. In
this case, QL explores more than MAB, reaching faster a configuration
where both stations get maximum MOS. However, the MAB regret is
lower, because it obtains better MOS more times than QL.

The application throughput, i.e., the transmission speed, was eval-
uated. When a controller is used, the page load time is lower and the
throughput observed by the stations is higher than the ‘‘Fixed baseline’’.
An increase of 6.7x on the average page load time was measured in the
(light, average) case – our best result in this scenario.

During the experiment 278 ± 55 control messages were exchanged,
causing an overhead of 743.8 kB in the Ethernet network. Note that
more messages are exchanged in MA than in SA. However, the confi-
dence intervals overlap in both cases. For the experiment with lower
traffic, 9.8 MB of Web content was downloaded, while for the situation
of higher traffic 77 MB was downloaded. Hence, the control messages
generate an overhead of 1% to 7.4%.

This is a non-cooperative multi-agent scenario, where agents do
not communicate but have to cope with cross-interference. The sys-
tem may become non-stationary from the perspective of an individual
agent, since each agent independently changes its behavior while learn-
ing takes place. This may lead to oscillations [23]. Future work will
test an adapted Payoff Propagation method, turning the setup into a
cooperative scenario.

337

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table 3
SA experiment - Number of steps to reach maximum MOS using the controller and the regret obtained during the experiment.

Client1 Client2 Number of iterations Regret

Q-Learning MAB MAB QL Fixed ACS

light light 22.3 ± 7.46 32.8 ± 56.46 0.743 ± 0.004 1.486 ± 0.072 1.611 ± 0.005 0.671 ± 0.015
light average 16.4 ± 3.10 166.6 ± 126.84 0.711 ± 0.003 1.568 ± 0.104 1.904 ± 0.006 0.936 ± 0.052
light heavy 36.4 ± 31.76 195.7 ± 177.47 0.440 ± 0.003 0.642 ± 0.053 2.706 ± 0.011 1.724 ± 0.005
average average 15.1 ± 2.60 16.9 ± 8.08 1.013 ± 0.005 1.468 ± 0.108 2.386 ± 0.009 1.263 ± 0.081
average heavy 32.0 ± 21.60 243.5 ± 279.73 0.634 ± 0.005 1.246 ± 0.049 3.108 ± 0.013 1.838 ± 0.037
heavy heavy 54.8 ± 26.45 100.7 ± 44.15 1.411 ± 0.014 1.454 ± 0.038 3.164 ± 0.014 3.066 ± 0.008

Table 4
Number of iterations to reach maximum MOS, and the regret in MA experiment considering the control loops and the baselines.

Client1–Client2 Number of iterations Regret

Q-Learning MAB MAB QL Fixed ACS

light–light 48.3 ± 12.64 1356.4 ± 233.31 0.675 ± 0.006 1.070 ± 0.045 1.579 ± 0.007 1.011 ± 0.007
light–average 37.1 ± 7.23 1309.7 ± 243.56 0.610 ± 0.006 1.101 ± 0.063 1.843 ± 0.009 1.102 ± 0.009
light–heavy 63.2 ± 24.05 1123.9 ± 213.27 1.034 ± 0.008 1.423 ± 0.048 3.019 ± 0.006 1.433 ± 0.006
average–average 43.8 ± 5.35 860.2 ± 171.32 0.771 ± 0.010 1.535 ± 0.060 2.477 ± 0.008 1.004 ± 0.008
average–heavy 71.4 ± 42.17 804.4 ± 150.03 1.388 ± 0.012 1.790 ± 0.063 3.583 ± 0.006 1.611 ± 0.006
heavy–heavy 63.7 ± 14.52 635.5 ± 108.77 1.770 ± 0.013 2.334 ± 0.058 3.780 ± 0.003 2.581 ± 0.003

Fig. 6. SA experiment – Cumulative distribution function of MOS – curves more to the right mean better overall MOS.

Fig. 7. MA experiment - Cumulative distribution function of MOS.

3.4. Centrally controlled agent experiment

This scenario simulates a deployment with multiple APs managed
by a single administrator, such as in a company or a campus. The
control loop is executed on a state space that simultaneously contains
both stations and APs, and therefore the system seeks a global reward,
equivalent to the average of the MOS obtained by the stations. This
experiment is similar to SA because the controllers can only obtain
information about its two stations, but now the controller coordinates

both APs, and therefore the controller can handle the cross-interference
that is generated by them. We added a second greedy baseline in this
scenario. Alves et al. [24] proposed a greedy algorithm to adjust the
channel of WLAN networks, which they called HNR. The proposed
algorithm calculates the interference generated by the other controlled
APs as well as the interference of devices in the neighborhood using
the channel quality and the throughput measured in the AP’s wireless
interface. We empirically tuned the threshold parameter used in the
algorithm. For that end, we ran the experiment 20 times for 30 min,

338

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table 5
Number of iterations to reach maximum MOS, and the regret in CA experiment considering the control loops and the baselines.

Client1–Client2 Number of iterations Regret

Q-Learning MAB MAB QL Fixed ACS HNR

light–light 73.6 ± 17.77 383.5 ± 168.94 0.869 ± 0.005 1.153 ± 0.032 1.579 ± 0.007 1.082 ± 0.007 1.337 ± 0.007
light–average 91.7 ± 12.35 60.9 ± 37.33 0.788 ± 0.004 0.899 ± 0.032 1.843 ± 0.009 0.908 ± 0.009 1.252 ± 0.009
light–heavy 76.3 ± 8.66 226.2 ± 57.65 1.055 ± 0.006 1.306 ± 0.038 3.019 ± 0.006 1.421 ± 0.006 1.302 ± 0.006
average–average 114.7 ± 30.73 18.9 ± 6.38 0.969 ± 0.006 1.685 ± 0.037 2.477 ± 0.008 1.273 ± 0.008 1.265 ± 0.008
average–heavy 83.4 ± 14.67 211.6 ± 42.50 1.260 ± 0.007 1.432 ± 0.046 3.583 ± 0.006 1.469 ± 0.006 1.297 ± 0.006
heavy–heavy 77.0 ± 9.71 199.7 ± 37.65 1.737 ± 0.008 2.135 ± 0.042 3.780 ± 0.003 2.239 ± 0.003 1.710 ± 0.003

and the best threshold among these runs was used. The HNR curve and
regret shown in this section were obtained running 30 repetitions using
the best threshold.

Table 5 shows the number of iterations for this experiment. Again,
QL provides the lowest average regret in all cases, if compared to the
fixed baseline. CA showed the worst page load times in most of the
cases, although the runs get lower throughput than the baseline. We
also noticed this behavior in MA, but with less emphasis. We believe
that is related to the format of the MOS metric: the control loop
maximizes the bitrate, which only refers to the radio data rate (of only
a part) of the packets [25], and not the actual throughput of the web
flows. For example, a station can have a high bitrate, even if it is not
transmitting.

MAB showed in [9] smaller regrets in all six combinations, as
displayed in Table 5. However, QL converges faster in all combinations,
and the page load time is smaller in one case, while all other cases are
statistically a tie. The reasons for the observed convergence time and
regret are the same ones discussed in the previous section. If compared
to the ‘‘ACS baseline’’, QL obtains better results in half of the cases. It
is important to highlight that this baseline was manually configured to
beat QL. Altering the scanning interval or the network setup affects
the baseline performance, while QL can learn how the environment
behaves and adapts the APs’ configuration to it. The HNR performance
depends on the flow threshold. This is a weak point of their proposal,
since the threshold should be adjusted for each configuration. Despite
that, HNR provides reliable and consistent performance for their clients,
and outperforms QL, and MAB (by a narrow margin) in the heavy–heavy
case.

The experiment demands an overhead of 1070 kB in the Ethernet
network due to the control messages sent from the controller to the APs.
Notice that in the CA experiment 44% more messages are exchanged
than on the MA experiment, because the control loop takes more time
to converge. The 95% confidence intervals in both cases overlap, so sta-
tistically, both values are the same. The experiment with lower traffic
transfers 1.4 MB, while in the higher traffic, 21 MB were downloaded
by the stations (an overhead of 75%).

Fig. 8 shows the MOS’s CDF. This figure shows the CDFs for the
two proposed RL methods – QL and MAB-UCB1, the baselines described
in Section 3.1, and the results obtained using the algorithm proposed
in [24] – HNR. In the worst case presented (Fig. 8A), QL obtains worse
results than MAB for more than 75% of the cases. However, QL reaches
the maximum MOS faster, and the curves intersect at the end, causing
QL to have more cases with values closer to 5. Despite that, the MAB
regret is better (i.e. overall regret value is smaller) than QL. The overall
MOS in this experiment using QL is, on average, improved by 55.1%
if compared to the ‘‘Fixed baseline’’, and 2.3% when compared to the
‘‘ACS baseline’’. However, MAB improves on average by 13.3% and
71.7%, respectively.

The control loop achieves higher MOS values than both baselines in
most cases. This is shown in the regret columns in Table 5. All cases
show a reduction in regret when compared to the baseline.

During the learning process, the APs sometimes reaches a local max-
imum. The increase in the number of controlled APs implies an increase
in the actions set size and in the Q-value matrix size. The size of the
Q-value matrix is |𝑄| ∝ |𝐴| |𝑆|. Hence, in the MA experiment, each
controller explores (and fills) simultaneously both Q-value matrices of

size |𝑄|. On the other hand, in the CA experiment there is only one
matrix with size |

|

𝑄′
|

|

∝ |2𝐴| |2𝑆| ∝ 4 |𝑄|. Analyzing the executions in
both scenarios, we observed that on average the agent needs to explore
more states in the CA scenario than in MA. In the MA scenario, the
agent explores, on average, about 0.0042% of the total space, while in
CA the agent explores 0.0051% of the space. This shows the importance
of how Q-value is modeled. These values indicate that (1) in MA the
agent needs to explore further the search space to achieve a result
similar to CA, and (2) the Q-value matrix is sparse, thus the agent is
unaware of the effect of similar actions.

3.5. Exploration vs. exploitation

RL mechanisms are subject to a trade-off between two choices:
exploration, where the agent seeks more information about the en-
vironment to verify the existence of better decisions, or exploitation
when it uses the best decision known to date. More exploration means
that the agent may select many sub-optimal actions, and therefore
this impairs its performance. On the other side, if the agent performs
only exploitation, it may be unaware of other actions that can provide
better long-term results. The rewards obtained by the control loops with
RL shown in Figs. 6, 7, and 8 consider the rewards obtained during
the entire experiment. This means that results are measured from the
initialization (when the agent knows nothing of the environment) until
the stations reach a maximum MOS.

To illustrate how the initialization affects the rewards, Fig. 9 shows
the MOS obtained in ten executions of the experiment when the clients
accesses light -type web sites. Three curves are shown. The first one
corresponds to the cumulative distribution of the rewards during the
first 200 s of 10 runs. The others correspond respectively to the 200
and 400 s following this initialization phase. The results after the
initialization are better as expected, since these curves are more to right
in the graph than the curve obtained with the first 200-second results.
Further, they also have a shorter initial tail than the curve in blue.

The average MOS and the 95% confidence interval are, respectively,
4.36 ± 0.02 for the 200-second intervals, 4.61 ± 0.01 for the next 200 s
and 4.60 ± 0.01 for the next 400 s. This means that the first interval
is different from the last two intervals (using the Student’s t-test).
Comparing the averages, one can notice a gain of 5.8% and 5.5% from
the intervals of the next 200 and 400 s respectively to the initialization
phase (first interval). Another way to highlight the difference of the
results produced by the initialization phase and the following seconds
is to check the ratio between the areas under both curves and perform
the Kolmogorov–Smirnov (KS) test for two samples [26]. The KS test
verifies if both curves come from the same distribution based on
the distance between the CDFs. The CDFs from the initialization and
the other ones are different with 95% confidence (using the test of
the difference of the means with unknown variance). Comparing the
initialization phase with the subsequent 200 s, there is a 40% difference
in the area. This ratio indicates that the agent gets a cumulative
performance in the subsequent 200 s of almost one-and-a-half times
better than the initialization phase. The initialization, when compared
to the next 400 s, provides a difference on the order of 34.4%. Thus,
during the initialization period, when the agent knows very little about
the environment, the actions return worse results than the subsequent
seconds.

339

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Fig. 8. CA experiment – Cumulative distribution function of MOS.

Fig. 9. Comparison of MOS during initialization for (light–light) experiment. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3.6. Misclassification problems

Table 6 shows the effect on the regret if the classifier misclassifies
the web site class. To view this effect, we used the SA scenario de-
scribed in Section 3.2, however, we forced the classifier to misclassify
one or both web sites. This result also indicates the effect of site
classification mismatches on Web 2.0 web sites, in which the type of
demand may change over time according to what is displayed on-screen
at the moment.

The results shown in the table correspond to 10 executions of 30 min
for each combination. The rows in the table correspond to the estimated
web site classification. The columns indicate the actual classes of both
web sites. The cells show the average regret and the confidence interval
with 95% confidence for each result. The results on the main diagonal
of the table correspond to the values obtained when the classifier makes
the classification for both web sites correctly, and therefore correspond
to the results presented in Table 3. We colored the table’s cells so that
lighter colors correspond to lower regrets (better results), while darker
colors correspond to higher regrets. The reader should compare the
results obtained on the same line.

From the table, one can see that the regret values obtained when
the classifier classifies the web site type with higher requirements into
a web site type with lower requirements (values in the row to the left
of the main diagonal) are worse than the respective value when the
classification of both sites is correct. In this case, the system thinks
it is obtaining better results because the MOS for a class with fewer
requirements is reached more easily (in graphical terms, the green area
in Fig. 3 is wider for less demanding classes). Thus, the agent stops
improving the performance, wrongly deducing that the MOS is already
maximal for both stations. We also see that the values above the main
diagonal (when the classifier ‘‘upgrades’’ the flow to a more demanding

site type) also show worse results. For example, when both stations are
downloading the light web site (first line of the table), but the classifier
indicates that the second station is downloading a heavy web site (first
row, third column), the result is also worse.

At a first glance, it might seem that this should not be the case, as
the predicted MOS has a higher demand for the misclassified site: the
user would get a better real MOS, because the green area in Fig. 3 for
the light web site (which is being accessed) is much larger than the area
for the heavy web site (which the system thinks is being downloaded).
However, the problem is exactly the higher demand, which causes the
agent to look for better settings (increases exploration) when in fact
it has already reached the maximum MOS. Since both stations are
connected to the same AP, the actions also affect the results of the
station that was correctly classified, e.g., changing channels increases
the disconnected time.

3.7. Discussion

Table 7 shows the best results obtained by both learning methods
(Column 1) for each of the baselines (Column 2). The values presented
in the other columns represent the gain (bigger is better) when the
learning method is applied to the baseline. The rows with the HNR
baseline only show results in the last column because this baseline was
run only in the CA experiment. Recall that HNR aims to reduce co-
interference between the controlled APs, so the CA experiment is the
only scenario where this can occur. Observe that a 100% reduction
means getting the ideal regret, that is, regret is equal to zero.

In general, results show that there is a trade-off when choosing MAB
or QL. This occurs because MAB presents smaller regrets, i.e. results
closer to the optimal, than QL. However, the rate of learning of QL
is faster than that of MAB. As a consequence, MAB would fare better
in more stable environments, while QL would work better than MAB
in more dynamic networks. To ascertain how long the network would
need to converge, we evaluated the distributions of MOS for different
periods of the simulation. In our setup, the learning algorithms were
able to reach a stationary return after only 200 s of operation (recall
Fig. 9).

Using learning to control the wireless network improves network
performance by reducing the regret observed during web browsing.
Our best results (using MAB) show a reduction of 84%, 74%, and
35% compared to the Fixed, ACS, and HRN baselines, respectively. QL
outperforms the ‘‘Fixed baseline’’ in all cases, and the ‘‘ACS baseline’’
in half of the cases, while MAB outperforms the baselines in most of
the cases (40 out of 42).

The experiments did not evaluate the relationship between the
number of stations and the convergence time, because we did not have
enough devices for that. We believe, however, that the convergence
time should increase as the complexity of the system increases. We saw

340

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table 6
Comparing regret results with misclassifications.

Table 7
Best regret results when applying the proposed learning methods compared to the
baselines.

Learning method Baseline SA MA CA

MAB
Fixed 84% 69% 65%
ACS 74% 45% 26%
HNR – – 35%

QL
Fixed 76% 53% 60%
ACS 53% 10% 8%
HRN – – 28%

in SA, and MA experiments that increasing the number of APs increases
the convergence time, because this raises the likelihood of co-channel
interference.

Results indicate that the agent explores a small range of states (less
than 1 percent of the space). We plan to evaluate two ideas in future
work to improve the coverage of the learning process. First, we plan
to use an approximation function to the Q-value (such as a Bayesian
or neural network), for faster learning. A second option is the use of
transfer learning, in which the network would be deployed with pre-
trained weights. The latter could be evaluated by running the same
experiment on a different testbed.

The quality of the classification will determine whether the system
will choose the most appropriate predictor for each situation or not.
There are two types of misclassifications: (1) the selected predictor
imposes higher system demands, for example, it selects a web site as
heavy when it should be light, and (2) the selected predictor imposes
lower system demands, for example, it classifies a web site as light
when it should be heavy. In the first case, if the control loop can
reach the maximum MOS value, the user will not be affected because
the conditions will be favorable to him. In the second case, the effect
for the client may be immediate, because the light web site demands
fewer resources. Hence, the predictor may erroneously estimate that
the station is at full MOS, causing the control loop not to look for a
better configurations, where the station could achieve the maximum
MOS.

4. Related work

Wireless channel conditions can be modeled using a finite-state
Markov model [46]. Previous research use RL for routing, channel
and power control in ad-hoc and wireless sensor networks [47,48].
Baraković and Skorin-Kapov [49] surveyed the state-of-the-art of QoE
management, focusing on wireless networks, and exploring the use of
MOS in cellular networks, but they did not provide a QoE metric based
on wireless metrics.

A QoE/QoS correlation for IPTV QoE evaluation is provided by Kim
and Choi [50]. It creates a normalized QoE value using bandwidth,
burst level, delay and jitter. However, the authors evaluated this cor-
relation only on cabled broadband connections, which are much more
stable than a wireless network. D-DASH [32] uses a video metric to
estimate QoE. They improve the QoE using Deep-QL, but their approach
controls only the video server, not the network as in our approach.
Zhang et al. [51] propose a cache management approach for HTTP
servers using adaptive bitrate streaming in wireless networks. Their
proposal aims to maximize the users’ QoE. Their work infers the QoE

using a logarithmic function of the playback rate, and this metric
is validated by 22 users. Amani et al. [52] proposed an offloading
mechanism for 5G networks using SDN and wireless networks, and they
support the decision using QoS metrics.

RL and QoE were applied to various wireless network problems
as summarized in Table 8. These proposals aim to provide better
congestion control [53], content delivery [29,31,32], handover [44],
medium access control [36], resource allocation and management [38],
routing [41], and traffic classification [54]. The table shows approaches
that use RL to define the agent’s action, for example, to define the
delivery rate [29] or the quality of the video to be downloaded [30–
32]. Other approaches model the network problem as an auction sys-
tem, e.g. [39], where RL solves the auction offer problem, which is
NP-hard, thus the agent learns the best offers based on the reward
received by auctioning. Harishankar et al. [39] considers QoE-sensitive
applications, but a QoE is not explicitly considered in the calculations.

All of the work shown in the Table, except [33] and ours, test the
proposal using simulators, and even in most of those case, the simulator
is omitted. Also, only a few proposals are tested using real traces. The
table shows in the first line our proposal. None of the related work
improved the client’s web access in an 802.11-based wireless network.

5. Conclusion and future work

This article proposed a closed control loop system that optimizes
the QoE for web flows. The control mechanism interacts with the
environment, and in our case, the proposal uses SDN as a southbound
interface. The intelligence is performed by RL algorithms that learn
what is the best action for the current system state. Our proposal acts
upon the environment by changing the AP’s transmission power and
channel. The control loop tackles issues such as how to relate network
parameters with the user’s QoE, and how to achieve the best network
configuration without compromising the user’s experience, while at the
same time minimizing the compute and network resources required.

A crucial aspect of the control is the use of a good QoE estimator.
This allows the control loop to weigh the benefit of each action con-
sidering the perceived QoE. The proposed semi-supervised estimator
classifies web sites based on the similarity to a small number of known
web sites. We use TSVMSC, which outperforms six classical machine
learning algorithms in terms of accuracy by up to 57%.

We evaluated the proposal with a prototype using three case studies,
in which many APs are controlled by a central controller or indepen-
dently. The use of a learning method to improve QoE has shown a
promising future according to our results. Convergence to maximum
MOS values is achieved within one to two minutes of operation. In the
MA and CA experiments, QL outperforms the fixed baseline in all cases,
and the ACS baseline in half of the cases. Meanwhile, MAB outperforms
all baselines. Our best result improved the QoE by 167% if compared to
the baselines. When compared to the baselines, our proposal improved
the page load times by up to 6.6 times, which significantly improves
the perceived QoE by the user.

There are two main types of future work, namely improving the
practicality of the system, and improving the machine learning algo-
rithms. First, we will advance the system to operate on flows other than
web browsing. Regarding improvements in the method, there are many
options to be pursued, for example, (a) using function approximation
(e.g Deep QL), (b) using a pre-trained system to respond quickly to

341

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table 8
A summary of RL approaches using QoE in networks.

Application Type of network RL method SDN Reward Simulator Control
location

Ref.

Power and channel
allocation

Wi-Fi QL/MAB Yes The predict MOS for web access Real testbed SDN
controller

Ours

Association control Cellular network QL No User’s QoE formed by a weighted
combination of performance
indicators

N/A Small cells [27]

Content delivery Cellular network QL No Three different estimated rewards:
(1) when a single frame is
transmitted or dropped; (2)
frames are temporarily keep in
the PE buffer; and (3) when
several frames are transmitted
from the PE buffer to the MAC
buffer

N/A Video
encoder

[28]

Cellular network QL No Weighted sum of the client buffer
states

OMNeT++a

using INET
frameworkb

Content
server

[29]

TCP network QL No A function that associates the
current video quality level, the
oscillation in quality levels during
the video playout, and buffer
starvation

ns-3c Client [30,31]

Wireless
networks

Deep QL No A function that accounts for the
benefit of a higher quality qt of
the video, and two negative terms
due to quality variations in
consecutive frames, and
rebuffering events,

N/A HTTP client [32]

Game streaming 5G Actor-critic deep RL No A function of the bitrate and
stalling time

Implemented
in China

Edge node [33]

Handover IEEE 802.21 WoLF-PHC (see
[34])

No Relates to the current and the
previous (stored) mean
user-perceived quality (QoE)
level, and length of the time the
user has experienced degradation
or improvements due to the
recent action

ns-2d Mobile nodes [35]

Medium access
control

Wireless
networks

Spatial adaptive
play

No An utility function that accounts
for the node 𝑖 satisfaction when
node 𝑗 keeps silent

N/A Nodes [36]

Radio resource
management

5G Deep actor-critic No Guaranteed Bit Rate (GBR), delay
and Packet Loss Rate (PLR)
requirements

N/A Base station [2]

Rate adaptation LTE DQL Rainbow No Video chunk QoE based on the
bitrate and staling rate

N/A Node [37]

Resource allocation IoT wireless
network

DQL No Three MOS formulations: file
download, video streaming, and
IPTV, and VoIP

Discrete
simulator
ccnSime

Nodes [38]

LTE Episodic Monte
Carlo policy
iteration

No Equal to the utility function if
agent wins the bit, otherwise zero

SimuLTE and
INET

eNodeB [39]

Routing Wireless Sensor
Network

QL No Considers three types of services,
and provides a QoE value based
on QoS parameters

ns-2 Nodes [40,41]

Wireless
networks

QL No A MOS value based on an MLP
classifier based on QoS values

OPNETf Nodes [42]

Spectrum access 5G CRN QL No A function that reflects the MOS
based on the state and action

N/A Secondary
user

[43]

Spectrum handoff Cognitive Radio
Network

QL No The predicted MOS of multimedia
transmission, for a certain
handover

N/A Nodes [44]

Notes:
ahttps://www.omnetpp.org/.
bhttps://inet.omnetpp.org/.
chttps://www.nsnam.org/.
dhttps://www.isi.edu/nsnam/ns/.
eSee more information in [45].
fOPNET is now incorporated into the Riverbed’s SteelCentral. https://www.riverbed.com/products/steelcentral/opnet.html.

342

https://www.omnetpp.org/
https://inet.omnetpp.org/
https://www.nsnam.org/
https://www.isi.edu/nsnam/ns/
https://www.riverbed.com/products/steelcentral/opnet.html

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

customer requests and test the model generalization, and (c) on-line
adjustment of the exploration phase. It is possible to use a function
approximator for Q-value representation, such as neural networks like
the ones used in Deep QL. Convergence nor optimality are ensured
though, for example, Bertsekas and Tsitsiklis [55] observed that DQN
may yield suboptimal solutions or even diverge. There is, however,
empirical evidence that near-optimal values can be obtained. This line
of research can be pursued in future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Henrique D. Moura: Conceptualization, Methodology, Software,
Data curation, Writing - original draft, Writing - review & editing,
Visualization, Investigation, Formal analysis, Validation. Daniel F.
Macedo: Supervision, Conceptualization, Writing - review & editing.
Marcos A.M. Vieira: Supervision, Conceptualization, Writing - review
& editing.

Acknowledgments

This study was financed in part by Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq,
Brazil (funding agency from the Brazilian federal government), and
FAPEMIG, Brazil (Minas Gerais State Funding Agency).

Appendix. Evaluation of web site type classification

We collected 2880 probes for the three labeled web sites in order
to test the performance of the proposed web site classifier. The same
data was collected for the Web’s ten most visited web sites,6 excluding
the three reference web sites, Google’s local search web sites, porn web
sites, and web sites that do not respond to ping requests, in a total of
40,000 probes.

The accuracy of the classifier is compared to user-defined scores.
The unlabeled web sites were classified by five people, who rated from
1 (less likely) to 10 (equal) on how much the web site download is
similar to the three known web sites. For each web site the interviewee
provided three scores, one for light, one for average and one for heavy.
The class with the highest average score is selected for the web site.
We tested the classifier with different numbers of unlabeled examples,
and with different values of 𝐶 and 𝐶∗ (the regularization parameters).

The classification tests employed only 15 labeled examples (5 of
each known web site example), {500, 1000, 1500, 2000} unlabeled
examples, four values of 𝐶∗ = {0.1, 1, 10, 100}, and four values of
𝐶 = {1e−07, 1e−05, 0.001, 0.1}. Each combination of parameters was
repeated twenty times. The TSVM classifier (second phase of our pro-
posed web site classifier) used a linear kernel function. The results
shown in this section are collected in a regular PC (see controller
specification in Section 3).

Classifier performance. Table A.9 shows the average accuracy, the F1
score, the precision, and the recall results in the test set. It also shows
the average runtime of the web site classifier, and the 95% Confidence
Interval (CI), using Student’s t-test. These results were obtained with
500 unlabeled examples, and 𝐶 = 1e−05. The training was performed
using 3-fold cross-validation. The performance metrics in Table A.9,
e.g. F1 score, show very small variation among the lines when 𝐶∗ is
varied. For this reason, Fig. A.10 shows the results when 𝐶∗ = 0.1 and
𝐶 is altered.

6 https://en.wikipedia.org/wiki/List_of_most_popular_websites updated on
December 28, 2016.

Table A.9
Average accuracy, F1 score, precision, and recall of the proposed classifier using the
test set, and the time to train the classifier using a test set size equals to 500 and
𝐶 = 1𝑒−05.

C* Average
accuracy

F1 score Precision Recall Average
runtime (s)

Confidence
interval (95%)

0.1 0.8720 0.8944 0.9912 0.8148 0.6212 0.0445
1.0 0.8727 0.8944 0.9911 0.8149 0.6794 0.0454
10.0 0.8761 0.8954 0.9910 0.8166 0.7356 0.0475
100.0 0.8785 0.8953 0.9910 0.8165 0.7989 0.0441

Fig. A.10. Web site classifier accuracy (score), and execution time with 𝐶∗ = 0.1.

Execution time. Fig. A.10 also shows the training time of the (off-line)
classifier with 𝐶∗ = 0.1. Training the web site classifier with 500
unlabeled examples takes about one second. Since the TSVM algorithm
is not incremental, because there is a loop to fit the labels, a new
example implies the complete execution of the algorithm. We observe
an exponential growth of the execution time as a function of the
size of the test set, thus we prefer to perform the training off-line.
Note that further improvements in the execution time can be obtained
by using Python compilation, using the label provided by SC as the
first estimation of TSVM’s 𝐰 and 𝑏 values, or employing the methods
presented in [56].

Fig. A.10 shows the average test scores when 𝐶 and the set size is
varied, and 𝐶∗ is set to a fixed value (0.1). The accuracy is measured
from 0 to 100%, also showing the 95% CI for each value. We observe
that the 𝐶 parameter has a strong influence on the accuracy obtained
and that, however, the two smaller values 𝐶 = 1e−05 and 1e−07 are
statistically equal, since their CIs overlap. In this way, the experiments
used the classifier with 𝐶 = 1×10−5 and 𝐶∗ = 0.1. In this configuration
the accuracy of TSVMSC was 87.5% on average. The classes scored
83.2, 85.4, and 93.8% for light, average and heavy, respectively.

As explained previously, the proposed architecture must retrain the
web site classifier from time to time. Since good scores are achievable
with 500 unlabeled examples, this was the chosen value for 𝐶 and 𝐶∗.
It also allows the model to be retrained more frequently.

Network overhead. In this experiment, each station only accesses one
web site during the whole experiment. Thus, in each experiment up to
two web sites are accessed, which is atypical in a production network.
In real networks, we expect a heavy-tailed distribution of accesses, so
the overhead for web site probing will be reduced.

In our setup, during the initialization, the controller makes five
accesses to each of the three prototypical web sites to calibrate the
classifier. The average sizes of the downloaded content are 36,019 ± 1
bytes for light, 47,626±5884 bytes for average, and 975,562±56,208 bytes
for heavy,7 so at start-up the controller downloads 5 MB. Compared

7 The Google page is the simplest of them. It has some text and CSS
elements, and about five images (three icons – page, magnifying glass and

343

https://en.wikipedia.org/wiki/List_of_most_popular_websites

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

Table A.10
Comparison between the proposed web site classifier and classical classification methods.

Classifier Cat. Acc. Hyperparameters Ref

k nearest neighbors S 39.75% K = 500, leaf size = 5, [57]neighbors.KNeighborsClassifier.htmla uniform weights

k-Means U 39.96% K = 4, [58]cluster.KMeans.htmla distances = auto

Gaussian mixture models U 40.02% components = 4, [59,60]mixture.GaussianMixture.htmla spherical covariance

SVM S 44.8% C = 0.1, gamma = 0.1, [57]svm.SVC.htmla RBF kernel

Gaussian Process S 50.7% RBF kernel, [61]gaussian_process.GaussianProcessClassifier.htmla length scale = 16

Linear regression with gradient descent
linear_model.SGDClassifier.htmla S 55.3%

alpha = 10−5, epsilon = 0.1,
[57]eta0 = 0.0001, L1 penalty,

learning rate = ‘optimal’

Web site classifier SS 87% Linear kernel –

Note
aThe URL starts with ‘‘https://scikit-learn.org/stable/modules/generated/sklearn’’.

with the experiments in the next section, that represents an overhead
of 2% in the best case (in the SA experiment), or in the worst case an
overhead of 350% (in the CA experiment). Therefore, the frequency
of probes directly affects the overhead generated by the web site
classifier. For example, if the values are persisted by the loop control,
the overhead will be smaller, because the probes will not be needed
at start-up. Also if we consider that the value of the RTT and the
characteristic of the web sites vary little, the probing interval can be
increased to longer periods (days or weeks). The number of probes
in each query can also be reduced if the network connection is more
stable.

Improving response time. The page loading time (HTML source and all
other associated resources) for all three classes is 0.95 ± 0.09 s for light,
4.28 ± 0.61 s for average and 3.16 ± 0.92 s for heavy on our testbed for
the first use case. Because for each new web site the system needs to
perform a probe to identify the type of the web site, we resort to a
‘‘trick’’ to speed up the first access. In the first request, the web site
is classified as heavy, while firing a probe. Thus the user request can
be answered immediately, without waiting (at least) the probe time,
since it can reach several seconds. Upon completion of the probe, the
web site class is updated to the class provided by the classifier. Similar
‘‘tricks’’ are common in systems that need to perform online traffic
classification, such as intrusion detection systems. Note that the above
load time considers the download of all resources associated with the
requested page, which is much longer than the rendering time, because
current browsers initially load only the resources needed to render the
presentation area (window size). Using a metric that uses rendering
time would make online classification faster, however, we believe it
would still be necessary to use the described ‘‘trick’’ to shorten the
user’s first-access latency.

Comparing the proposed site classifier with other machine learning methods.
We evaluated several other classification methods using supervised and
unsupervised learning. Table A.10 shows the best results for each of the
evaluated methods and their hyperparameters. The first column shows
the name of the method and a link to the implementation description

keyboard), the Google logo, and a small Google advertising image). The
Facebook page is a bit more complex. It contains two midsize images (globe
connections and company logo), however, it contains a few more HTML text
elements because its form is more complex as is the page footer. The Amazon
page loads a large number of images (static and animated) and eventually a
video. Notice the 56 kB confidence interval. The Amazon page is much bigger
than the others. The two other pages are smaller, however, the size difference
between them is not negligible, since the test of the difference of means with
99% confidence indicates that the means are different.

in the Scikit-learn library (https://scikit-learn.org). The second column
has an ‘‘S’’ if it is supervised, ‘‘U’’ for unsupervised, and ‘‘SS’’ for semi-
supervised learning. The next column shows the best accuracy level in
the test set, and the fourth column shows the hyperparameters for this
model. Default values are not shown. Due to a lack of space, we will not
discuss the methods individually. The last column of the table provides
references for more details about each method, including what each
hyperparameter means.

Supervised methods require labeled data to be provided, so model
training is done using only examples obtained from probes performed
on Google, Facebook, and Amazon. The trained supervised model is
then used to extrapolate the results to the unknown web sites using the
selected features. Meanwhile, unsupervised methods identify similar
patterns among the training data. In this case, clusters are generated
for light, average and heavy web sites using majority votes, i.e., the
classification of the cluster is made by the class with the highest number
of known examples. In the case of a tie, we select heavy or average
in this order. If the cluster has no known example, it is joined to the
nearest cluster.

The MOS predictor used in our work was proposed by Hora et al.
[7]. The authors classify the web sites into three classes, but enumer-
ated in their paper only one reference for each web site. Thus, we
have only three URLs as a reference to train our classifier. To get
new references we would have to resort to a human panel to label
web sites. Obtaining more references for each class could improve
the performance of supervised methods, and would also increase the
performance of the semi-supervised method used. Getting new refer-
ences goes beyond the scope of our work, and adds no novelty to our
proposal, so we chose to work only with the references provided in [7].
Notice, however, that due to the network varying performance, many
samples can be obtained by probing only these three web sites during
a long period.

Further, we argue that the predictor in [7] is fairly accurate, due to
the methodology employed by the authors. To infer the relationship
between WLAN features and QoE, Hora et al. [7] used three data
sources. First, they used a WLAN testbed with instrumented commodity
APs, where they passively monitored WLAN features and evaluated
the correlation of the QoE with the link quality, and the medium
availability. Then they collected data for the selected features in a
bigger testbed (their office), which was used to train the predictor.
Finally, they validated the predictor using data from real users. They
used measurements on APs deployed at 4880 residential customers of
a large Asian-Pacific ISP, reporting over 23,000 devices to a backend
server, collecting a total of 180 million samples.

We observe in Table A.10 that the classical methods showed results
between 45% and 65% of those obtained with TSVMSC. The cluster-
based methods obtained the worst results, while the methods based on

344

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn
https://scikit-learn.org

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

probabilities (Gaussian Mixture and GP) obtained intermediate results.
Of these two, GP was obtained the best result, however, it takes much
more training time than the others. The training time for GP was
11,635 s, while other methods took from 1.2 up to 3.5 s to train.

SVM obtained half of the accuracy of TSVMSC.
We observe a significant improvement in the classification when

using the unlabeled data, and that, among the classic methods tested,
linear regression obtains the best result. This is a good indication why
the best kernel in TSVMSC was the linear one.

Among the algorithms tested, TSVMSC presented the best accuracy,
however, its training time was only better than GP. We hoped that
TSVMSC would achieve a better result, for example, than SVM, linear
regression or unsupervised methods. However, this behavior is not
certain, as discussed in Singh et al. [62].

According to Zhu [63], there are five types of semi-supervised
methods that avoid changes in dense regions, such as TSVMSC. One
of them is GP, however as the supervised GP training time was much
higher than TSVMSC, we did not consider evaluating semi-supervised
GP. The methods based on information regularization, entropy mini-
mization, and graphs require the definition of a prior distribution or the
probability distribution of the data. Those methods were not evaluated
because we do not know the distribution of all the Internet web sites.

References

[1] L. DiCioccio, R. Teixeira, C. Rosenberg, Characterizing Home Networks with
Homenet Profiler, Tech. Rep. CP-PRL-2011-09-0001, UPMC Sorbonne Universits,
2011.

[2] I. Comsa, R. Trestian, G. Ghinea, 360◦ mulsemedia experience over next
generation wireless networks - a reinforcement learning approach, in: QoMEX
2018, 2018, pp. 1–6.

[3] A. Hochstadt, S. Newman, R. Greenberfg, K. Aflalo, Internet trends 2018. stats &
facts in the U.S. and worldwide, 2018, https://www.vpnmentor.com/blog/vital-
internet-trends/, Accessed: 2018-07-20.

[4] N. Marchetti, N.R. Prasad, J. Johansson, T. Cai, Self-organizing networks:
State-of-the-art, challenges and perspectives, in: ICC 2010, 2010, pp. 503–508.

[5] R. Barco, P. Lazaro, P. Munoz, A unified framework for self-healing in wireless
networks, IEEE Commun. Mag. 50 (12) (2012) 134–142.

[6] M. Opper, O. Winther, A Bayesian approach to on-line learning, On-line Learn.
Neural Netw. (1998) 363–378.

[7] D.N.d. Hora, R. Teixeira, K. van Doorselaer, K. van Oost, Predicting the effect
of home Wi-Fi quality on web QoE, in: Internet-QoE ’16, 2016, pp. 13–18.

[8] X. Yu, J. Yang, J.-p. Zhang, A transductive support vector machine algorithm
based on spectral clustering, AASRI Procedia 1 (2012) 384–388.

[9] H.D. Moura, D.F. Macedo, M.A.M. Vieira, Automatic quality of experience
management for WLAN networks using multi-armed bandit, IFIP/IEEE IM (2018)
8.

[10] H. Moura, A.R. Alves, J.R.A. Borges, D.F. Macedo, M.A.M. Vieira, Ethanol: A
software-defined wireless networking architecture for IEEE 802.11 networks,
Comput. Commun. 149 (2020) 176–188.

[11] S. Kaur, J. Singh, N.S. Ghumman, Network programmability using POX con-
troller, in: ICCCS International Conference on Communication, Computing &
Systems, Vol. 138, IEEE, 2014.

[12] I.T. R. P.10/G.100, Vocabulary for performance and quality of service. Amend-
ment 5: New definitions for inclusion in recommendation ITU-T P.10/G.100,
2016, accessed: 2018-03-2. [Online]. Available: https://www.itu.int/rec/T-REC-
P.10-201607-I!Amd5/en.

[13] O. Chapelle, A. Zien, Semi-supervised classification by low density separation,
in: AISTATS, 2005, pp. 57–64.

[14] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm,
in: Advances in Neural Information Processing Systems, 2002, pp. 849–856.

[15] L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Advances in Neural
Information Processing Systems, 2005, pp. 1601–1608.

[16] T. Joachims, Transductive inference for text classification using support vector
machines, in: ICML, Vol. 99, 1999, pp. 200–209.

[17] F. Gieseke, A. Airola, T. Pahikkala, O. Kramer, Sparse quasi-Newton optimization
for semi-supervised support vector machines, in: ICPRAM (1), 2012, pp. 45–54.

[18] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, Vol. 1, MIT
press, Cambridge, 1998.

[19] R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, first ed., MIT
Press, Cambridge, MA, USA, 1998.

[20] E. Alpaydin, Introduction to Machine Learning, MIT press, 2009.
[21] R. Jain, D.-M. Chiu, W.R. Hawe, A Quantitative Measure of Fairness and

Discrimination for Resource Allocation in Shared Computer System, Vol. 38,
Eastern Research Laboratory, DEC, Hudson, MA, 1984.

[22] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit
problem, Mach. Learn. 47 (2–3) (2002) 235–256.

[23] J.R. Kok, N. Vlassis, Collaborative multiagent reinforcement learning by payoff
propagation, JMLR 7 (2006) 1789–1828.

[24] A.R. Alves, H.M. Duarte, J.R.A. Borges, V.F.S. Mota, L.H. Cantelli, D.F. Macedo,
M.A.M. Vieira, HomeNetRescue: an SDN service for troubleshooting home net-
works, in: IEEE/IFIP Network Operations and Management Symposium (NOMS),
2018.

[25] J. Jun, P. Peddabachagari, M. Sichitiu, Theoretical maximum throughput of IEEE
802.11 and its applications, in: IEEE NCA, 2003, pp. 249–256.

[26] S. Engmann, D. Cousineau, Comparing distributions: the two-sample Anderson-
Darling test as an alternative to the Kolmogorov-Smirnoff test, J. Appl. Quant.
Methods 6 (3) (2011) 1–17.

[27] M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov, A multiple attribute user-
centric backhaul provisioning scheme using distributed SON, in: 2016 IEEE
Global Communications Conference, IEEE, 2016, pp. 1–6.

[28] N. Changuel, B. Sayadi, M. Kieffer, Online learning for QoE-based video
streaming to mobile receivers, in: IEEE Globecom Workshops, 2012, pp.
1319–1324.

[29] F.Z. Yousaf, O. Mämmelä, P. Mannersalo, Reinforcement learning method
for QoE-aware optimization of content delivery, in: 2014 IEEE Wireless
Communications and Networking Conference, 2014, pp. 3390–3395.

[30] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, F. De Turck, Design
of a Q-learning-based client quality selection algorithm for HTTP adaptive video
streaming, in: Proceedings of the 2013 Workshop on Adaptive and Learning
Agents, Saint Paul (Minn.), USA, 2013, pp. 30–37.

[31] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, F. De Turck, Design
and optimisation of a (FA) Q-learning-based HTTP adaptive streaming client,
Connection Science 26 (1) (2014) 25–43.

[32] M. Gadaleta, F. Chiariotti, M. Rossi, A. Zanella, D-DASH: A deep Q-learning
framework for DASH video streaming, IEEE TCCN 3 (4) (2017) 703–718.

[33] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, D.O. Wu, Improving
cloud gaming experience through mobile edge computing, IEEE Wirel. Commun.
(2019).

[34] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate,
Artificial Intelligence 136 (2) (2002) 215–250.

[35] B.S. Ghahfarokhi, N. Movahhedinia, A personalized QoE-aware handover deci-
sion based on distributed reinforcement learning, Wirel. Netw. 19 (8) (2013)
1807–1828.

[36] J. Yin, Y. Mao, S. Leng, X. Wang, H. Fu, QoE provisioning by random access in
next-generation wireless networks, in: 2015 IEEE GCC, IEEE, 2015, pp. 1–7.

[37] J. Liu, X. Tao, J. Lu, QoE-oriented rate adaptation for DASH with enhanced deep
Q-learning, IEEE Access 7 (2018) 8454–8469.

[38] X. He, K. Wang, H. Huang, T. Miyazaki, Y. Wang, S. Guo, Green resource
allocation based on deep reinforcement learning in content-centric IoT, IEEE
TETC (2018).

[39] M. Harishankar, S. Pilaka, P. Sharma, N. Srinivasan, C. Joe-Wong, P. Tague,
Procuring spontaneous session-level resource guarantees for real-time appli-
cations: An auction approach, IEEE J. Sel. Areas Commun. 37 (7) (2019)
1534–1548.

[40] R. Matos, N. Coutinho, C. Marques, S. Sargento, J. Chakareski, A. Kassler, Quality
of experience-based routing in multi-service wireless mesh networks, in: IEEE ICC
2012, IEEE, 2012, pp. 7060–7065.

[41] N. Coutinho, R. Matos, C. Marques, A. Reis, S. Sargento, J. Chakareski, A.
Kassler, Dynamic dual-reinforcement-learning routing strategies for quality of
experience-aware wireless mesh networking, Comput. Netw. 88 (C) (2015)
269–285.

[42] H.A. Tran, A. Mellouk, S. Hoceini, B. Augustin, Global state-dependent QoE based
routing, in: IEEE ICC 2012, 2012, pp. 131–135.

[43] F.S. Mohammadi, A. Kwasinski, QoE-driven integrated heterogeneous traffic re-
source allocation based on cooperative learning for 5G cognitive radio networks,
in: 2018 IEEE 5G World Forum (5GWF), IEEE, 2018, pp. 244–249.

[44] Y. Wu, F. Hu, S. Kumar, Y. Zhu, A. Talari, N. Rahnavard, J.D. Matyjas, A
learning-based QoE-driven spectrum handoff scheme for multimedia transmis-
sions over cognitive radio networks, IEEE J. Sel. Areas Commun. 32 (11) (2014)
2134–2148.

[45] Q. Wu, Z. Li, G. Xie, Codingcache: multipath-aware ccn cache with network cod-
ing, in: Proceedings of the 3rd ACM SIGCOMM Workshop on Information-Centric
Networking, ACM, 2013, pp. 41–42.

[46] Q. Zhang, S.A. Kassam, Finite-state Markov model for Rayleigh fading channels,
IEEE Trans. Commun. 47 (11) (1999) 1688–1692.

[47] A. Forster, Machine learning techniques applied to wireless ad-hoc networks:
Guide and survey, in: ISSNIP 2007, IEEE, 2007, pp. 365–370.

[48] R.V. Kulkarni, A. Forster, G.K. Venayagamoorthy, Computational intelligence in
wireless sensor networks: A survey, IEEE Commun. Surv. Tutor. 13 (1) (2011)
68–96.

[49] S. Baraković, L. Skorin-Kapov, Survey and challenges of QoE management issues
in wireless networks, J. Comput. Netw. Commun. (2013).

[50] H.J. Kim, S.G. Choi, A study on a QoS/QoE correlation model for QoE evaluation
on IPTV service, in: ICACT, 2010, Vol. 2, IEEE, 2010, pp. 1377–1382.

345

http://refhub.elsevier.com/S0140-3664(19)31486-0/sb1
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb1
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb1
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb1
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb1
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb2
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb2
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb2
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb2
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb2
https://www.vpnmentor.com/blog/vital-internet-trends/
https://www.vpnmentor.com/blog/vital-internet-trends/
https://www.vpnmentor.com/blog/vital-internet-trends/
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb4
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb4
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb4
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb5
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb5
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb5
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb6
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb6
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb6
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb7
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb7
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb7
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb8
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb8
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb8
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb9
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb9
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb9
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb9
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb9
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb10
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb10
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb10
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb10
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb10
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb11
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb11
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb11
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb11
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb11
https://www.itu.int/rec/T-REC-P.10-201607-I!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-I!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-I!Amd5/en
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb13
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb13
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb13
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb14
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb14
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb14
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb15
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb15
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb15
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb16
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb16
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb16
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb17
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb17
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb17
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb18
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb18
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb18
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb19
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb19
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb19
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb20
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb21
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb21
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb21
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb21
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb21
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb22
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb22
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb22
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb23
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb23
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb23
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb24
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb25
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb25
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb25
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb26
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb26
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb26
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb26
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb26
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb27
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb27
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb27
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb27
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb27
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb28
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb28
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb28
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb28
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb28
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb29
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb29
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb29
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb29
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb29
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb31
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb31
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb31
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb31
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb31
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb32
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb32
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb32
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb33
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb33
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb33
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb33
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb33
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb34
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb34
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb34
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb35
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb35
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb35
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb35
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb35
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb36
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb36
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb36
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb37
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb37
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb37
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb38
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb38
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb38
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb38
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb38
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb39
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb40
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb40
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb40
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb40
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb40
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb41
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb42
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb42
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb42
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb43
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb43
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb43
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb43
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb43
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb44
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb45
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb45
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb45
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb45
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb45
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb46
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb46
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb46
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb47
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb47
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb47
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb48
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb48
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb48
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb48
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb48
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb49
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb49
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb49
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb50
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb50
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb50

H.D. Moura, D.F. Macedo and M.A.M. Vieira Computer Communications 154 (2020) 331–346

[51] W. Zhang, Y. Wen, Z. Chen, A. Khisti, Qoe-driven cache management for HTTP
adaptive bit rate streaming over wireless networks, IEEE Trans. Multimed. 15
(6) (2013) 1431–1445.

[52] M. Amani, T. Mahmoodi, M. Tatipamula, H. Aghvami, SDN-based data offloading
for 5G mobile networks, ZTE Commun. 12 (2014) 34.

[53] O. Habachi, Y. Hu, M. Van der Schaar, Y. Hayel, F. Wu, MOS-based congestion
control for conversational services in wireless environments, IEEE JSAC 30 (7)
(2012) 1225–1236.

[54] B. Stefano, D.P. Francesco, G.G. Claudio, M. Salvatore, P. Martina, P. Antonio,
R.C. Lorenzo, S. Vincenzo, A multi-agent reinforcement learning based approach
to quality of experience control in future internet networks, in: 34th Chinese
Control Conference, 2015, pp. 6495–6500.

[55] D.P. Bertsekas, J.N. Tsitsiklis, Neuro-dynamic programming: an overview, in:
CDC 2011, Vol. 1, 1995, pp. 560–564.

[56] O. Chapelle, V. Sindhwani, S.S. Keerthi, Optimization techniques for
semi-supervised support vector machines, JMLR 9 (2008) 203–233.

[57] S. Rogers, M. Girolami, A First Course in Machine Learning, CRC Press, 2016.
[58] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31

(8) (2010) 651–666.
[59] J.A. Bilmes, et al., A gentle tutorial of the EM algorithm and its application

to parameter estimation for Gaussian mixture and hidden Markov models, Int.
Comput. Sci. Inst. 4 (510) (1998) 126.

[60] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning – Data
Mining, Inference, and Prediction, Vol. 1, second ed., Springer series in statistics
New York, NY, USA, 2009.

[61] C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, Vol. 2,
MIT Press Cambridge, MA, 2006.

[62] A. Singh, R. Nowak, J. Zhu, Unlabeled data: Now it helps, now it doesn’t, in:
Advances in Neural Information Processing Systems, 2009, pp. 1513–1520.

[63] X.J. Zhu, Semi-Supervised Learning Literature Survey, Tech. Rep., University of
Wisconsin-Madison Department of Computer Sciences, 2005.

346

http://refhub.elsevier.com/S0140-3664(19)31486-0/sb51
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb51
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb51
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb51
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb51
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb52
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb52
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb52
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb53
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb53
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb53
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb53
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb53
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb54
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb55
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb55
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb55
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb56
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb56
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb56
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb57
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb58
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb58
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb58
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb59
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb59
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb59
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb59
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb59
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb60
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb60
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb60
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb60
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb60
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb61
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb61
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb61
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb62
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb62
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb62
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb63
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb63
http://refhub.elsevier.com/S0140-3664(19)31486-0/sb63

	Wireless control using reinforcement learning for practical web QoE
	Introduction
	System architecture
	The choice of a model-free approach
	Classifying the web site type
	QoE maximization using reinforcement learning
	Reward
	States
	Actions
	Q -value and its representation

	Control loop evaluation
	Baselines
	Single agent experiment
	Multi-agent experiment
	Centrally controlled agent experiment
	Exploration vs. exploitation
	Misclassification problems
	Discussion

	Related work
	Conclusion and future work
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. Evaluation of Web Site Type Classification
	References

