
Computer Communications 160 (2020) 14–24

‘
r
N
C

A

K
M
I
D
F

1

d
i
i
n
i
o
m
f
t
c

n
s
o

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

‘DRL + FL’’: An intelligent resource allocation model based on deep
einforcement learning for Mobile Edge Computing
anliang Shan ∗, Xiaolong Cui, Zhiqiang Gao

ollege of Information Engineering, Engineering University of PAP, Xi’an 710086, China

R T I C L E I N F O

eywords:
obile edge computing

ntelligent resource allocation
eep reinforcement learning
ederated learning

A B S T R A C T

With the emergence of a large number of computation-intensive and time-sensitive applications, smart terminal
devices with limited resources can only run the model training part of most intelligent applications in the
cloud, so a large amount of training data needs to be uploaded to the cloud. This is an important cause
of core network communication congestion and poor Quality-of-Experience (QoE) of user. As an important
extension and supplement of cloud computing, Mobile Edge Computing (MEC) sinks computing and storage
resources from the cloud to the vicinity of User Mobile Devices (UMDs), greatly reducing service latency
and alleviating the burden on core networks. However, due to the high cost of edge servers deployment and
maintenance, MEC also has the problems of limited network resources and computing resources, and the edge
network environment is complex and mutative. Therefore, how to reasonably allocate network resources and
computing resources in a changeable MEC environment has become a great aporia. To combat this issue,
this paper proposes an intelligent resource allocation model ‘‘DRL + FL’’. Based on this model, an intelligent
resource allocation algorithm DDQN-RA based on the emerging DRL algorithm framework DDQN is designed to
adaptively allocate network and computing resources. At the same time, the model integrates the FL framework
with the mobile edge system to train DRL agents in a distributed way. This model can well solve the problems
of uploading large amounts of training data via wireless channels, Non-IID and unbalance of training data
when training DRL agents, restrictions on communication conditions, and data privacy. Experimental results
show that the proposed ‘‘DRL + FL’’ model is superior to the traditional resource allocation algorithms SDR
and LOBO and the intelligent resource allocation algorithm DRLRA in three aspects: minimizing the average
energy consumption of the system, minimizing the average service delay, and balancing resource allocation.
. Introduction

In recent years, with the continuous development of smart terminal
evices, people have continuously increased the diversity and qual-
ty requirements of mobile services. A large number of computation-
ntensive and time-sensitive applications have appeared in mobile edge
etworks, such as object detection, gesture recognition, 3D model-
ng, interactive games, etc. However, due to the limited resources
f network and computing, smart terminal devices can only run the
odel training part of most intelligent applications in the cloud and

orce a large amount of training data required by intelligent applica-
ions to be uploaded to the cloud, causing congestion in core network
ommunications and reducing the Quality-of-Experience (QoE) of user.

As an important extension and supplement of cloud computing, a
ew computing paradigm—Mobile Edge Computing (MEC) [1], which
inks computing and storage resources from the cloud to the vicinity
f User Mobile Devices (UMDs) to alleviate the burden on the core

∗ Corresponding author.
E-mail address: nanliang@stu.xmu.edu.cn (N. Shan).

network. At the same time, offloading computing-intensive and time-
sensitive applications on mobile devices to edge servers can reduce
the energy consumption of UMDs and the service delay of application
requests, and improve the Quality-of-Service (QoS) for mobile users.
However, network resources and computing resources are also limited
in the MEC system. If a large number of computing tasks cannot be
efficiently transmitted to the edge servers, it will also cause congestion
of wireless channels and lack of computing resources of the edge
servers. Therefore, how to adaptively jointly allocate network resources
and computing resources in the MEC system is the key to supporting
computing offload and providing high service quality.

Most existing works use multi-objective optimization, semi-positive
definite relaxation (SDR) and game theory methods to realize resource
allocation. Even though these jobs can achieve better results in specific
hypothetical scenarios. Nevertheless, considering the actual edge net-
work scenario in MEC, these optimization methods may be difficult to
cope with the following problems: (1) Dynamic network environment;
ttps://doi.org/10.1016/j.comcom.2020.05.037
eceived 31 December 2019; Received in revised form 22 April 2020; Accepted 25
vailable online 28 May 2020
140-3664/© 2020 Elsevier B.V. All rights reserved.
May 2020

https://doi.org/10.1016/j.comcom.2020.05.037
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.05.037&domain=pdf
mailto:nanliang@stu.xmu.edu.cn
https://doi.org/10.1016/j.comcom.2020.05.037

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24
dynamic network environment means uncertain user requests for input
and changing system states, and these changing system conditions will
have a significant impact on network and computing load distribution.
(2) Lack of continuity; in a highly time-varying MEC system, most
existing resource allocation algorithms can only achieve system opti-
mization at a certain moment. In a real environment, we need to face
continuous variables and continuous states. Only through continuous
control can long-term benefits be brought to the system.

The use of Artificial Intelligence (AI) techniques to optimize the
resource allocation process is a current new trend. Related research on
computing offloading and resource allocation, such as [2,3], has proven
Reinforcement Learning [4] (especially Deep Reinforcement Learning
(DRL) [5]) has unprecedented potential in joint resource management.
Therefore, this paper utilizes DRL to adaptively allocate network and
computing resources. In addition, Federal Learning (FL) [6] is also
introduced as a framework for training of DRL agents in a distributed
way while (1) greatly reducing the amount of data uploaded through
the wireless uplink channel, (2) increasing cognitive response to edge
network and core network environments, (3) adapting well to the
heterogeneous UMDs in the actual edge network, and (4) protecting
the privacy of personal data [7]. Our contributions are summarized as
follows:

(1) We use the DRL architecture (specifically, DDQN [8]) to opti-
mize the network and computing resource allocation of mobile edge
systems, and propose a DDQN based Network and Computing Resource
Allocation (DDQN-RA) algorithm, which can obtain perceptual infor-
mation from the environment to improve strategies to adapt to chang-
ing circumstances and make decision sequences to realize adaptive
resource allocation.

(2) We propose a ‘‘DRL + FL’’ resource allocation model, applying
a Federal Learning framework to deploy DRL agents in edge net-
works. The FL framework trains DRL agents in a distributed way.
The advantage of this combination is that it complements the advan-
tages of deep reinforcement learning and federated learning to achieve
approximately optimal performance.

(3) We consider minimizing the average system energy consumption
and average service delay of all requests made by UMDs and balancing
the network load on each data link and the computing load on the
MEC servers. Through our proposed ‘‘DRL + FL’’ model, the intelligent
joint management of the network and computing resources in the MEC
system is realized. And it proves that this scheme has advantages in
average system energy consumption, average service delay, and load
balancing.

The rest of this paper is organized as follows: We review the related
work in Section 2. Then, we depict the system model in Section 3,
followed by the problem formulation in Section 4. In Section 5, we
optimize the resource allocation by DRL. Furthermore, in Section 6,
we integrate FL with DRL in the MEC system. Performance evaluation
is shown in Section 7 compared with some classical algorithms. Finally,
in Section 8, we conclude this paper.

2. Related work

Mobile edge computing, as a supplement to cloud computing, solves
the problems of limited mobile device resources and request–response
delays in mobile edge systems through computing offload strategies
and mobile application deployment strategies. In order to solve the
problems of mobile edge network congestion and edge server load
imbalance, it is urgent to use a resource allocation method to allocate
network and computing resources in the MEC system to improve the
service efficiency of the system, the load balance of the edge server
nodes and the standby time of UMDs.

Traditional resource allocation methods face huge challenges in
responding to the dynamically changing MEC environment and long-

term benefits. For example, literature [9] uses semi-positive definite

15
Fig. 1. The MEC-enabled mobile edge system.

relaxation (SDR) to jointly optimize communication resource alloca-
tion and offloading decisions, and literature [10] uses game theory
to jointly optimize equipment delay and energy consumption. How-
ever, the above method does not take into account the dynamics of
task arrival and system environment, and can only achieve system
optimization at a certain moment. To solve these problems, some
methods that use machine learning (especially, reinforcement learn-
ing) to solve the problem of resource allocation have emerged as the
times require [11]. Because reinforcement learning is to maximize
long-term returns, it is very suitable for dynamically changing MEC
systems, which can adaptively allocate multiple resources. In order to
optimize energy consumption and delay, literature [12] proposed a
scheme based on reinforcement learning, which minimizes energy and
delay consumption by jointly optimizing the allocation of computing
resources and network resources. In addition, under the average cost
criterion, literature [13] transformed the resource allocation model
into a semi-Markov decision process and used linear programming
techniques to solve the optimization problem. In literature [14], a
resource allocation scheme based on deep reinforcement learning was
proposed, which can reduce the average service delay of the system and
balance the use of resources.

Although the above work can achieve ideal results in a dynamic
MEC system environment, none of these works has considered: (1) in
what form should the training data be gathered (distributed or central-
ized way)? (2) Where should reinforcement learning agents be placed
and trained (at the terminal, edge node or remote cloud infrastructure)?
(3) How should the reinforcement learning agents in the update process
cooperate? (4) How to solve the problem of overestimation in deep
reinforcement learning? And (5) How to protect the privacy of training
data? In this paper, we take full advantage of the characteristics of
DRL and FL and propose an intelligent resource allocation scheme
‘‘DRL + FL’’, which uses advanced artificial intelligence methods to
adaptively allocate network and computing resources under different
MEC conditions. It provides a new idea for solving the above problems.

3. System model

3.1. Network model

As shown in Fig. 1, considering a scenario in which a group of UMDs
𝑁 = {1,… , 𝑛} is covered by a group of base stations 𝐾 = {1,… , 𝑘},
UMDs can choose to offload the compute-intensive tasks to the edge
node through a wireless channel or execute tasks locally. The compute-
intensive task 𝐼𝑛 is defined as 𝐼𝑛(𝐵𝑛, 𝐷𝑛), where 𝐵𝑛 is the data amount

that the user needs to complete the task [15], and 𝐷𝑛 is the number

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

3

s

3

𝑛
c
C
e
m
e

𝑡

3

s

s

𝑇

t
c

3

f
e
d
m
r
a
i
s
t
M
r
A
a

of CPU clock cycles required to complete the task [16]. In addition,
all channels of a base station are defined as the set 𝑀 = {1,… , 𝑚},
and all virtual machines on a MEC server are defined as 𝑉 = {1,… , 𝑣}
(assuming that each application request will be allocated to execute
on a separate virtual machine). Specifically, the offloading decision
𝑎𝑛 = {0} ∪𝑀 indicates that the computing task can be offloaded to the
edge node through the wireless channel 𝑎𝑛 or the task can be completed
locally (𝑎𝑛 = 0). In order to simulate the change of the wireless
channel, the channel gain state between the UMDs and the base station
is independently selected from the finite state space, and the channel
state transition process is modeled as a finite state discrete-time Markov
chain [17]. In this wireless scenario, the Shannon theorem [18] can be
used to evaluate the achievable data transmission rate. The channel
capacity calculated by Shannon theorem is the maximum available
data transmission rate. Usually, the actual data transmission rate is
less than the channel capacity. Using Shannon theorem to evaluate
the achievable data transmission rate, the minimum delay of data
transmission can be obtained. This minimum delay value can be used
as a threshold for offloading decisions.

3.1.1. Network transmission
When 𝑎𝑛 ∈ 𝑀 , assuming 𝑎𝑛 = 𝑚, UMD offloads compute-intensive

tasks to edge nodes through wireless channel 𝑚, and the transmission
delay and energy consumption of the application program on user 𝑛 is
offloaded to virtual machine 𝑣 on server 𝑘 through wireless channel 𝑚
are defined as:

𝑡𝑘,𝑣𝑛,𝑚 =
𝐵𝑛
𝑐

(1)

and

𝑒𝑘,𝑣𝑛,𝑚 =
𝑞𝑛𝐵𝑛
𝑐

+ 𝑇𝑛 (2)

Among them, 𝑐 is the data transmission rate in the channel, 𝑞𝑛 is
the transmission power between user 𝑛 and the base station, and 𝑇𝑛 is
the trailing energy generated in the wireless transmission.

3.1.2. Variance of network resource allocation
In order to alleviate edge network congestion and ensure the suc-

cessful transmission of requests of compute-intensive applications on
mobile devices, network resource allocation on the data link should be
balanced. Let 𝑙net

𝑚 denote the load of channel 𝑚 in the edge network.
Therefore, the variance in network resource allocation in the entire
edge network can be expressed by the disparity in network load and
defined as:

𝜐𝑎𝑟(𝑙net) =

∑

𝑚∈𝑀 (𝑙net
𝑚 −

∑

𝑚∈𝑀 𝑙net
𝑚

|𝑀|

)2

|𝑀|

(3)

.2. Computing model

The computing model includes two parts: local computing and MEC
erver-side computing.

.2.1. Local computing
When edge user decides to perform local computing, the edge user

performs the computing task 𝐼𝑛 locally. Assume 𝑓 𝑙
𝑛 is the computation

apability of the edge user (the clock frequency unit of the edge user
PU runs is HZ). Where 𝛾 𝑙n is the coefficient denoting the consumed
nergy per CPU cycle of the UMD, which can be obtained by the
easurement method in [19]. So we can get the execution time and

nergy consumption of the local computation task 𝐼n as:

𝑙
𝑛,𝑚 =

𝐷𝑛

𝑓 𝑙
𝑛
𝑒𝑙𝑛,𝑚 = 𝛾 𝑙𝑛𝐷𝑛 (4)
16
.2.2. MEC server-side computing
On the MEC server-side, the computation capability of the edge

erver is the clock frequency 𝑓 𝑐
𝑛 . Where 𝛾𝑐n is the coefficient denoting

the consumed energy per CPU cycle of the edge server, which can be
obtained by the measurement method in [19]. Then the execution time
and energy consumption of computing tasks 𝐼𝑛 performs on the edge
erver node can be given as:

𝑘,𝑣
𝑛,𝑚 =

𝐷𝑛
𝑓 𝑐
𝑛
, 𝐸𝑘,𝑣

𝑛,𝑚 = 𝛾𝑐𝑛𝐷𝑛 (5)

3.2.3. Variance of computing resource allocation
In order to avoid overloading the computing load on a single MEC

server and causing request timeouts, the computing resource allocation
between each edge node and the remote cloud should be balanced to
ensure that application requests on UMDs can get service responses
with minimal delay. The load of MEC server 𝑘 denoted as 𝑙𝑐𝑝𝑘 . There-
fore, the variance in computing resource allocation in the entire edge
network can be expressed by the disparity in the computing load and
defined as:

𝜐𝑎𝑟(𝑙𝑐𝑝) =

∑

𝑘∈𝐾 (𝑙𝑐𝑝𝑘 −
∑

𝑘∈𝐾 𝑙𝑐𝑝𝑘
|𝐾|

)2

|𝐾|

(6)

3.3. Service model

Due to the high complexity of the MEC system, when a large number
of users are involved, it is very difficult to obtain the information
needed globally to deal with the offloading of computing tasks and
resource allocation. Therefore, this paper uses Double Deep Q Network
(DDQN) [20], the most representative and effective algorithm frame-
work in DRL, to jointly control the resource allocation behavior of
MEC system. The service model operation mechanism is summarized
as follows: UMDs determine the joint allocation of wireless channels
and computing resources according to a stationary control strategy 𝛷 =
(𝛷net(𝜉), 𝛷cp(𝜉)), which definition is to map the state to the probability
distribution of the actions, represents the actions of the agent and di-
rects the agent how to choose action. At the same time, the system state
𝜉 needs to be continuously observed, including the task queue status,
the location generated by the request, the location of the available
server, the information of the task to be offloaded, the channel occu-
pancy situation, and the remaining computing resource of the server.
In addition, we also define an immediate utility function 𝑢(𝜉, (net, cp))
to evaluate the QoE of UMDs, which is inversely proportional to
the number of tasks lost and failed, the energy consumption of task
execution, the task execution delay (including wireless transmission
delay and computation delay), task queue delay and the variance of
network and computing resource allocation. By using the Double Deep
Q-Learning algorithm, the control strategy 𝛷 = (𝛷net(𝜉), 𝛷cp(𝜉)) can be
rained and the long-term optimization of UMDs service performance
an be achieved.

.3.1. Reinforcement learning
Reinforcement learning (RL) is a branch of machine learning, which

ocuses on acquiring knowledge in the environment, adapting to the
nvironment by improving behavior strategies and making sequence
ecisions. RL system assumes that there is an agent in the environ-
ent to implement the actions. By exploring the environment and

eceiving feedback, RL system can form an adaptive model without
large amount of labeled data. Intuitively speaking, RL is a process

n which agents continuously interact with the environment to make
equential decisions and enhance their decision-making capabilities. In
he scenario we considered, through continuous interaction with the
EC environment, agents can take action and receive corresponding

ewards. In addition, its goal is to maximize the cumulative reward.
s shown in Fig. 2, for each episode, first, at each step t, the agent
cquires the observation of the MEC environment, that is, the state 𝑠 .
𝑡

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

r

t
p
𝑎
a
a
s

c
r
p
i
t
c
l

𝐿

T
M

4

i
t
e
a
n
f
a
a
r
e
a

a
c
c
s
n
s
e
e
e
r
p
t

Fig. 2. The illustration of reinforcement learning.

Then, the agent makes an action at based on a certain policy, obtains
the corresponding reward 𝑟𝑡, and enters a new state 𝑠𝑡+1. Subsequently,
the policy is updated based on the reward given by the environment.
Q-learning is one of the classic reinforcement learning algorithms and a
model-free learning method, which uses the action value 𝑄(𝑠𝑡, 𝑎𝑡) stored
in the Q-table to choose action.

3.3.2. Deep reinforcement learning
Deep reinforcement learning is the integration of deep learning and

reinforcement learning, which can perfectly combine the perception
ability of deep learning with the decision-making ability of reinforce-
ment learning. Deep Q Network (DQN) is the most representative
framework of DRL. Traditional Q-learning uses Q-table to store action
values, and in the scenario we consider, the state of the MEC environ-
ment is complex and diverse. Therefore, it is impractical to use a table
to store all the action values and also time-consuming to search for
the corresponding state in a large table frequently. Deep Q Network
directly uses the neural network with parameter 𝜔 to approximate the
Q function and generate action values. However, DQN uses the same Q
value to select and evaluate an action, which leads to an overestimation
of the Q value [20]. The author proposed an upgraded version of DQN
in [20], Double Deep Q Network (DDQN), which uses two Q networks
to fit Q value functions and randomly assigns experience to update
one of the two Q value functions. Therefore, two different weights
can be generated, one to determine the greedy policy and the other to
determine its value. This method can realize the decoupling of selection
and evaluation, which solves the problem of overestimation.

The specific framework is shown in Fig. 3, DDQN uses a neural
network with parameters 𝜔 to approximate the Q-value function di-
ectly and generate action values 𝑄(𝑠, 𝑎;𝜔). The input of the neural

network is the state 𝑠, and the output is the action value 𝑄(𝑠, 𝑎;𝜔).
In DDQN, it first selects the action corresponding to max𝑎𝑡 𝑄(𝑠𝑡, 𝑎𝑡;𝜔)
according to the Q-value output by MainNet, and then evaluate the Q-
value of this action in TargetNet. We use the 𝜀-greedy strategy [21]
o select the action. The probability of 𝜀-greedy strategy randomly
icking an action is 𝜀 ∈ (0, 1), and the probability of selecting action
= arg 𝑄̂(𝑠𝑡, argmax𝑎𝑡 𝑄(𝑠𝑡, 𝑎𝑡;𝜔);𝜔−) is 1 − 𝜀. In this way, the DRL

gent can not only maximize the rewards of known information but
lso explore the information of the unknown environment. Therefore,
tate–action pairs that are not in the sample can also be learned.

Neural network training requires a loss function optimization pro-
ess, which minimizes the deviation between the label and the output
esult. The parameters of the neural network will be updated by back-
ropagation and gradient descent [22]. The neural network in DDQN
s no exception. The goal of DDQN is to make the Q-value close to the
arget Q-value and use the Double Q-learning algorithm to provide so-
alled labels. This paper uses the Mean Square Error (MSE) [23] as the
oss function of the neural network in DDQN, which is defined as:

(𝜔) = 𝐸[(Target𝑄 −𝑄(𝑠 , 𝑎 ;𝜔))2] (7)
𝑡 𝑡

17
Fig. 3. A service model framework of double deep 𝑄 network.

among

Target𝑄 = 𝑟 + 𝛾𝑄̂(𝑠𝑡+1, argmax
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1;𝜔);𝜔−) (8)

In Eq. (8), Target Q is calculated by TargetNet with parameter
𝜔− and 𝑄(𝑠𝑡, 𝑎𝑡;𝜔) is the evaluation Q-value output by MainNet with
parameter 𝜔. As shown in Fig. 3, TargetNet is used to provide im-
movable labels to improve training stability and convergence. The
initial parameters of TargetNet are the same as MainNet. However,
𝜔 is updated every step, and 𝜔− is updated every stationary 𝐶 steps.

herefore, the parameter update speed of TargetNet is slower than
ainNet, which guarantees the stability of the system.

. Problem formulation

From the description in Section 3, the system energy consumption
ncludes the transmission energy consumption in the edge network and
he computing energy consumption of the server-side (the transmission
nergy consumption of the local computing can be considered as 0),
nd the service delay includes the data transmission delay in the edge
etwork and corresponding server data processing delay. This paper
ocuses on designing an intelligent allocation algorithm for network
nd computing resources based on MEC. Our goal is to minimize the
verage system energy consumption and average service latency of all
equests made by mobile devices and balance the computing load on
ach MEC server and the network load on the data link. Then, the QoS
nd adaptability of the MEC architecture will be improved.
Average energy consumption minimization: As mentioned

bove, the system energy consumption includes transmission energy
onsumption in the edge network and server-side computing energy
onsumption. In order to save energy costs and provide longer standby
ervices at the edge, our goal is to use artificial intelligence tech-
iques to minimize the average energy consumption of the entire MEC
ystem. As described above, 𝑒𝑘,𝑣𝑛,𝑚, 𝑒𝑙𝑛,𝑚 and 𝐸𝑘,𝑣

𝑛,𝑚 are defined as the
nergy consumption for data transmission in the edge network, the
nergy consumption for data processing of local computing, and the
nergy consumption for computing data processing on the MEC server
espectively. The energy consumption performed by the application
rogram on the user 𝑛 to the virtual machine 𝑣 on the server 𝑘 through
he wireless channel 𝑚 can be expressed as 𝑒𝑘,𝑣 + 𝐸𝑘,𝑣 . Therefore, the
𝑛,𝑚 𝑛,𝑚

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

d
o
c
p
t
p
a

problem of minimizing average energy consumption of users can be
defined as:

min

∑

𝑛∈𝑁
∑

𝑚∈𝑀
∑

𝑘∈𝐾
∑

𝑣∈𝑉

[

𝜏 ⋅ 𝑒𝑙𝑛,𝑚 + (1 − 𝜏) ⋅ (𝑒𝑘,𝑣𝑛,𝑚 + 𝐸𝑘,𝑣
𝑛,𝑚)

]

𝑁total
,∀𝜏 ∈ {0, 1} (9)

Where 𝜏 indicates whether the application request is executed locally or
offloaded to the MEC server-side, and 𝑁total denotes the total number
of application requests generated by the UMDs in the edge network.

Average service delay minimization: As mentioned above, the
service delay includes the data transmission delay in the edge network
and the corresponding server-side data processing delay. In order to
improve QoS and better support the advanced functions of mobile
devices, our goal is to minimize the average service delay of all requests
generated by mobile devices distributed in different regions in an adap-
tive manner. As described above, 𝑡𝑘,𝑣𝑛,𝑚, 𝑡𝑙𝑛,𝑚 and 𝑇 𝑘,𝑣

𝑛,𝑚 are defined as the
ata transmission delay in the edge network, the data processing delay
f local computing, and the data processing delay of MEC server-side
omputing respectively. The service delay performed by the application
rogram on the user 𝑛 to the virtual machine 𝑣 on the server 𝑘 through
he wireless channel 𝑚 can be expressed as 𝑡𝑘,𝑣𝑛,𝑚 + 𝑇 𝑘,𝑣

𝑛,𝑚 . Therefore, the
roblem of minimizing the average service delay of users can be defined
s:

min

∑

𝑛∈𝑁
∑

𝑚∈𝑀
∑

𝑘∈𝐾
∑

𝑣∈𝑉

[

𝜏 ⋅ 𝑡𝑙𝑛,𝑚 + (1 − 𝜏) ⋅ (𝑡𝑘,𝑣𝑛,𝑚 + 𝑇 𝑘,𝑣
𝑛,𝑚)

]

𝑁total
,∀𝜏 ∈ {0, 1} (10)

Resource allocation balancing: Application requests generated by
UMDs will be offloaded to the corresponding MEC servers for service
according to the offload decision. Application request generation rates
in different regions are different. As the number of users increases,
if application requests are offloaded to the same region, it will put
tremendous pressure on network links and MEC servers in this region.
The excessive load of the selected network link and the MEC server
may lead to a large transmission delay and processing delay so that the
overall service delay and system energy consumption will be greatly
increased. At the same time, network link congestion and increased ser-
vice delay will lead to an increased probability of application requests
being lost and application requests failing. Therefore, balancing the
network load across data links and the computing load of MEC servers
to achieve a balanced allocation of resources is of great significance for
reducing system energy consumption, average service delay, and allevi-
ating the computing pressure of MEC servers. With this, the adaptability
of the MEC architecture will also be improved. The resource allocation
balancing problem is to minimize the variance of the network load on
each link and minimize the variance of the computation load on each
MEC server (i.e., min𝑍 = var(𝑙net) + var(𝑙𝑐𝑝)).

5. Optimizing the resource allocation by DRL

Considering that the dynamic changes of the environment will cause
uncertain inputs and changes in system conditions, intelligent resource
allocation algorithms should consider the state of the MEC environment
to make favorable decisions. Deep reinforcement learning systems can
form adaptive models without a large amount of labeled data by ex-
ploring the environment and receiving feedback. It is very suitable for
the changing MEC environment we are considering. Therefore, in this
section we propose a DDQN based Network and Computing Resource
Allocation (DDQN-RA) algorithm, which minimizes system average
energy consumption, minimizes average service delay and balances
resource allocation in an adaptive manner.

5.1. Training

Several pioneer works have solved some problems through resource
allocation algorithms based on traditional Q-Learning or DQN architec-
ture. Traditional Q-Learning uses Q tables to store Q-values, which is
not feasible for actual MEC systems due to the actual state–action space
18
is continuous and huge [24]. It is impractical to store all Q-values in a
table and also time-consuming to search for information in a large table
frequently. The DQN framework uses the Deep Q-learning algorithm,
which still cannot overcome the inherent shortcomings of Q-learning
itself—overestimation [25], that is, the estimated Q-value is larger than
the real value and the estimation error increases with the number of
iterations. The resource allocation algorithm DDQN-RA proposed in this
paper is based on Double Deep Q-Learning. It uses a neural network
to approximate the Q-value function directly to choose the actions
and the evaluate the actions with another neural network, which can
solve the overestimate problem effectively. The three elements of deep
reinforcement learning used in our algorithm, i.e., state, action, and
reward, need to be defined first:

State: The state of our proposed DDQN-RA algorithm includes the
location generated by the requests, the location of the available servers,
the information of the tasks to be offloaded, the channel occupancy
situation, and the remaining computing resource of the servers. The
state vector can be expressed as 𝑠 = {𝑛, 𝑘′, 𝐼, 𝜇, 𝜉}, where 𝑛 is defined
as the location of the user who generated the application requests, 𝑘′ is
defined as the set of available servers location, and 𝐼 is defined as the
task information to be offloaded (including the size of offloaded data
and the number of CPU clock cycles required to complete the task)
, 𝜇 is defined as the occupancy of the channels corresponding to the
available server, and 𝜉 is defined as the remaining computing resource
availability of the servers.

Action: In the DRL system, actions correspond to the states and
the current action will affect the next state. The action vector can be
expressed as 𝑎 =

{

𝛼𝑘,𝑣𝑛,𝑚∀𝑛 ∈ 𝑁,∀𝑚 ∈ 𝑀,∀𝑘 ∈ 𝐾,∀𝑣 ∈ 𝑉
}

, and 𝛼𝑘,𝑣𝑛,𝑚 is
defined as an action performed when the application request of user 𝑛
is offloaded to virtual machine 𝑣 on MEC server 𝑘 through channel 𝑚.

Reward: In each step 𝑡, after taking a possible action 𝑎𝑡, the DRL
agent can get a reward from the environment. The reward needs
to reflect the purpose of our proposed intelligent resource allocation
algorithm DDQN-RA, which is to minimize the system average energy
consumption, minimize the average service delay and balance the
allocation of network and computing resources. We define the reward
received by the DRL agent from the environment as 𝑟 = 𝜆1 ⋅𝐸+𝜆2 ⋅𝑇+𝜆3 ⋅
𝑏𝑛+𝜆4⋅𝑏𝑐 , where 𝐸 is defined as the system average energy consumption
of the application request, 𝑇 denotes the service delay of the application
request, and 𝑏𝑛 represents the balance degree of network resource
allocation in the entire MEC network, 𝑏𝑐 represents the balance degree
of computing resource allocation on all MEC servers. 𝑏𝑛 and 𝑏𝑐 can be
obtained according to the variance of the transmission load of each
network channel var(𝑙net) and the variance of the computing load of
each MEC server var(𝑙𝑐𝑝). In addition, 𝜆𝑖, 𝑖 ∈ 1, 2, 3, 4 represents the
weight of the corresponding object in the reward expression.

5.2. Running

As shown in Fig. 3 and Algorithm 1, we show the detailed pro-
cess of intelligent resource allocation with DRL. We first initialize the
experience replay memory 𝐷 with certain capacity 𝑁 as well as the
MainNet and TargetNet with random parameters 𝜔 and 𝜔−. The episode
refers to the resource allocation process of offloading an application
request to a specific virtual machine on the target MEC server. For
each episode 𝑘, we first initialize state 𝑠, and then for each step 𝑡,
state 𝑠𝑡 will be used as the input to MainNet. In the DDQN framework,
we first find the action corresponding to the MainNet’s output max Q-
value, and then use TargetNet to estimate the target Q-value of this
action. This can avoid overestimating the Q-value. The action 𝑎𝑡 will
be selected through the target 𝑄̂ value based on the 𝜀-greedy strategy.
After the action 𝑎𝑡 is selected, the corresponding reward 𝑟 will be
obtained and the system will enter the next state 𝑠𝑡+1. We store the
corresponding data items (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in experience replay memory 𝐷
to update MainNet. In the update process of MainNet, we first randomly

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

t

b
u
b

r

Algorithm 1 DDQN based Resource Allocation (DDQN-RA)Algorithm
Require: Discount rate 𝛾, exploration rate 𝜀, replay memory capacity 𝑁
1: Initialize replay memory 𝐷 to capacity 𝑃
2: Initialize MainNet with parameters 𝜔
3: Initialize TargetNet with parameters 𝜔− = 𝜔
4: for each episode 𝑘 do
5: Initialize state 𝑠1
6: for each step 𝑡 do
7: Generate random number 𝜂 ∈ [0, 1]
8: if 𝜂 < 𝜀 then
9: Randomly select an action 𝑎𝑡

10: else
11: Select 𝑎𝑡 = arg 𝑄̂(𝑠𝑡, argmax𝑎𝑡 𝑄(𝑠𝑡, 𝑎𝑡;𝜔);𝜔−), where max 𝑄 is

estimated by MainNet, 𝑄̂ is evaluated by TargetNet
12: end if
13: Execute action 𝑎𝑡 in emulator
14: Observe reward 𝑟𝑡 and new state 𝑠𝑡+1
15: Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐷
16: Sample random minibatch of transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from 𝐷

17: Set 𝑦𝑡 =
{

𝑟𝑡, if episode terminates at step 𝑡 + 1
𝑟𝑡 + 𝛾𝑄̂(𝑠𝑡+1, argmax𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑡+1;𝜔);𝜔−), otherwise

18: Execute gradient descent using MSE function (𝑦𝑡 −𝑄(𝑠𝑡, 𝑎𝑡;𝜔))2 with
respect to the parameters 𝜔 and 𝜔−

19: Each 𝐶 steps reset 𝜔− = 𝜔
20: end for
21: end for
sample a small batch of data items from the replay memory 𝐷 to train
the neural network. This is helpful to break the connection between
samples and ensure the independent and identical distribution (IID)
of training samples. Therefore, the evaluation Q-value 𝑄(𝑠𝑡, 𝑎𝑡;𝜔) and
arget Q-value 𝛾𝑄̂(𝑠𝑡+1, argmax𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑡+1;𝜔);𝜔−) will be calculated

through the MainNet and TargetNet respectively. Subsequently, the
parameter 𝜔 of MainNet is updated according to the MSE loss function
as described in Eq. (7). The parameter 𝜔− of TargetNet only needs to
e updated once every 𝐶 steps. 𝐶 is a certain factor controlling the
pdate rate of the target network, and the value of C is only determined
y the network structure. Finally, in episode 𝑘, the trained MainNet is

obtained by continuously repeating step 𝑡, where 𝑡 represents the 𝑡th
esource allocation method and 𝑘 represents the 𝑘th resource allocation

procedure.
It should be noticed that our goals are to minimize system average

energy consumption, minimize average service delay, and balance the
allocation of network and computing resources. These goals will be
reflected in the reward. When the DRL agent takes some good actions
in the environment, such as making the system’s energy consumption
overhead smaller or the average service delay shorter, the DRL agent
will get a positive feedback and vice versa. More importantly, when
the application request is offloaded to the virtual machine of the
corresponding MEC server, the resource allocation balance must also
be considered in the calculation of the reward.

6. Integrating FL with DRL in the MEC system

The DDQN-RA algorithm we proposed above needs to be run on the
DRL agent. However, the deployment of the DRL agent will be a key
issue. Generally, we divide the deployment of DRL agents into three
modes, i.e., Centralized DRL Deployment, (1)Deploy the DRL agent
at the cloud center. And two modes of Distributed DRL Deployment,
(2) Deploy the DRL agents at the cloud center and edge nodes, and (3)
Deploy the DRL agents at the cloud center, edge nodes, and all UMDs.
If the first deployment mode is used to train the DRL agent, due to
the wireless communication characteristics of the MEC system, there
are three main shortcomings: (1) Considering that a large amount of
19
training data is mainly generated by UMDs, it increases the burden on
the uplink wireless channel; (2) If the training data uploaded to the
edge node or cloud is privacy-sensitive data, it may cause potential
privacy leakage risks; (3) If the training data is transformed for privacy
consideration, the server-side proxy data is less relevant than on-
device data. If the second deployment mode is used to train the DRL
agent, in addition to the three shortcomings of the first mode, the
problem of non-independent and identical distribution (Non-IDD) and
unbalanced distribution [26] of user data will also arise. If the third
deployment mode is used to train the DRL agent, although it solves the
problem of transmitting a large amount of training data, it also has two
shortcomings: (1) the problem of Non-IDD and unbalanced distribution
of user data; (2) limited communication conditions cannot guarantee
that all UMDs are online at the same time.

DRL techniques require a large amount of data information for
finding the optimal solution when dealing with optimization problems
of large-scale MEC systems. However, the wireless communication ca-
pabilities of MEC systems limit the possibility of efficiently converging
all data to the server. Therefore, considering using a distributed deploy-
ment of the DRL agent on each UMD, edge node and remote cloud is
natural. In this way, a large amount of data generated by the client can
be directly used to train the DRL agent without transmitting through
the wireless network, which will not generate a lot of transmission
delay and energy consumption. However, this distributed DRL agent
deployment model will also introduce several issues mentioned above.
If these problems can be solved, we will be able to obtain approximately
optimal performance. Therefore, Federal Learning (FL) is introduced
to train the DRL agents in the MEC system. We call this scheme the
‘‘DRL + FL’’ model and compare the advantages and disadvantages of
this method with centralized DRL and conventional distributed DRL,
described by Fig. 4. Compared with centralized DRL and conventional
distributed DRL, ‘‘DRL + FL’’ has the following advantages:

• Can avoid uploading large amounts of training data: Both cen-
tralized DRL and conventional distributed DRL need to upload a
large amount of training data from the UMDs to the server, which
will greatly increase the burden on the uplink wireless channel.

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

t
i
t
e
e
d
e

6

t
o

Fig. 4. Taxonomy of deploying DRL agents in mobile edge system.
In the ‘‘DRL + FL’’ model, the UMDs train the DRL agent locally,
and only need to upload updated model parameters to the server.

• Can solve the Non-IDD and Unbalanced problem of training data:
The training data on the UMDs (stored in the DRL’s transition
memory) is obtained based on the wireless environment it expe-
riences. And some UMDs may experience more mobile network
states. Hence, training data on one UMD alone will not represent
the characteristics of all UMDs’ training data. In FL, this chal-
lenge could be satisfied by merging the models’ updates with the
FedAvg algorithm in.

• Can reduce the influence of communication conditions: UMDs are
often unpredictably off-line or assigned to poor communication
resources, which will lead to some model training data transmis-
sion is not timely and affect the training effect. However, FL only
requires a part of customers to upload their updates in one round
of training, which solves the unpredictably off-line situation of
customers.

• Can solve the problem of data privacy and security: The in-
formation that needs to be uploaded to the FL to improve the
DRL agent is the necessary minimum update. Further, techniques
of security aggregation and differential privacy can be applied
naturally, thereby avoiding uploading sensitive privacy raw data
to the server for updates. Nonetheless, privacy security is not the
focus of our work, and more information on these issues can be
found in Ref. [27,28].

The combination of the DRL method and the FL framework makes
he computing offload and resource allocation of the MEC system more
ntelligent and combines the UMDs with edge nodes and remote clouds
o form a powerful intelligent entity. This entity obtains powerful
nvironmental cognitive ability through a large number of UMDs. Each
dge node of the entity can support AI tasks on the system level
ynamically, which ensures global optimization and balance of the
ntire MEC system.

.1. DRL + FL to computation offloading

In the computation offloading scenario, each UMD decides whether
o offload a computing task to an edge node, which edge node to
ffload, and which wireless channel to transmit the offloaded task
20
according to the decision of the DRL agent. Although UMDs such as
mobile phones, industrial IoT devices, and smart vehicles are able to
execute some AI tasks, computing power and energy consumption still
limit their AI computing capabilities (e.g., training large-scale DRL
agents). Therefore, we propose to use the ‘‘DRL + FL’’ model to treat all
edge service nodes as the central server to coordinate the large number
of UMDs they cover. With this solution, UMDs with weak computing
ability can accommodate a complex DRL agent and expand computing
ability at the edge through computation offloading at the same time.

6.2. DRL + FL to resource allocating

While computation offloading, edge nodes decide whether to al-
locate network and computing resources to the UMD, which wireless
channel is assigned to offload tasks and which virtual machine on
which edge server is assigned to execute tasks according to the decision
of the DRL agent. The problem of coordination of computation offload-
ing of UMDs and resource allocation of edge nodes has always been a
key link affecting user’s computing efficiency. Non-intelligent resource
allocation methods are always to asynchronous delay. Therefore, we
propose the ‘‘DRL + FL’’ scheme to treat all edge service nodes as the
central server to coordinate a large number of UMDs they cover. With
this solution, the network and computing resource allocation of the
edge nodes can be coordinated with the computation offloading of the
UMDs and greatly improving the user’s computing efficiency.

The methods for dealing with the above two cases are similar.
FL iteratively selects a random set of UMDs to (1) download the
parameters of DRL agents from edge nodes; (2) uses its own data to
perform the training process on the model; (3) upload only updated
model parameters of DRL agents to edge nodes for model aggregation.
In this way, a shared DRL agent can be trained by FL without having
to aggregate training data.

In summary, FL allows resource-constrained edge computing de-
vices (including UMDs and edge nodes) to train shared models while
maintaining the locality of the training data. The core advantage of FL
is to update the model separately on a large number of devices, without
having to aggregate training data.

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

a
c
m
s
b
b
a

b
f
t
e
s
l
U
d

o
i
t
s
t

u
t
u
e
U

7

7

u
a

M
w
5
a
b
o
r
r
U
i
v
r
i
1
T
c
i

g
a

m
i
f
a
a
a
b
p
t
a
p
t
b
a
c
t
o
a
t

7

w
s
w

o
T
n
t
n
o
D
t
s
o
d
e
s

‘

D
t
p
c
t
i
b

a
c
c
s

6.3. Feasibility discussion

To a certain extent, the ‘‘DRL + FL’’ framework we have proposed
is a future-oriented concept. We envisage that in the near future, most
user mobile devices, especially smartphones, not only have the ability
to infer, but also the ability to train lightweight deep learning models.
In Sections 6.2 and 6.3, we introduced the use of the FL method to
help resource-constrained edge devices train shared models. However,
considering the actual deployment and limited communication, FL
feasibility should be discussed.

(1) Deploy challenges: Model training usually takes a long time
ccording to its required accuracy requirements. Therefore, the biggest
hallenge of using FL distributed training deep reinforcement learning
odel is the deployment of DRL agent. Obviously, while randomly

etting the weight of the neural network, the DRL agent should not
e directly deployed. Otherwise, the MEC system will be paralyzed
ecause the DRL agent cannot be fully trained on actual mobile devices
nd can only make random decisions during initial exploration.

However, if the DRL agent is not trained from scratch, this may
e resolved. We are now working hard to use transfer learning to
acilitate the training process of the MEC system. The basic idea is
o simulate the wireless environment and requests of UMDs. Just like
valuating and adjusting antenna settings on a simulation test bed, the
imulation environment is used to train an offline deep reinforcement
earning agent. Then, the established DRL agent can be distributed to
MDs. This solves the problem of longer model training time on mobile
evices.

(2) Limited communication challenges: UMDs are often unpredictable
ffline or allocated to poor communication resources. Therefore, it
s difficult to combine UMDs with edge nodes and remote clouds in
he actual environment. In this case, it is difficult to achieve training
imilar to the distributed shared model, and it will also bring a large
ransmission delay.

However, FL model integration does not require all users to upload
pdates at the same time. In a round of integration, only some cus-
omers are required to upload their updates, which solves the often
npredictable offline situation of customers. Therefore, in the actual
dge network environment, it is also feasible to use FL to combine
MDs with edge nodes and remote clouds.

. Performance evaluation

.1. Experiment settings

In order to study the performance of ‘‘DRL + FL’’, we did some sim-
lations on network and computing resource allocation experiments. In
ll simulations, the time horizon is discretized into time epochs.

On investigating the capabilities of DRL coupled with FL over the
EC system for resource allocation, we set the average request data size
ithin 5MB [29] and the request requirement of CPU cycles between
0 Megacycles and 1 Gigacycles based on the characteristics of several
pplications in the laboratory test described in [30]. We suppose the
andwidth of an edge node is 𝜔 = 5 MHz and the computing ability
f MEC is set between 1 GHz and 5 GHz. When all the computing
esources of the MEC server are occupied or the remaining computing
esources are less than the amount of computation requested by the
MD, the request will be rejected or queued. The request queue size

s set to 10, and the request timeout threshold is set to 3s. Within the
alue of the request queue and not exceeding the timeout threshold, the
equest is queued, and if the timeout threshold is exceeded, the request
s rejected. The average data transmission rate is distributed between
00 Mbps and 450 Mbps according to the work by Rimal et al. [31].
he channel gain states between UMDs and edge nodes come from a
ommon finite set, which quantifies the quality of wireless channels

nto 6 levels. In the whole simulation process, the number of tasks H

21
enerated by each UMD follows the Bernoulli distribution with average
rrival rate 𝜆T per time epoch.

As for the DRL settings in UMDs, edge nodes, and cloud, we choose
the vanilla version of the Double DQN algorithm with parameter set-
tings. We also select tanh as the activation function and Adam opti-
mizer. We use two complete fully connected layers of neural networks
as the target (TargetNet) and evaluation (MainNet) 𝑄 networks, each
layer containing 200 neurons. The other parameter values in Double
DQN are set as follows: learning rate 𝜁 = 0.005, discount factor 𝛾 = 0.9,
exploration probability 𝑜 = 0.001, replay memory capacity 𝑀 = 3000,

inibatch size 𝐵 = 32 and the period of replacing the target Q network
s 𝐶 = 200. In addition, in order to establish a performance baseline
or the ‘‘DRL + FL’’ model, we take the intelligent resource allocation
lgorithm DRLRA proposed in [14], and some other resource allocation
lgorithms, such as the known SDR [32] algorithm and LOBO [33]
lgorithm for comparison. DRLRA, the resource allocation algorithm
ased on deep reinforcement learning, differs from the method in this
aper in that it does not combine FL, and uses distributed methods
o train DRL agents. SDR, a semidefinite relaxation-based optimization
pproach for task offloading, SDR abstracts the resource allocation
roblem in the process of computing offloading into a combined op-
imization problem, and the best solution for resource allocation can
e obtained by solving the combined optimization problem. LOBO,
Lyapunov optimization-based online algorithm, obtains the optimal

omputing load and optimal network load of the edge server through
he predefined Lyapunov optimization function. At the same time, in
rder to make the reference experiment more convincing, we also adopt
centralized DRL [34], which is used for comparison and is assumed

o be able to receive all data for reinforcement learning.

.2. Evaluation results

In order to clarify the performance of our edge intelligence frame-
ork ‘‘DRL + FL’’ when performing resource allocation in the MEC

ystem, experiments on network and computing resource allocation
ere performed under different settings.

Fig. 5 depicts the performance of DDQN with FL in the allocation
f network resources and computing resources under the MEC system.
hree edge nodes (k1, k2, and k3) and three UMDs (n1, n2, and
3) are selected from 5 edge nodes and 50 UMDs to demonstrate
he performance of the deployed DRL agent. From the perspective of
etwork resource allocation, the packet loss rates and packet delays
f n1, n2, and n3 decrease rapidly with the training process of the
RL agents, and eventually remain stable within a certain range. In

he simulation of computing resource allocation, k1, k2, and k3 were
elected as servers to execute offloading tasks. With the training process
f the DRL agents, the service rejection rate and service delay quickly
ecreased and eventually remained stable. This means that using the
dge intelligent resource allocation model ‘‘DRL + FL’’ in the MEC
ystem can effectively improve the efficiency of resource allocation.

In addition, we give details of the performance comparison of the
‘DRL + FL’’ scheme with several other methods as follows.

In order to highlight the impact of the deployment location of
RL agents on resource allocation, we made some assumptions about

he system conditions of centralized DDQN. In studying the detailed
erformance during the training process, we assume that the wireless
ommunication capabilities of the centralized DDQN are not impeded,
hat is, the process of transmitting a large amount of data for central-
zed training to the cloud through the core network will not be affected
y network traffic.

In Fig. 6, we analyze the impact of the number of service requests
nd the processing capacity of the MEC servers on the average energy
onsumption of the MEC system, including data transmission energy
onsumption, local data processing energy consumption, and MEC
erver-side data processing energy consuming in the edge network.

ere we do not consider the energy consumption of data processing

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

i
t
s
c
s
t
a
r
o
t

a
d
d
n
a
o
i
c
a
s
w
p

l
s
a
t
a
+
v
T
r
+
w
m
a

Fig. 5. Performance of ‘‘DRL + FL’’ in network and computing resource allocation.
n the cloud, mainly for two reasons. (1) The energy consumption in
he cloud is not part of the edge system. (2) The number of cloud
ervers is huge and multiple tasks are processed in parallel, so we
annot measure the energy consumption of our tasks. It can be easily
een that with the increase in the number of user service requests and
he processing capacity of the MEC server, in terms of optimizing the
verage energy consumption of the entire MEC system, the intelligent
esource allocation method is obviously better than the traditional
ptimization method, and the performance of ‘‘DDQN + FL’’ is better
han all other methods.

In Fig. 7, we analyze the impact of the number of service requests
nd the processing capacity of the MEC server on the average service
elay, including the data transmission delay, the local data processing
elay, and the MEC server-side data processing delay in the edge
etwork. It can be seen that the ‘‘DDQN + FL’’ model has a great
dvantage in terms of average service delay compared with several
ther resource allocation algorithms. As the number of service requests
ncreases, this advantage becomes more apparent. As the processing
apacity of the MEC server increases, the DDQN with FL has a clear
dvantage in a certain range. But as the processing capacity of the MEC
erver is sufficient, the advantage is reduced. Therefore, our algorithm
ill be very practical in a real situation with moderate MEC servers’
rocessing capabilities.

We conduct experiments to verify the network load and computing
oad balancing issues in the resource allocation process. It can be
een from Fig. 8 that the performance of several intelligent resource
llocation algorithms before training is not ideal, but the variance of
he network and computing load decreases rapidly after training. After
short training time, our intelligent resource allocation model ‘‘DDQN
FL’’ is always able to obtain stable network and computing load

ariance, and its performance is slightly better than centralized DDQN.
his means that in the process of allocating network and computing
esources, once the FL shared model training is completed, ‘‘DDQN

FL’’ will take full account of the load situation in the current net-
ork environment. Furthermore, an adaptive allocation decision can be
ade, which can effectively achieve a balanced allocation of network

nd computing resources to prevent network congestion and service
22
delay caused by the burst requests. Therefore, if the user wants to use
the ‘‘DDQN + FL’’ model to obtain better performance, it must wait for
the model to merge to use the training results of other agents.

From the above three comparative experiments, it can be seen that
the method of ‘‘DDQN + FL’’ and centralized DDQN can always obtain
approximately optimal performance. However, the high performance
of the centralized DDQN is obtained under the assumption that we are
in an ideal wireless network environment and without considering the
energy consumption of the cloud center. In actual situations, as the
number of UMDs increases, large amounts of training data transmitted
to the cloud through the core network will cause great delay and
instability, and at the same time, will also generate a lot of energy
consumption. In addition, the energy consumption of the cloud center
is usually huge, and we should also consider it from the perspective
of resource consumption. Therefore, it is more practical to implement
DDQN with FL in the MEC system, at least considering the current core
network situation.

As shown in Fig. 9, we also compared the amount of the wireless
transmission data of the three intelligent resource allocation models of
‘‘DDQN + FL’’, centralized DDQN, and DRLRA to complete the train-
ing process in network and computing resource allocation scenarios.
Training DDQN with FL framework, each UMD only needs to upload
updated data of its model. Without FL framework, such as centralized
DDQN or DRLRA, UMDs must upload all training data to the cloud or
exchange all training data at edge nodes via wireless channels. This will
cause more communication resources to be consumed, and it will also
generate large transmission energy consumption and delay.

8. Conclusions

In this paper, we study the resource allocation problem in a variable
MEC environment, including network resource allocation and comput-
ing resource allocation. We considered this issue from the aspects of
minimizing the average energy consumption of the system, minimizing
the average service delay, and balancing resource allocation. Based
on the advantages of adaptive learning ability and sequence decision
of DRL technology in the environment, DRL is introduced into the
MEC system to solve the resource allocation problem and an intelligent

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

d

Fig. 6. Performance comparison of the average energy consumption for different resource allocation algorithms. (a) Comparison of the average energy consumption for different
resource allocation algorithms with different number of service requests; (b) Comparison of the average energy consumption for different resource allocation algorithms with
ifferent processing capacities of the MEC servers.
Fig. 7. Performance comparison of the average service time for different resource allocation algorithms. (a) Comparison of the average service time for different resource allocation
algorithms with different number of service requests; (b) Comparison of the average service time for different resource allocation algorithms with different processing capacities
of the MEC servers.
Fig. 8. The fluctuation of the load variance of different resource allocation algorithms. (a) The fluctuation of variance of the network load based on different resource allocation
algorithms; (b) The fluctuation of variance of the computing load based on different resource allocation algorithms.
resource allocation algorithm DDQN-RA based on the emerging DRL
algorithm framework DDQN is proposed. This algorithm can better
adapt to changing mobile edge networks and is more suitable for
MEC systems with changing network environments. In the subsequent
deployment of DRL agents, we integrated the FL framework with DRL in
the MEC system and proposed the ‘‘DRL + FL’’ model. This model can
well solve the problems of uploading large amounts of training data
via wireless channels, Non-IID and unbalance of training data when
training DRL agents, restrictions on communication conditions, and
23
data privacy. We conducted extensive simulation experiments to eval-
uate the performance of ‘‘DDQN + FL’’. The experimental results show
that whether compared with traditional resource allocation algorithms
SDR and LOBO or other intelligent resource allocation algorithms under
multiple conditions, the ‘‘DDQN + FL’’ model proposed in this paper has
achieved much better performance. Therefore, the combination of DRL
techniques and FL framework has great potential in intelligent resource
allocation, and it is worth further research. In our future work, we will
not only optimize computing tasks in edge networks but also schedule

N. Shan, X. Cui and Z. Gao Computer Communications 160 (2020) 14–24

a

Fig. 9. Comparison of the transmission data size for different resource allocation
algorithms.

artificial intelligence tasks on edge nodes and UMDs in a fine-grained
and collaborative manner.

CRediT authorship contribution statement

Nanliang Shan: Conceptualization, Methodology, Visualization,
Writing - original draft, Software, Writing - review & editing. Xi-
olong Cui: Methodology, Supervision, Resources. Zhiqiang Gao:

Conceptualization, Methodology, Visualization, Writing - review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Funding

This research was funded by the National Natural Science Founda-
tion of China (Grant nos. U1603261) and the Natural Science Founda-
tion Program of Xinjiang Province, China (Program No. 2016D01A080).

References

[1] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., Mobile-
edge computing introductory technical white paper, White paper, mobile-edge
computing (MEC) industry initiative, 2014, pp. 1089–7801.

[2] A. Sadeghi, F. Sheikholeslami, G.B. Giannakis, Optimal and scalable caching for
5G using reinforcement learning of space-time popularities, IEEE J. Sel. Top.
Sign. Proces. 12 (1) (2017) 180–190.

[3] Y. He, N. Zhao, H. Yin, Integrated networking, caching, and computing for
connected vehicles: A deep reinforcement learning approach, IEEE Trans. Veh.
Technol. 67 (1) (2017) 44–55.

[4] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529.

[6] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, et al., Communication-
efficient learning of deep networks from decentralized data, 2016, arXiv preprint
arXiv:1602.05629.

[7] Q. Li, Z. Wen, B. He, Federated learning systems: Vision, hype and reality for
data privacy and protection, 2019, arXiv preprint arXiv:1907.09693.
24
[8] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
q-learning, in: Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[9] M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource allocation
for multi-user multi-task mobile cloud, in: 2016 IEEE International Conference
on Communications, ICC, IEEE, 2016, pp. 1–6.

[10] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offload-
ing for mobile-edge cloud computing, 2015, arXiv: Networking and Internet
Architecture.

[11] Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani,
State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s
intelligent network traffic control systems, IEEE Commun. Surv. Tutor. 19 (4)
(2017) 2432–2455.

[12] J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based compu-
tation offloading and resource allocation for MEC, in: 2018 IEEE Wireless
Communications and Networking Conference, WCNC, IEEE, 2018, pp. 1–6.

[13] Y. Liu, M.J. Lee, Y. Zheng, Adaptive multi-resource allocation for cloudlet-based
mobile cloud computing system, IEEE Trans. Mob. Comput. 15 (10) (2015)
2398–2410.

[14] J. Wang, L. Zhao, J. Liu, N. Kato, Smart resource allocation for mobile edge
computing: A deep reinforcement learning approach, IEEE Trans. Emerg. Top.
Comput. (2019) 1–1.

[15] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, P.
Bahl, MAUI: making smartphones last longer with code offload, 2010, pp. 49–62.

[16] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, A. Chan, A framework for partitioning
and execution of data stream applications in mobile cloud computing, ACM
SIGMETRICS Perform. Eval. Rev. 40 (4) (2013) 23–32.

[17] J. Evans, V. Krishnamurthy, Hidden Markov model state estimation with
randomly delayed observations, IEEE Trans. Signal Process. 47 (8) (1999)
2157–2166.

[18] R.L. Dobrushin, Shannon’s theorems for channels with synchronization errors,
Problemy Peredachi Informatsii 3 (4) (1967) 18–36.

[19] Y. Wen, W. Zhang, H. Luo, Energy-optimal mobile application execution: Taming
resource-poor mobile devices with cloud clones, in: Proceedings of the 2012
Proceedings IEEE Infocom, 2012, pp. 2716–2720.

[20] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
Q-learning, 2016, pp. 2094–2100.

[21] H. You, Z. Jiao, H. Xu, J. Li, Y. Wang, X. Gao, Restricting greed in training
of generative adversarial network, 2017, arXiv: Computer Vision and Pattern
Recognition.

[22] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.
[23] L. Chen, H. Qu, J. Zhao, B. Chen, J.C. Principe, Efficient and robust deep learning

with correntropy-induced loss function, Neural Comput. Appl. 27 (4) (2016)
1019–1031.

[24] T.T. Anh, N.C. Luong, D. Niyato, Y.-C. Liang, D.I. Kim, Deep reinforcement
learning for time scheduling in RF-powered backscatter cognitive radio networks,
in: 2019 IEEE Wireless Communications and Networking Conference, WCNC,
IEEE, 2019, pp. 1–7.

[25] Z. Hu, Y. Jiang, X. Ling, Q. Liu, Accurate Q-learning, in: International Conference
on Neural Information Processing, Springer, 2018, pp. 560–570.

[26] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, et al., Communication-
efficient learning of deep networks from decentralized data, 2016, arXiv preprint
arXiv:1602.05629.

[27] M. Lopezmartin, B. Carro, A. Sanchezesguevillas, Application of deep reinforce-
ment learning to intrusion detection for supervised problems, Expert Syst. Appl.
141 (2020) 112963.

[28] G. Caminero, M. Lopezmartin, B. Carro, Adversarial environment reinforcement
learning algorithm for intrusion detection, Comput. Netw. 159 (2019) 96–109.

[29] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen, In-edge AI: Intelligentiz-
ing mobile edge computing, caching and communication by federated learning,
IEEE Netw. 33 (5) (2019) 156–165.

[30] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, W. Heinzelman, Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture, in: 2012 IEEE Symposium on Computers and Communications,
ISCC, IEEE, 2012, pp. 000059–000066.

[31] B.P. Rimal, D.P. Van, M. Maier, Cloudlet enhanced fiber-wireless access networks
for mobile-edge computing, IEEE Trans. Wireless Commun. 16 (6) (2017)
3601–3618.

[32] T.Q. Dinh, J. Tang, Q.D. La, T.Q.S. Quek, Offloading in mobile edge computing:
Task allocation and computational frequency scaling, IEEE Trans. Commun. 65
(8) (2017) 3571–3584.

[33] S. Lakshminarayana, Y. Xu, H.V. Poor, T.Q.S. Quek, Cooperation of storage
operation in a power network with renewable generation, IEEE Trans. Smart
Grid 7 (4) (2016) 2108–2122.

[34] G. Chen, A new framework for multi-agent reinforcement learning–centralized
training and exploration with decentralized execution via policy distillation,
2019, arXiv preprint arXiv:1910.09152.

http://refhub.elsevier.com/S0140-3664(19)32122-X/sb2
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb2
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb2
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb2
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb2
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb3
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb3
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb3
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb3
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb3
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb4
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb4
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb4
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb5
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb5
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb5
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb5
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb5
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1907.09693
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb9
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb9
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb9
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb9
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb9
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb10
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb10
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb10
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb10
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb10
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb11
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb12
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb12
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb12
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb12
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb12
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb13
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb13
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb13
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb13
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb13
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb14
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb14
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb14
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb14
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb14
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb15
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb15
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb15
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb16
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb16
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb16
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb16
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb16
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb17
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb17
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb17
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb17
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb17
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb18
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb18
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb18
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb20
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb20
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb20
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb21
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb21
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb21
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb21
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb21
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb22
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb23
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb23
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb23
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb23
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb23
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb24
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb25
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb25
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb25
http://arxiv.org/abs/1602.05629
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb27
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb27
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb27
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb27
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb27
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb28
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb28
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb28
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb29
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb29
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb29
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb29
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb29
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb30
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb31
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb31
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb31
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb31
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb31
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb32
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb32
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb32
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb32
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb32
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb33
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb33
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb33
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb33
http://refhub.elsevier.com/S0140-3664(19)32122-X/sb33
http://arxiv.org/abs/1910.09152

	``DRL + FL'': An intelligent resource allocation model based on deep reinforcement learning for Mobile Edge Computing
	Introduction
	Related work
	System model
	Network model
	Network transmission
	Variance of network resource allocation

	Computing model
	Local computing
	MEC server-side computing
	Variance of computing resource allocation

	Service model
	Reinforcement learning
	Deep reinforcement learning

	Problem formulation
	Optimizing the resource allocation by DRL
	Training
	Running

	Integrating FL with DRL in the MEC system
	DRL + FL to computation offloading
	DRL + FL to resource allocating
	Feasibility discussion

	Performance evaluation
	Experiment settings
	Evaluation results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	
	References

