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A B S T R A C T

In deregulated environment, the wind power producers (WPPs) will face the challenge of how to increase their
revenues under uncertainties of wind generation and electricity price. This paper proposes a method based on
deep reinforcement learning (DRL) to address this issue. A data-driven controller that directly maps the input
observations, i.e., the forecasted wind generation and electricity price, to the control actions of the wind farm,
i.e., the charge/discharge schedule of the relevant energy storage system (ESS) and the reserve purchase
schedule, is trained according to the method. By the well-trained controller, the influence of the uncertainties of
wind power and electricity price on the revenue can be automatically involved and an expected optimal decision
can be obtained. Furthermore, a targeted DRL algorithm, i.e., the Rainbow algorithm, is implemented to improve
the effectiveness of the controller. Especially, the algorithm can overcome the limitation of the conventional
reinforcement learning algorithms that the input states must be discrete, and thus the validity of the control
strategy can be significantly improved. Simulation results illustrate that the proposed method can effectively
cope with the uncertainties and bring high revenues to the WPPs.

1. Introduction

In recent years, as the most economically promising new energy
generation form, wind power accounts for an increasing proportion of
the total power generation [1]. Meanwhile, with the deregulation of the
electricity sector, wind power producers (WPPs) must pursue their
maximum profit in the market. However, the uncertainties of wind
power and electricity price pose challenges for WPPs, because 1) the
uncertainty of wind power may cause the deviation between the
scheduled and actual wind generation, which may entail extra penalties
on the WPPs [2]; and 2) the uncertainty of electricity price makes it not
economic enough for the energy storage system (ESS) equipped in the
wind farm to adjust the generation, reducing the revenues of the WPPs
[3]. Therefore, it is crucial for WPPs to optimize their control actions of
the wind farms and reduce the losses caused by the uncertainties.

In order to optimize the control actions of wind farms, [4] char-
acterized the uncertainty of wind power in terms of a representative set
of weighted scenarios, and proposed a two-stage stochastic program-
ming framework to decide the reserve purchase plan of the wind farm.
In [5], the pumped-hydro-storage plant was controlled to alleviate the

uncertainty of the integrated wind power, and a chance-constrained
optimization model for controlling the pumped-hydro-storage plant
was presented. In the model, the wind power forecast error was char-
acterized by the Gaussian distribution. [6] treated wind power as a
stochastic variable depended on the normally distributed wind speed,
and presented a dynamic programming algorithm to control the ESS in
the wind farm to ensure the power generation schedule of the wind
farm. [7] assumed that the wind power forecast error obeyed a joint
normal distribution, and optimized the operation of the pumped-sto-
rage power plant based on the sampled scenarios to minimize the
penalty costs caused by wind power forecast errors. The research works
in [4–7] belong to the stochastic optimal control method, which gen-
erally assumed that the distribution of wind power was pre-known. In
[8], a risk measure based robust optimization was proposed to optimize
the bidding strategy of the wind farm with an ESS to optimize its rev-
enue via electricity sales. However, in robust optimization, the un-
certainty of wind power might be considered conservatively and thus
lead to uneconomic decision results.

In previous studies, the uncertainty of wind power is approximately
assumed to follow a certain distribution or is conservatively
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characterized. These assumptions are rarely met for a variety of reasons
in practice, which makes the proposed control methods not as effective
as expected in actual scenarios. Different from previous studies, we do
not try to describe the uncertainty laws but directly consider the impact
of the uncertainties on the objective function, i.e., the WPP’s revenue,
through deep reinforcement learning (DRL). The complete uncertainty
laws reflected in the historical dataset can be fully exploited and uti-
lized by such a data mining technology. DRL has been widely used in
the optimal control of power systems [9–13]. This paper investigates
the use of DRL, in particular, the Rainbow algorithm, on coping with
multiple uncertainties of wind power and electricity price, as well as to
increase the WPP’s long-term revenues. Furtherly, both ESS control and
reserve purchase are used as control actions in the proposed approach,
which is also rarely considered at the same time in prior researches.

In this paper, a DRL model about wind farm generation control is
proposed to maximize WPP’s revenue. The merits of the model are
twofold. Firstly, the influence of the uncertainties of wind power and
electricity price on the WPP’s revenue can be automatically involved,
without any assumption on the probability distribution rules during the
optimization of the control strategy. Secondly, in addition to the ESS
control, purchasing reserves from other market participates is also
considered as an effective means of the operational control, which
makes the model more comprehensive.

2. Overviews of the proposed method

The ESS control and reserve purchase are two effective means for a
WPP to deal with wind generation uncertainties. In this paper, the
optimal operation of a wind farm equipped with an ESS is investigated,
whose schematic diagram is shown in Fig. 1. The charge/discharge of
the ESS and the up/down reserve purchase are considered as control
actions that should be optimized to increase the revenue of the WPP.

2.1. Cooperation rule between the ESS and reserve response

The ESS and reserve play different roles in accommodating wind
generation uncertainties, and the cooperation rule between them is il-
lustrated in Fig. 2.

In the figure, P tw, is the wind power forecast error at time interval t,
Pr t, is the probability of P tw, , PESS t, is the scheduled charge/discharge
power of the ESS, PESS t

act
, is the actual charge/discharge power of the ESS,

and S S/t
up

t
dn is the amount of the purchased up/down reserve. Here, a

positive value of PESS t
act

, or PESS t, indicates that the ESS is in the state of
discharge, and vice versa.

For a wind farm, the purchased reserve is preferentially used to
balance the wind power forecast error, since the reserve has been paid

beforehand. Meanwhile, if the reserve capacity is insufficient, the
scheduled charge/discharge power of the ESS PESS t, will be adjusted to
further balance the error. According to this rule, the actual charge/
discharge power PESS t

act
, can be expressed by
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Moreover, if PESS t
act

, calculated by (1) cannot be satisfied because of
the physical constraints of the ESS, the wind power forecast error
cannot be balanced completely and then the WPP will face a high
penalty fee.

Here the scheduled generation of the ESS-integrated wind farm that
should be submitted to the market before observing the real wind
generation can be expressed as

= +P P Pt t tw, ESS, (2)

where Pt is the scheduled generation of the wind farm, and P tw, is the
forecasted wind generation.

And the actual wind farm generation can be calculated by

= +P P Pt
act

t
act

ESS t
act

w, , (3)

where Pt
act is the actual generation of the wind farm, and P t

act
w, is the

actual wind generation.
Under this cooperation rule, the WPP needs to make control deci-

sions to maximize its revenue via optimizing the ESS control and re-
serve purchase. A corresponding DRL model will be introduced in the
next subsection to help the WPP fulfill this purpose.

Nomenclature

ESS Energy storage system
WPP Wind power producer
P tw, Forecasted wind generation
P t

act
w, Actual wind generation
P tw, Wind power forecast error
t Forecasted electricity price
t
act Actual electricity price released by market

Pt Scheduled generation of the wind farm
Pt

act Actual generation of the wind farm
Pt Deviation between Pt

act and Pt
S S/t

up
t
d Amount of the purchased up/down reserve

µ µ/t
up

t
d Price of the up/down reserve

P tESS, Scheduled charge/discharge power of the ESS
P t

act
ESS, Actual charge/discharge power of the ESS

rt Revenue generated by dispatch each time

Ct Penalty fee charged by market due to Pt
Mt Maintenance cost of ESS
T Number of time interval in an ESS control cycle
P tpen, Penalty price for power deviation
P tmen, Price of the basic maintenance
P textra - men, Price of the extra maintenance
P P/t

ch
t

dis
ESS, ESS, Charge/discharge power of the ESS

/ch dis
ESS ESS Battery charge/discharge efficiency

PESS
ch

,max Maximum charge power of the ESS
PESS

dis
,max Maximum discharge power of the ESS

Et Electricity stored in ESS
E E/max min Maximum/minimum ESS capacity
Eexp Expected electricity for the ESS to enter a new control

cycle
NESS Maximum state transition number in a control cycle of the

ESS

Fig. 1. A wind farm with ESS.

J.J. Yang, et al. Electrical Power and Energy Systems 119 (2020) 105928

2



2.2. Framework of the DRL model

The DRL model consists of two processes: a training process and an
application process. In the offline training process, the controller is
trained so that the action selected can bring higher revenue to the WPP.
In the application process, the well-trained controller is used to make
online control decisions.

The training process consists of three modules: 1) the virtual deci-
sion module, 2) the electricity market simulation module, and 3) the
learning module, as illustrated in Fig. 3.

In the virtual decision module, the WPP will make a virtual decision
on the ESS charge/discharge and reserve purchase. The input state of
this module includes the forecasted wind power P tw, , the forecasted
electricity price t , the up and down reserve price µt

up and µt
dn, as well

as the electricity quantity Et stored in the ESS. For each input state, the
controller should first evaluate the Q values for all feasible control
actions, where the Q value is a measurement that quantifies the effect of
an action on the immediate and delayed revenues of the WPP. Then
according to the stochastic action selection policy, a group of control
actions, i.e., the charge/discharge power and the purchased reserve, is
selected. These actions will be submitted to the market simulation
module as inputs.

The electricity market simulation module is responsible for esti-
mating the revenue of the WPP under the selected control actions,
which mimics the external environment in the DRL. By using the his-
torically recorded actual electricity price t

act and actual wind genera-
tion P t

act
w, , the revenue can be calculated. Then the input state, the se-

lected control actions, and the revenue will be stored as a sample for the
learning module.

The learning module is used to calculate the Q values based on the
available samples and then updates the parameters of the evaluation
network in the virtual decision module to form the new map between
the input state and the Q values.

The three modules are executed sequentially until the parameters of
the evaluation network reach convergence, so that a well-trained con-
troller is obtained.

In the application process, a deterministic action selection policy is
adopted to the well-trained controller. When a new input state comes,
the algorithm will select the action with the highest Q value, following
the greedy strategy. The decision process of the controller in the ap-
plication process is the forward propagation of the well-trained neural
network whose calculation time is almost negligible.

As the key techniques in the training process, the DRL algorithm and
the external environment formulations will be detailedly discussed in
Section 3 and Section 4, respectively. And the implementation of the
training process and the application process will be presented in Section
5.

3. Rainbow algorithm

The basic idea of RL/DRL is to strengthen or encourage the agent
(controller) to generate the behavior with higher reward in interaction
with the external environment. In essence, the agent is a map from the
state space S to the action space A, whose target is to find a sequence of
actions that can maximize the expected accumulated discounted reward
[14,15].

In the context of wind farm control, the input state is composed of
several continuous variables, e.g., the forecasted wind power and price.
However, for the conventional RL, it can hardly handle the continuous
input variables directly and must discretize them to fit the algorithm
[16], which may cause unnecessary information loss. For this reason,
DRL is adopted in this paper to overcome the shortage of RL. In DRL,
the deep neural network technique is integrated into RL to tackle in-
tractable continuous input variables. The DRL algorithms used to design
the learning module are introduced in the following subsections.

3.1. Deep Q network (2015)

The deep Q network (DQN) developed by the DeepMind team in
2015 is one of the most classic DRL algorithms [17]. DQN takes ad-
vantage of the deep neural network (evaluation network) to build the
map between the continuous state space and the Q values. In the op-
timization process, DQN updates the parameters in the evaluation
network iteratively to obtain the optimal mapping rules. The update of
the DQN follows

+

+
+ +

+
Q s a Q s a

r
Q s a

Q s a
( , ; ) ( , ; ) max ( , ; )

( , ; )
t t t t t t

t

a
t t

t t t

1 1
t 1

(4)

where Q s a( , ; )t t t is the Q value of the action at with respect to the state
st , t means the parameters of the evaluation network. In addition to the
evaluation network, a target network is set, whose parameters are re-
presented as , to estimate the new Q value more accurately. < <0 1
is the learning rate for the evaluation network update, rt is the im-
mediate reward from external environment and < <0 1 is the dis-
count factor that influences the current value of the future rewards.

In (4), + + +
+

r Q s a Q s amax ( , ; ) ( , ; )t
a

t t t t t1 1
t 1

is called the time

difference error (TD-Error) which is the change value of the Q value
during the iteration. At each iteration, the DQN calculates the TD-Error
based on the samples extracted from a replay buffer and then updates
the evaluation network parameters t to minimize the loss function

=L TD Error( ) -t
2. The replay buffer is a sample memory to store and

extract the sample for the neural network update.
Although the DQN has been successful in many fields, it still suffers

many shortcomings in terms of Q-value estimation accuracy, con-
vergence, and convergence speed.

3.2. Rainbow

For the shortcomings of the basic DQN, various extensions of the

Fig. 2. Cooperation rule between ESS and reserve.

Fig. 3. Block diagram of the training process in the DRL model.
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DQN were proposed in [18–21]. However, the improvement for the
DQN in each extension is different from each other. In October 2017,
the Rainbow proposed in [22] provides the possibility of integrating a
variety of complementary extensions, which means that users can add
multiple specific extensions to the basic DQN to solve their own pro-
blems more effectively.

Inspired by the excellent performance of the Rainbow on Atari
games, we construct a specific Rainbow algorithm in the context of
wind farm control. As shown in Fig. 4, the constructed Rainbow algo-
rithm bases on the basic DQN and integrates three extensions, which
are the prioritized replay buffer, double Q-learning and the dueling
network. Moreover, the dropout layer technology is also applied to the
deep neural network training. The details of each extension or tech-
nology are introduced below.

1) Prioritized Replay Buffer:

The replay buffer in the basic DQN randomly selects the samples for
the update of the evaluation network. Such a sampling mechanism
suffers from low training efficiency since many samples in the buffer is
useless for the evaluation network update. Instead, the prioritized re-
play buffer proposed in [18] selects the samples based on the TD-Error
values to enhance the training efficiency, shown as

+ + +
+

P r Q s a Q s a| max ( , ; ) ( , ; )|t t
a

t t t t tsam, 1 1
t 1 (5)

where P tsam, is the sampling probability, and determines the degree of
influence of TD-Error on the sampling probability.

The sample with a larger TD-Error is extracted more frequently in
the prioritized replay buffer, which can obviously accelerate the con-
vergence and reduce the sample requirement.

2) Double Q-Learning:

The Q-value update rule of the basic DQN is called Q-learning,
which may overestimate the Q value because the maximum of the Q
value is always used to calculate the TD-Error. To overcome this defect,
a double Q-learning algorithm is proposed in [19], which completes the
estimation of the Q value by using two different neural networks. The
TD-error in double Q-learning is improved as

+ + + +
+

r Q s argmax Q s a Q s a( , ( , ; ); ) ( , ; )t t
a

t t t t t t1 1 1
t 1 (6)

Double Q-learning allows the Q value to more accurately quantify
the effect of the actions on the average cumulative rewards, thus further
increasing the revenue of WPPs.

3) Dueling Network:

Dueling network changes the architecture of the evaluation network
in the basic DQN, to allow the Q value being represented in a more
detailed form [20]. The improved-structure evaluation network has two
output branches which output the current state value and the state-
dependent action advantage values, respectively. Then, the final Q
values can be calculated by

A A= + +
+

Q s a v s s a
A

s a( , ) ( ) ( , ) 1
| |

( , )t t t t t
a

t t 1
t 1 (7)

where A| | is the number of groups of the control actions in action space,
v s( )t is the state value and A A s a( , )t t is the state-dependent action
advantage values.

The dueling network comprehensively improves the performance of
the Rainbow algorithm, including learning convergence, convergence
speed and Q-value estimation accuracy. Here, an important reason for
adding this extension is that it can increase WPP’s revenue by enhan-
cing the Q-value estimation accuracy, similar to the double Q-learning.

4) Dropout Layer [23]:

In the application process, the obtained real-time wind power and
electricity price might be different from all historical observations, so it
is necessary to enhance the generalization capability of the controller.
Therefore, the dropout layer technology is applied to forming the
evaluation network to avoid overfitting the training data. The basic
idea of the technology is to randomly cut off certain neural links be-
tween adjacent layers during each neural network update, where the
probability that a neural link is cut off is called the dropout rate.

3.3. Action selection policy

In the training process, the controller consists of the evaluation
network and a stochastic action selection policy. Here we choose the

- greedy policy to select the final action based on the Q values. The
- greedy policy shown in (8) calculates the probability that the

feasible action in the action space is selected.

=
+ =

a s
a Q s a

a Q s a
( , )

1 , argmax ( , )

, argmax ( , )
A a

A a

| |

| | (8)

where ( 0) is used to determine the probability of selecting the action.
Moreover, in (8), if = 0, the policy will become the greedy policy.

The greedy policy guides the controller to always choose the action
with the highest Q value. The greedy policy is used as the deterministic
action selection policy in the application process.

4. External environment formulations

In the DRL model, the external environment simulation module si-
mulates the settlement scheme of the electricity market and returns
WPP’s revenue for each time interval to the learning module as the
immediate reward.

The model-free Rainbow algorithm based learning module only
focuses on the reward values returned by the external environment, so
that the construction of the external environment is not limited by the
algorithm. Therefore, the purpose of this section is not to model a
specific external environment in detail, but rather to provide a case
framework for the simulation.

4.1. Immediate reward and Long-term revenue object

The revenue generated at each time interval returned as the im-
mediate reward is calculated by (9).

=r P t µ S t µ S t C Mt t
act

t
act

t
up

t
up

t
dn

t
dn

t t (9)

where Ct is the penalty fee charged by the market to the WPP when the
actual generation does not match the scheduled generation, Mt is the
maintenance cost for the ESS.

DQN (2015)

Deep neural 
network

 Q learning

Replay 
buffer

 Double Q learning

Dueling network

Prioritized replay 
buffer

Dropout layer

Rainbow

Store 
samples

Extract
samples

Update 

Fig. 4. Rainbow architecture adopted in this paper.
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Maximizing WPP’s cumulative revenue is the controller’s object
which can be expressed as:

= =
rmax

i t

T

t
1 1 (10)

where T is the number of time intervals in a control cycle of the ESS,
and i is the number of control cycles experienced by the controller.

4.2. Operational constraints of the ESS

Battery pack is chosen to form the ESS in this study. The scheduled
charge/discharge power of the ESS can be expressed as:

=P U P U PESS t ESS t
dis

ESS t
dis

ESS t
ch

ESS t
ch

, , , , , (11)

+U U 1ESS t
dis

ESS t
ch

, , (12)

where P P/t
ch

ESS t
dis

ESS, , is the charge/discharge power, and U U/t
ch

t
dis

ESS, ESS, is the
charge/discharge state variable of the ESS respectively which means
yes when the value is 1 and no when the value is 0. Eq. (12) indicates
that the charge state and the discharge state cannot coexist at the same
time.

In addition, the electricity quantity stored in the ESS at the interval t
is related to the electricity quantity stored at the interval t-1, shown in
(13).

= +E E U P U P t( / )t t t
ch

ESS t
ch

ESS
ch

ESS t
dis

ESS t
dis

ESS
dis

1 ESS, , , , (13)

where /ch dis
ESS ESS is the battery charge/discharge efficiency.

The battery pack is subject to the following constraints.

1) Charge/discharge Power Constraints:

P P U0 t
dis dis

t
dis

ESS, ESS,max ESS, (14)

P P U0 t
ch ch

t
ch

ESS, ESS,max ESS, (15)

where P P/ch dis
ESS,max ESS,max is the maximum charge/discharge power of the

ESS.

2) Capacity Constraint:

E E Etmin max (16)

where E E/max min is the maximum/minimum capacity of the battery
pack.

4.3. Penalty fee calculation

Penalties are divided into the following two types.

1) Violation of the Charge/discharge Power Constraints:

The deviation between scheduled generation and actual generation
is calculated as:

= +P U P P U P P( ) ( )t
dis

ESS t
dis

ESS
dis ch

t
ch ch(1)

ESS , ,max ESS ESS, ESS,max (17)

2) Violation of the Capacity Constraint:

The deviation between scheduled generation and actual generation
is calculated as:

=
=

=
P

P U

P U

, 1

, 1t
t

dis E E
t

dis
t

dis

t
ch E E

t t
ch

(2)
ESS, ESS ESS,

ESS, ESS,

t

t
ch

1 min

max 1

ESS (18)

The penalty fee passed to the WPP finally is the larger of two types:

=C P P P tmax( , )t t t t
(1) (2)

pen, (19)

where P tpen, is the penalty price for the power deviation.

4.4. Maintenance cost calculation

Maintenance costs are divided into the following three types.

1) Basic Cost of Maintenance and Operation:

The charge and discharge behavior of ESS will result in inevitable
maintenance costs which are related to PESS t

act
, :

=M P tP| |t ESS t
act

t
(1)

, men, (20)

where P tmen, is the price of the basic maintenance.

2) Violation of the Electricity Requirement for the ESS to Enter a New
Cycle:

In order to avoid the loss of the adjustment ability of the ESS, the
electricity quantity stored in the ESS at the end of each cycle should be
close to an expected electricity value for ESS to enter a new cycle.
During the training process, an extra fee is charged to enable the ESS to
maintain the adjustment ability:

= =M
t T

E E P t T
0,
| | ,t

T t

(2)

exp extra - men,
(1)

(21)

where ET is the electricity quantity stored in the ESS at the end of the
cycle, Eexp is the expected electricity required for ESS to enter a new
cycle, P textra - men,

(1) is the price of the extra fee as well as determines the
degree of influence of Eq. (21) on the control strategy. This price is
gradually reduced to zero in the training process and always equal to
zero in the application process.

3) Violation of the Number Constraint of State Transition:

The number constraint of state transition is as follow:

=
Y N

t

T

ESS t
2

, ESS
(22)

where YESS t, is the state transition variable of the ESS which means the
state of charge or discharge of the ESS has changed when the value is 1
and unchanged when the value is 0, NESS is the maximum state tran-
sition number in a control cycle of the ESS.

For the violation of the number constraint of state transition, WPP
should pay the extra maintenance cost based on the deviation between

=
Y

t

T
t

2
ESS, and NESS:

= =
=

M
t T

Y N P t T

0,

( ) ,t

t

T
t t

(3)

1
ESS, ESS extra - men,

(2)

(23)

And the extra maintenance cost finally paid by WPP is

= + +M M M Mt t t t
(1) (2) (3) (24)

5. DRL model implementation

After introducing the learning module (Rainbow) and the electricity
market simulation module (external environment) separately, this
section describes in detail the implementation of the whole DRL model.

5.1. State space and action space

The state space shown in (25) consists of the forecasted wind gen-
eration, the forecasted electricity price, the reserve price, and the
electricity quantity stored in the ESS.
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= =S s s P µ µ E{ | ( , , , , )}t t t t
up

t
dn

tw, (25)

The scheduled charge/discharge power of the ESS, the amount of up
reserve and the amount of down reserve are used, from which the
discretized action space is generated as follows:

= =A a a P S S{ | ( , , ),t j k l ESS t j t k
up

t l
dn

, , , , , , ,

j M k N l O[1, 2, ..., ], [1, 2, ..., ], [1, 2, ..., ]} (26)

where M, N and O are the numbers of equally divided segments in the
ranges of P tESS, , St

up and St
dn, respectively.

5.2. Training process implementation

In the training process, enough samples are accumulated by oper-
ating the virtual decision module and electricity market simulation
module, and then the evaluation network is updated in the Rainbow
based learning module. The flowchart of the training process is shown
in Fig. 5 and the details are explained as follows.

1) Build Networks and Initial the Parameters:

Two deep neural networks with same structure and equal in-
itialization parameters are constructed as the evaluation network and
the target network, respectively. The values of their initialization
parameters are randomly generated. The number of neurons in the
input layer of the networks is equal to the dimension of the state space,
and the number of the neurons in the output layer is the same as the
number of the actions (M × N × O) contained in the action space.

2) Sample Accumulation:

Before operating the learning module, a certain number of samples
need to be generated and stored into the prioritized replay buffer. The
operation of the virtual decision module and electricity market simu-
lation module for each time interval can generate one sample. The
specific flow of the sample generation is as follow. The evaluation
network takes the current state st as the input to obtain the Q values of
all actions in the action space. Then, an action at is selected through the

- greedy policy. After this dispatch, a new state st+1 is observed, and
the immediate reward rt is calculated by (9). Finally, (st, at, st+1, rt) is
stored as a sample in the prioritized replay buffer. If the buffer is full,
the learning module can be done.

3) Learning module:

The prioritized replay buffer determines the sampling probability of
each sample according to (5) firstly. Then, a minibatch of samples are
randomly selected from the buffer to calculate the TD-Error by (6), and
an Adam optimizer [24] is used to complete the parameter update of
the evaluation network. For the target network, its parameters are
untrainable. Whenever the parameters of the evaluation network have
been updated N times, the parameters of the evaluation network are
copied to the target network.

If WPP's revenue has increased to a stable, the parameters of the
evaluation network are converged. If not, the sample accumulation and
network update should be continued. The sample accumulation at this
time is to renew the samples in the prioritized replay buffer.

5.3. Application process implementation

The well-trained controller in the application process consists of the
converged evaluation network from the training process and the greedy
policy. By using the well-trained controller, the optimal action for each
input state is determined. The flowchart of the application process is
shown in Fig. 6.

In the application process, the parameters of the evaluation network
are fixed and untrainable. The - greedy policy which is a stochastic
policy is replaced with the greedy policy, which is a deterministic
policy, to always select the action with the highest Q value. The well-
trained controller focuses on maximizing WPP’s revenue, instead of
improving it.

Dividing the method into two independent processes is to make the
well-trained controller suitable for online application. The training
process is an offline training process whose optimization time does not
affect the decision process of the controller in the application process.
The application process no longer optimizes the controller and the
decision-making process can be completed in an instant.

6. Case study

A wind farm with a 50 MW installed capacity located in Jiangsu
Province, China is selected as the case wind farm in this paper. NaS
battery pack is integrated into the wind farm as the ESS, whose tech-
nical parameters are illustrated in Table 1. In present work, the ESS has
a control cycle length of one day that includes 24 time intervals, and the
maximum state transition number of the ESS is 18. The price of the
basic maintenance cost is fixed as 20 ¥/MWh, the penalty prices for
power deviation and extra maintenance are assumed to be 1000
¥/MWh.

The case wind farm is equipped with a prediction system that is
based on the recurrent neural network (RNN) technology to obtain the
forecasts of wind generation and electricity price. Mean absolute per-
centage error (MAPE) is used to evaluate the forecast level. The MAPE
on wind power is calculated to be 10.7% and the MAPE on electric price
is 14.9%. The prices of the reserve are listed in Table 2.

In the action space, the scheduled charge/discharge power of the
ESS is discretized into {−7.5, −5.0, −2.5, 0, 2.5, 5.0, 7.5}, both the
amounts of up and down reserves to be purchased are discretized into
{2.5, 5.0}. The discretized action space in the case contains a total of 28
actions.

We designed the Rainbow by following the literatures [17–21,22]
and implement it in TensorFlow [25].

Build  networks and 
initialize the parameters

Calculate the Q values of all 
actions under the current state st

Choose an action at with
the ε-greedy policy

 Calculate the immediate reward 
rt and observe the new stat e st+1

Save the sample ( st, at, st+1, rt) 
to the prioritized replay buffer

Virtual decision module

Electricity market 
simulation module

 The buffer is full N

Y

Extract samples from the 
prioritized replay buffer

Calculate the TD-Error 
through two networks 

Update the parameters of 
the evaluation network

Update the parameters of 
the target network

The revenue is 
steady

Application process

Learning module

t=t+1

Observe the actual generation 
and electricity price  

Y

N

Fig. 5. Flowchart of the training process to obtain the converged evaluation
network.
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6.1. Training process

The structures of the evaluation network and the target network in
the Rainbow are both finalized as a fully connected neural network
with two hidden layers and a dueling layer from the dueling network.
The structure of the deep neural network and the number of neurons in
each layer are shown in Fig. 7. The input of the neural network is a
vector of length 5 and the output of the neural network is a vector of
length 28, which represents the Q values of all actions in the action
space. The activation function of each neuron in the hidden layers and
the dueling layer is Rectified Linear Unit (ReLU). In the dueling layer,
the outputs of the first 28 neurons are the state-dependent action ad-
vantage values A s a( , )t t , and the 29th neuron outputs the state-based
value v s( )t . The calculation rule from the dueling layer to the output
layer is expressed by (7).

In the training process, the in the - greedy policy is fixed as 0.1.
In each evaluation network update, a minibatch of 32 samples are
randomly selected from the prioritized replay buffer that can hold up to
3000 samples, to compute the TD-Error. Whenever the evaluation
network has been trained 300 times, the parameters of the target net-
work are updated once. The details on the hyperparameters of the
Rainbow in the training process are listed in Table 3.

The curves of the revenue, extra cost and reserve cost in the training
process are shown as follows to illustrate that the proposed DRL model
can effectively optimize the control strategy in the controller.

1) Change of WPP’s Revenue in the Training Process:

Fig. 8 shows WPP’s revenues returned by the external environment
in the training process. It can be seen that the strong volatilities of wind
power and electricity cause the WPP’s revenue to fluctuate. On the

other hand, WPP’s revenue tends to increase in the fluctuations with the
increasing number of the samples experienced by the controller. In the
sample-accumulation stage of the training process (0–3000 samples),
the learning module does not work because of the insufficient samples
in the prioritized replay buffer. The revenues in this stage are low and
non-increased. In the subsequent revenue growth stage (3000–9600
samples), the control strategy in the controller is optimized and the
revenue increases. WPP’s revenue becomes stable after the controller
experiencing approximately 9,600 samples, which means that the
parameters of the evaluation network have converged. The controller at
this time can obtain the average revenue of 4859.9¥ for the WPP in
each time interval.

2) Change of WPP’s Extra Cost:

Extra cost is the sum of the penalty fee and the extra maintenance
cost. Fig. 9 shows the extra costs paid by the WPP for each control cycle
in the training process. The extra cost also decreases in the fluctuations
with the increasing number of samples experienced by the controller,
and then becomes stable after the controller experiencing about 9,600
samples.

3) Change of WPP’s Reserve Cost:

Fig. 10 shows the costs of the reserve for each control cycle in the
training process, which can also reflect the optimization directions of
the control strategy in the controller at different stages of the training
process. In the sample-accumulation stage (0–3000 samples), the im-
mature controller randomly purchases amounts of the reserve. And then
huge penalty fees inspire the controller to purchase a large amount of
reserve to realize the scheduled generation as much as possible (ex-
periencing 3000–4800 samples). After reducing the penalty fee to a
certain level, the controller learns how to avoid over-purchasing the
reserve to reduce the reserve cost (experiencing 4800–9600 samples).

6.2. Application process

Based on a series of new wind power data and electricity price data,
WPP’s average revenue in the application process is evaluated. And the
performance of the well-trained controller on tracking/realizing gen-
eration schedule is shown. The impacts of the forecast level and pre-
diction time window on earning revenue are also analyzed.

1) Analysis of WPP’s Revenue:

In the application process, the average revenue obtained in each
time interval is calculated as 5331.6¥ (> 4859.9¥). The reason why the
revenue obtained by the controller in the application process becomes
significantly higher than that in the training process is that the greedy
policy selects the action with the highest Q value every time, instead of

t=t+1

Calculate the Q values of all actions under the current state st

Choose an action at with the greedy policy

Training process

Calculate the revenue rt and observe the new stat e st+1

Dicision in the well-trained controller

Observe the actual generation and electricity price  

Fig. 6. Flowchart of the application process.

Table 1
Technical parameters of the NaS battery pack.

PESS
ch

,max
(MW)

PESS
dis

,max
(MW)

Emax
(MWh)

Emin
(MWh)

ch
ESS

dis
ESS

Eexp
(MWh)

7.5 7.5 45 5 0.85 0.95 25

Table 2
Reserve price in each time interval.

Interval index t 1 2 3 4 5 6
Reserve price (¥) 205 195 185 185 185 190
Interval index t 7 8 9 10 11 12
Reserve price (¥) 195 200 205 210 215 220
Interval index t 13 14 15 16 17 18
Reserve price (¥) 225 230 235 240 245 250
Interval index t 19 20 21 22 23 24
Reserve price (¥) 255 255 245 235 225 245

Input
Layer Hidden

Layer1
Hidden
Layer2

Dueling
Layer

Output
Layer

Fig. 7. Structure of the evaluation network.
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randomly trying other actions sometimes like the - greedy policy.

2) Electricity Change Curve in the ESS:

Fig. 11 shows the change curve of the electricity stored in the ESS.
In the application process, the electricity stored in the ESS is always
within the allowable range ([5, 45] MWh), and no upper and lower
limits are reached. It should be noted that when the electricity reaches
the maximum/minimum capacity, ESS is prone to lose the ability to
adjust, causing revenue losses.

3) Generation Schedule Tracking:

While gaining high revenues for the WPP, the controller can

effectively track/realize the generation schedule with the uncertainty of
wind power, as shown in Fig. 12. The result shows that the controller
can reduce the deviation between the actual generation and the
scheduled generation into the range [−2.5, 2.5] ([−0.05, 0.05] in the
figure) which can be further eliminated by purchasing a small amount
of the reserve in advance.

4) Impacts of Forecast Level and Corresponding Solution:

The forecast level affects WPP’s revenue and the performance on
tracking the generation schedule [26]. Fig. 13 shows the performance
of the well-trained controller on tracking generation schedule when the
MAPE on wind power is calculated to be 15.3%. The result shows that
the generation schedule cannot be realized/tracked sometimes, even if
the largest amount of the reserve ([−5, 5]) is purchased in advance.
Table 4 compares the average revenues that are affected by the forecast
level and the maximum purchase amount of the reserve. The results
suggest that enlarging the feasible amount range of the reserve pur-
chased in advance can alleviate the decline in WPP’s revenue due to the
poor prediction system, which means that a new controller with a larger
action space should be trained.

5) Impacts of Prediction Time Window:

Maximizing WPP’s long-term revenues is the focus of this paper.
Therefore, the trends of the price and wind power over time are also
important decision-making information that has big impacts on the

Table 3
Hyperparameters of the rainbow.

Structures Hyperparameters Values

Evaluation network Learning rate: 10−3

Discount factor: 0.9
Minibatch size 32
Dropout rate 0.7
Activation function ReLU
Optimizer Adam
Dropout rate 0.5

Prioritized replay buffer Buffer size 3000
0.6

Target network N 300

Number of samples experienced by the controller
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Fig. 8. Average revenues in the training process.

Fig. 9. Extra cost for each ESS control cycle in the training process.

Fig. 10. Reserve cost for each ESS control cycle in the training process.
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revenue. A case is that when the wind power time series [P tw, , +P tw, 2,
+P tw, 4] is taken as part of the input state at time t, the average revenue is

enhanced to 5468.1¥.
However, it is not recommended to select the time window con-

taining lots of forecasted values. An excess of forecasted values with
uncertainties obviously reduce the convergence performance of the
DRL algorithm and increase the computational cost required in the
training process.

6.3. Sensitivity analysis on learning rate

The performance of the DRL algorithm is sensitive to many hy-
perparameters, which makes DRL related results reproduction seldom
straightforward. This section just integrates the sensitivity analysis on
the learning rate which is directly related to the calculation cost. And
literature [27] is recommended to be referred to investigate problems
with reproducibility in DRL.

Fig. 14 depicts the sensitivities of the average revenue obtained and
the minimum number of the samples required for convergence to the
learning rate (discount factor is fixed as 0.9). Conclusions are as fol-
lows: 1) The Rainbow with small learning rate can bring high revenue
for WPP in the application process. It is noted that the revenues become
stable when the learning rate decreases to a certain level. 2) A small
learning rate will also cause a high calculation cost. For a WPP, a good

learning rate can maximize the revenue to the stable level with the
smallest number of samples.

6.4. Comparative studies on different optimization solutions

Scenario-based stochastic programming (SSP) and robust program-
ming (RP) are the existing most popular optimization methods for
coping with uncertainty. To further demonstrate the advantages of the
proposed DRL-based wind farm control method, it is compared with the
two solutions above in the condition with the same data, as shown in
Table 5.

In the scenario-based stochastic programming method, the wind
power and electricity price forecast errors are assumed to obey the
normal distribution N µ( , )2 [28,29]. And a large number of scenarios
are required to cope with the multiple uncertainties in wind power and
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Fig. 12. Generation schedule tracking in the application process. (a) wind
power forecast error, (b) power deviation between the actual generation and
the scheduled generation.
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Fig. 13. Generation schedule tracking under a poor wind power prediction
system in the application process. (a) wind power forecast error, (b) power
deviation between the actual generation and the scheduled generation.

Table 4
Impact of forecast level on average revenue.

MAPE on wind
power

Feasible reserve range
(MW)

Average revenue in the application
process (¥)

10.7% [−5.0, 5.0] 5351.6
15.3% [−5.0, 5.0] 4669.3
15.3% [−7.5, 7.5] 4827.4
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electricity price, which challenges the memory capacity and computing
speed in computer. The optimization result shows that the average
revenue obtained by the SSP method is significantly lower than that
obtained by the DRL method because of: 1) the difference between the
assumed distributions and the actual uncertainty laws and 2) the lim-
ited number of the scenarios due to computational cost.

The robust programming method just considers the extremes of the
uncertainty while ignoring the probability information, which can give
a reference to avoid risks. However, robust optimization methods
usually obtain conservative control strategies that make it difficult to
maximize WPP’s revenue in electricity market.

In addition, the mathematical optimization solutions impose re-
quirements on the construction of the external environment. The actual
objective function and constraints need to be approximated or trans-
lated into required mathematic expressions sometimes, which makes
these control methods weak in solving the practical problems. As
mentioned in Section 4, the model-free DRL focuses on the reward
values returned by the external environment instead of its formulations.
Therefore, the control method based on DRL has better application
prospects.

6.5. Comparative studies on RL/DRL algorithms

1) Comparative Studies on RL Algorithm:

Q-learning is chosen as the case RL algorithm. Different from the
Rainbow, the state space of the Q-learning is discrete: the forecasted
wind generation is divided into 5 discrete intervals at each interval of
10 MW, the forecasted electrical price is divided into 3 discrete inter-
vals, and the electricity quantity stored in the ESS is divided into 10
discrete intervals at each interval of 4 MWh. Considering that one
control cycle contains 24 time intervals with different reserve prices,
the state space in the Q-learning is finally discretized into a set con-
sisting of 3600 discrete input states. The comparison results are listed in
Table 6.

In the training process, due to the discrete state space, the Q-
learning obviously has faster convergence speed, and the number of
samples required for the training process is smaller. However, the dis-
crete state space destroys the uncertainty laws, leading a lower average
revenue than the Rainbow’s. In the application process, there is still a

large gap between their average revenues.

2) Impacts of the extensions/technology in this Rainbow:

Fig. 15 shows the impact of the prioritized replay buffer on the
revenue curve in the initial stage of the training process. It can be seen
that the Rainbow with prioritized replay buffer allows the controller to
obtain higher revenues after controller experiencing the same number
of samples, which obviously accelerates algorithm’s convergence speed
and reduces the required sample number. The impacts of double Q-
learning, dueling network and dropout layer technology on the revenue
addition are listed in Table 7. The results show that applying these
extensions and technology can improve the revenue obtained by the
controller.

7. Conclusion and future work

In electricity market, the multiple uncertainties of the wind power
and electricity price cause a huge revenue loss to the WPPs. Utilizing
the concept of DRL allows the uncertainties not to be assumed and
formulated during the optimization, improving the effectiveness of the
control strategy. Three main contributions of present work are sum-
marized as follows:

1) DRL has been applied to train the wind farm controller against
uncertainties. During the optimization, the influence of the un-
certainties of wind power and electricity price on the WPP’s revenue
can be automatically considered, without any assumption.

2) Both managing ESS and purchasing reserve are regarded as the
available measures to maximize WPP’s cumulative revenues.

3) The proposed DRL method and the effectiveness of the Rainbow
algorithm have been validated by simulation results for an ESS-in-
tegrated wind farm located in Jiangsu Province, China.

A number of open directions are suggested by the present work.
Firstly, Rainbow is one of the DRL algorithms based on value function,
whose action space must be discretized. We hope to apply some policy
gradient algorithms, such as Deep Deterministic Policy Gradient
(DDPG) [30], to output the continuous action instructions. However,
whether a good or optimal control strategy can be learned by the DRL
based on policy gradient is unknown and needs further investigation.

Secondly, wind farm’s measurement data (including wind speed,
wind direction, air pressure, etc.) are considered to be able to provide
more information (including wind power uncertainty) for optimization
than wind power data. In future, we plan to study on training an end-to-
end controller whose input states are wind farm's measurement data
instead of forecasted wind power and to see if it can bring higher
revenue to WPPs.
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Table 5
Comparison of different optimization methods.

Optimization method Need prior distribution of uncertainty Computational cost Average revenue (¥)

SSP Yes High 4824.6
RP No Low 4399.1
DRL No Low 5351.6
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Table 6
Comparison between Q-learning and rainbow.

Algorithms Training process Application process

Average revenue in each interval (¥) Number of the samples for convergence Average revenue in each interval (¥) Amount of the reserve purchased

Q-learning 3845.9 7100 4383.1 Large
Rainbow 4859.9 9600 5351.6 Appropriate

Fig. 15. The impact of the prioritized replay buffer on the revenue in the initial
stage of the training process.

Table 7
Impacts of double Q-learning and dueling network and dropout layer on rev-
enue addition.

Algorithm Average revenue in the application
process (¥)

Rainbow 5351.6
Rainbow without double Q-learning 5121.7
Rainbow without dueling network 5291.9
Rainbow without dropout layer 5110.0
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