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Continuous integration(CI) testing is characterized by continually changing test cases, limited execution
time, and fast feedback, where the classical test prioritization approaches are no longer suitable.
Based on the essence of continuous decision mechanism, reinforcement learning(RL) is suggested
for prioritizing test cases in CI testing, in which the reward plays a crucial role. In this paper, we
conducted a systematic study of the reward function and reward strategy in CI testing. In terms of

MSC: reward function, the whole historical execution information of test cases is used with the consideration
00-01 of the failure times and failure distribution. Further considering the validity of historical information,
99-00 partial historical information is used by proposing a time-window based approach. In terms of reward

strategy which means how to reward, three strategies are introduced, i.e., total reward, partial reward,
and fuzzy reward. The empirical study is conducted on four industrial-level programs, and the results
reveal that using the reward function with historical information improves the Recall by on average
13.21% when compared with existing TF(Test Case Failure) reward function, and the fuzzy reward
strategy is more flexible and improve the NAPFD(Normalized Average Percentage of Faults Detected)
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by on average 3.43% when compared with the other two strategies.
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1. Introduction

Continuous Integration (CI) is a software development practice
designed for real-time deployment, which merges all developers’
working copies to a shared mainline,! including version con-
trol, software configuration management, automated build, and
regression testing (Vasilescu et al., 2015). While the released
software need to remain potentially publishable, CI also requires
developers to integrate their work frequently, in general, once
a day, sometimes even multiple times a day. Each integration
is verified by an automated build and regression testing to de-
tect faults as quickly as possible. Compared to the traditional
development pattern of integrating over a long period of time, CI
has a high frequency of integration. Therefore, it is necessary to
find faults and provide feedback as soon as possible, which helps
developers to understand the software integration and modify the
unsuccessful integration in time to improve the efficiency and
quality of software development. But with scaling up the size of
software and the increasing number of test cases, it is challenging
for the existing prioritization techniques of regression testing to
satisfy the requirement for rapid feedback in CI testing.
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To improve the efficiency of regression testing in CI envi-
ronment, the test cases, that can potentially detect faults, need
to be executed earlier. Traditional regression testing prioritiza-
tion techniques are based on a variety of code coverage metrics
mainly, which is time-consuming. Zhang et al. (2009) proposed a
prioritization method based on call path, Jiang et al. (2009) used
the differences of the test cases to do test case prioritization(TCP),
which select the least similar test case as the next to be sorted,
and Memon et al. (2017) leveraged correlations among code,
test cases, developers, programming languages, code changes,
and test execution frequency to improve CI and development
processes, which could help find more test cases that are prone
to failure. However, the effectiveness of these TCP techniques
depends on the program, test cases, and modifications, and TCP
techniques are not applicable in different programs or modi-
fied versions (Elbaum et al., 2004), which makes traditional test
methods unsuitable for TCP in CI testing.

In recent years, learning-based methods are tended to be
used for solving TCP problems. Spieker et al. (2017) first applied
reinforcement learning (RL) into CI test optimization in 2017,
and proposed an approach for test case prioritization and se-
lection based on RL. The continuous integration system itself is
continuously modified and updated, which requires continuous
testing in a fast time frame. Accordingly, the prioritization of
CI test cases is a continuous decision-making process, in which
the execution sequence of test cases will be reordered in each
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integration, which is usually determined based on their execution
results in previous combination synthesis. RL is a learning-based
approach for the continuous decision problem, which can be
used in TCP of CI. RL uses the learning of historical processes
to develop a set of strategies to achieve maximum effectiveness.
The combination of RL and CI enables it to prioritize test cases
without specific system, modification and test case set, which is
an adjustment framework with adaptive learning, where agent
and reward are the two main components. The reward evaluates
the effectiveness of a test case in previous CI integration, and the
agent can determine the execution order of a test case based on
the reward.

The prioritization effect of test cases based on RL depends
directly on the feedback of learning results, that is, the measure
of reward function. The good reward method will continuously
optimize the sorting effect, while the bad reward method will
continuously learn from the bad direction to reduce the sorting
effect. Therefore, the reward plays a vital role to study the com-
bination that should be designed according to the requirements
of the CI testing. In this paper, the reward is systematically
studied in the combination framework of RL and CI, with the
consideration of what to reward and how to reward respectively.

In terms of what to reward, which is referred to as reward
function, we consider to include historical information of the test
case execution into the computation of reward function. We first
include the whole historical information of a test case in the
reward function, in which, a metric of the Average Percentage
of Historical Failure (APHF) is proposed with the consideration
of the distribution of the execution results and the execution
timing of test cases in Cl. Compared with the existing RETECS
(Reinforced Test Case Selection) (Spieker et al., 2017) framework,
where the reward function only considers the current execution
information, APHF is more effective by using the whole history
information of the test cases. However, a significant computation
cost increase comes from the high frequency of CI integration
and the large accumulation of historical information of the test
case execution. This paper further proposes a partial historical
information calculation method, which adopts the technology of
time window to select the recent useful historical information
for the computation of reward function, to improve the efficiency
with retaining the quality.

In the view of how to reward, three reward strategies are
proposed, i.e., total reward, partial reward, and adaptive fuzzy
reward. In total reward strategy, all test cases are treated equally
and can receive a reward, although the value for a single test
case may be different based on the evaluation of reward function.
However, every test case has its execution result in the current
cycle, passed or failed. It is general to consider that a failed test
case is more important than a passed, as it detects faults in the
current cycle and then has high possibility to detect faults in
the following cycles. Consequently, the partial reward strategy
is then proposed, in which only the failed test cases receive a
reward. A further investigation reveals that the ability to fault
detection of a test case is not only correlated with the faults
detected in last execution but also strongly associated with the
test requirements (Campos et al., 2014). Therefore, the fuzzy
reward strategy is further proposed, in which some passed test
cases in the current cycle are adaptively rewarded based on their
historical execution results.

The main contributions of this paper include:

e A systematic research on the reward of reinforcement learn-
ing is conducted in this paper for continuous integration
testing.

e Two types of reward function are defined with the consid-
eration of total and time-window based historical execution
information of test cases.

e Three reward strategies are further proposed on the reward
of reinforcement learning for continuous integration testing.

e Empirical research is carried out on real-world industrial
programs to compare the variety of reward functions and
reward strategies.

The paper is organized as follows: Section 2 summarizes the
related work and leads to the motivation of this paper. Section 3
presents the reward with reward function and reward strategy.
Section 4 empirically verifies the validity of the rewards proposed
in this paper. Section 5 concludes the article.

2. Background and related work

Test Case Prioritization (TCP) is a problem of time series.
During the testing, test cases are executed one by one, and the
testers hope that the test case with a high probability of detecting
faults could be executed preferential, to identify and fix faults
earlier and reduce losses. TCP technique is used to evaluate test
cases individually and reschedule them base on the evaluation.
Wong et al. (1997) first proposed it in 1997 to find the optimal
execution sequence of the original test cases that met the test
criteria. Rothermel et al. (2000) gave a formal description of
TCP in 2000 and conducted a series of empirical studies. Then
a variety of TCP techniques were proposed (Yoo and Harman,
2015), including coverage-based (Chi et al., 2020), modification-
based (Jahan et al., 2019), fault-based (Mahdieh et al., 2020),
requirement-based (Srikanth et al., 2016), and history-based (Cho
et al., 2016) TCP techniques. However, whether the Time Con-
sumption of a test case is taken into account, the rate of code
coverage and faults detection will not be changed in TCP (You
et al,, 2011).

Search-based approaches can solve complex prioritization
problems effectively. Li et al. firstly proposed search-based TCP in
software regression testing (Li et al., 2007). They further studied
search algorithms for multi-objective TCP problems and used GPU
parallel technology to improve its efficiency (Li et al., 2013; Bian
et al., 2017). Souza et al. (2011) and Yu et al. (2010) used search-
based approach to solve TCP problems based on the similarity
among test cases.

In fact, the above TCP technologies do not take into account
the test environment and system cycle. And the methods oc-
cupy a large amount of time overhead in configuration (Do and
Rothermel, 2006). However, with the continuous integration of
CI systems, there are environment and configuration changing,
and the corresponding needs to add new test cases. Experiments
have shown that in traditional method test suite augmentation
significantly hampers their effectiveness, whereas source code
changes alone do not influence their effectiveness much (Lu et al.,
2016). So new approaches are needed for test prioritization in CI.

Many TCP techniques had been presented for CI testing. Mar-
ijjan et al. (2013) proposed TCP techniques for CI, followed by
multiple prioritization objectives and methods (Noor and Hem-
mati, 2016; Elbaum et al., 2014). When faced with multiple pri-
oritization objectives, Ammar et al. (2017) prioritized test cases
by adjusting weights of different prioritization objectives. Strand-
berg et al. (2016) analyzed and combined execution time and
its related factors, such as fault detection result, a time interval
of last execution, and the modification information of the code
under test, and test cases were selected by assigning and merging
priorities to the test case sequences. Haghighatkhah et al. (2018)
sorted CI test cases based on historical information and diversity,
which was proved more effective by Henard et al. (2016) with
the black-box test approach. But, such approaches were based on
the dynamical analysis for each CI cycle, which may cause a lot
of time overhead (Luo et al., 2016). To address the problems, the
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combination of RL and CI (Spieker et al., 2017) was proposed to
order test cases through CI learning.

RL is an essential branch of machine learning, which is of-
ten used to solve continuous decision problems. It is based on
the continuous learning of the historical process, through con-
tinuous exploration to find a strategy with the greatest future
expectations. Groce et al. combined RL and ABP (ASP.NET Boil-
erplate Project) to test software APIs (Groce et al., 2013). Re-
ichstaller et al. applied RL to risk-based interoperability testing
and conducted risk assessment through RL to achieve test case
generation (Reichstaller et al., 2016).

CI testing, as a branch of regression testing, is more stringent
in terms of feedback time, in addition to program complexity than
regression testing. It continuously tests the submitted commits to
ensure that their integration into the backbone works properly.
The key to continuous software integration is that newly com-
mitted code must pass the automated regression testing before
it is integrated into the backbone, that is, in each integration, it
is necessary to detect whether new faults are introduced. With
the continuous integration of the CI system, real-time testing is
required after each integration. In order to find faults as early
as possible, test cases are prioritized. After each integration of
the continuous integration, corresponding test cases need to be
reprioritized each time, which is a continuous decision process.

The unsupervised exploration mode of RL, through the double-
feedback mechanism of observation and decision-making, en-
ables it to quickly learn an optimized strategy. In RL, a strategy
is to perform a specific step in a particular state and the agent
generates a good strategy through continuous exploration and
learning (Sutton and Barto, 1999). It should be noted that the
agent interacts with the environment directly instead of relying
on supervisory mechanisms or complete environmental models.
Then RL makes decisions based on environmental feedback to
maximize the benefit. Consequently, RL can be used to solve
continuous decision problem, and the feedback is an important
factor in decision making.

CI testing is a constant decision problem, in which test cases
are sorted in each integration. When RL is applied into CI testing
(Fig. 1) (Spieker et al., 2017), the state is the test cases submitted
in each cycle, the action is the prioritization of the test case set,
and the strategy is how to sort the test cases. The determination
of the strategy is based on the interaction between the environ-
ment and the agent, where the agent optimizes next behavior of
the state according to the feedback of history behavior, which is
measured with reward. So the quality of reward directly affects
the quality of RL.

With the application of RL in CI, the agent prioritizes the
test cases in the current integration cycle based on the feedback
of their behaviors in previous integrations. A metric should be
defined to evaluate the effectiveness of the prioritization strategy
in RL for the feedback, which can improve reinforcement learning
policy. For TCP in CI, this consists of two aspects: what is used to
reward a test case, and whether a test case should be rewarded.
The reward intensity is computed by the reward function, and
the reward strategy decides which one should be rewarded. The
reward function and reward strategy are the two main subjects
of our study. It should be noted that there is only reward but
without punishment in the environment, because compared with
the rewarded test cases, unrewarded test cases are the penalized.

Fig. 2 presents the testing process in RETECS proposed by
Spieker et al. (2017). For the test cases provided in each cycle,
based on the RL policy, which is generated with historical learn-
ing, the test cases are got the prioritization and then prioritized,
so as to generate test sequences for test execution. For the test re-
sults, the evaluation and developer feedback are used to optimize
the learning strategy. RETECS evaluates the test execution result

through RL after each integration and gives rewards to test cases
based on the evaluation. There are three reward functions used in
RETECS. Failure Count Reward (FC) rewards every test case with
the total failed number of test sequence in each cycle. Test Case
Failure Reward (TF) only rewards the failed test case in current
cycle. Time-Ranked Reward (TR) rewards the test case with the
failed information of the test sequence and the position of the test
case. For failed test cases, TR is the same as FC. For passed test
cases, TR is further decreased by the number of failed test cases
ranked after the passed test case to penalize scheduling passing
test cases early. Spieker’s experimental results indicated that the
test sequence obtained by TF performed better than the other two
reward functions.

RL is based on the reward hypothesis, which is the idea
that each goal can be described as the maximization of the
rewards (Dewey, 2014). For a sequence of test cases in CI, two
aspects of reward hypothesis are considered, i.e., what and how to
reward. The former focuses on the reward intensity of a test case,
that is the study of the reward function. While, the latter focuses
on which test case should to be rewarded, that is the study of
reward strategy. The three reward functions of RETECS are only
based on the execution information of the current CI cycle. It has
been widely recognized that the historical execution information
of test cases in the entire integration process is more valuable for
the TCP (Khatibsyarbini et al., 2018). Based on RETECS, this paper
further considers whole historical execution information of test
cases, specifically the impact of historical failure count and failure
distribution on prioritization. We propose reward functions based
on the historical execution information of test cases, and further,
with the consideration of the timeliness of historical informa-
tion (Wu et al., 2019), we propose the time window based reward
function. Finally, combined with different reward strategies, an
efficient RL method for CI test case prioritization is formed.

3. Reward for reinforcement learning in CI testing

In this section, three history-based reward functions are first
proposed to measure the fault-detection capability of a test case
in CI testing. Firstly, Historical Failure Count (HFC) reward is
presented with the consideration of the historical failure count
of a test case. Then, the Average Percentage of Historical Failure
(APHF) is defined to measure the historical failure distribution of
a test case, based on which the reward function is proposed. With
further consideration of the timeliness of historical information,
a time-window based reward function is finally proposed.

How to reward the test cases is another research point, in
which two kinds of reward strategy are first presented, total
reward and partial reward, and then a fuzzy reward strategy is
proposed to overcome the drawback of the previous two. The
total reward strategy rewards all test cases, while partial strat-
egy only rewards the failed test cases in the current execution.
However, it is tough to determine whether a test case should
be rewarded only based on the result of current execution re-
sult, because the historical results are more valuable to evaluate
the capability of fault detection for a test case. Therefore, it is
unreasonable to give a discrete classification to reward a test
case based on the current execution result. This inspires us to
include the historical execution information of test cases and
adopt a fuzzy classification approach as a reward strategy. Fuzzy
classification is based on fuzzy logic, which is a mathematical
logic that analyzes variables as continuous values between 0 and
1, during the classical or digital logic operates on discrete values
of either 1 or O (true or false) (Larsen, 1980), respectively.

The reward function and reward strategy together constitute
the reward of RL, which enables us to obtain a better test case
prioritization strategy. The roadmap of the history-based reward
proposed in this paper is presented in Fig. 3.
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Fig. 1. Reinforcement learning used in continuous integration.
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Fig. 2. Testing in CI process: RETECS uses test execution results for learning test cases prioritization (solid boxes: Included in RETECS, dashed boxes: Interfaces to
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Fig. 3. The frame of history-based reward.

3.1. HFC reward function

In the process of CI testing, the historical execution infor-
mation of a test case is the embodiment of its fault detection
ability. The more faults a test case detected, the more possibility
it detects a fault in the next integration. So the number of failures
of a test case can be used to measure the fault detection ability
of the test case, which can be used as a reward.

In this paper, we use 1; to record the execution result of the
test case in its jth execution. The values of r; is 1 or 0, where
1 indicates failure and O indicates pass. The reward function
based on historical failure count, which is called Historical Failure
Count(HFC) reward function, is defined as follows:

HFG(t) =Y 1; (1)
j=1

where i denotes the ith integration, n denotes the number of
historical executions of the test case t. It should be noted that
a test case is not necessarily executed in every integration, so the
jth execution does not represent the jth CI cycle.

HFC rewards a test case according to its failed number of
historical execution. To a certain extent, it can well reflect the
fault detection ability of a test case. However, for test cases with
the same number of failures, the HFC rewards have the same fault
detection capability, while test cases with more recent failures
are more likely to detect faults.

3.2. APHF reward function

It has been shown that HFC cannot distinguish the test cases
with the same failure count but occurred in different CI inte-
grations, that is, the historical failure distribution is also very
important for evaluating the fault detection capability of a test
case. In this section, a new evaluation metric, Average Percentage
of Historical Failure (APHF), is further proposed and defined as
follows:

m
— M + i (2)

APHF(t) =1
nxm 2n

where i denotes the ith integration, n denotes the number of
historical executions of the test case t, and m denotes the failure
count of t in n executions. Rank; denotes the countdown order of
the last jth failure of t.

The range of APHF is from O to 1. The higher the APHF value
is, the greater the failure probability of test case is. Thus, the test
case with a higher APHF value is more likely to detect a fault in
the next execution.

For instant, test cases t; and t, are both executed n times,
and their historical execution results are represented as [1, 0, .. .,
0] and [O, ..., 0, 1]. It can be seen that the failure count of t;
and t, have the same value of 1 in terms of HFC reward, but t;
fails in the recent execution, and t; fails in the first execution.
Using the APHF reward function, the reward values of t; and t,
are 1— 21? and % respectively. Although t; and t, have the same
failure count, t; detects a fault in the last execution that has a
higher APHF value, i.e., a higher probability of detecting faults
in the next integration. Further inspection reveals that with the
increasing of n, the value of APHF(t;) gets infinitely closer to 0.
Thus, with the increase of the CI cycles, the failure information
of a test case tends to have less impact on evaluating the fault
detection capability. The APHF reward function can represent this
trend properly.

3.3. Time-window based reward function

The reward function based on the historical information can
reflect more details about the test case, which can help increase
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the ability of fault-detection of the test case. But in CI testing, the
feedback time should be as short as possible. Compared with the
reward function using current information, it takes more time in
the calculation of the reward function with historical information.
Besides, some historical information, which has not been used for
a long time, weakens the ability of fault detection with the delay
of the cycles. That is to say, there is redundant information in
the historical information of the test case. However, the reward
function based on historical information is more effective than
that with current information. Too long-unused historical infor-
mation, which is calculated in the reward function, overstates the
fault detection abilities of the test case and incorrectly increases
its ordering position. For example, one test case, which failed in
the early CI, and never failed in the following CI process, has been
fixed an error associated with it. This test case may has no-fault
detection capability, until it detects a new fault. The effect of a
test case to detect a fault is certain timeliness. According to its
timeliness, we introduce a time window method to combine the
best of the two methods (Wu et al., 2019).

Based on the definition of HFC and APHF, the time-window
based reward function is defined in Eqgs. (3) and (4), called HFC*"
and APHF', respectively. HFC'" calculates the number of histor-
ical failures for test case t in previous w executions, in which w
is the time window size. The definition is as follows:

w

HFCI™(t) =) 1 3)
j=1

The value of HFC'™ is not higher than the value of HFC, owing
to the reduction in the number of historical failure. But HFC*¥
focuses on the impact of recent failure information of test cases
on fault detection.

Similarly, APHF** measures the average percentage of histor-
ical failure for test case t in the previous w executions, and the
definition is as follows:

> iy Rank; 1

APHF"(t) =1 — —
win(n, w) x m

4
2 x win(n, w) )
where win(n, w) is the number of historical executions of test
case t in the time window w, and m denotes the number of failed
executions of win(n, w).

n n<w
w n>w

win(n, w) = { (5)

APHF'™ ranges from 0 to 1. Since APHF** also focus on the
impact of the recent time window failures rather than the whole
historical executions, the computation cost can drop down com-
pared with APHF. Note that, for a test case that is not failed in
the time window w executions, the reward is down to 0, which
may have a slight impact on the evaluation on the test case.
However, the test case, that failed in very early executions but not
failed in recent executions, is also unlikely to detect faults in the
next execution. Further more, in the RL framework, the order of
test cases is based on the expectation of the cumulative discount
reward of the reward value of test cases, that is, the reward value
in the historical process always exists in the calculation process
of the priority of test cases, but the influence is attenuated with
a particular factor.

3.4. Reward strategies

In CI cycles, test cases usually have different performance on
fault detection. Therefore, which test case should be rewarded
in the sequence is another research question. In this section, we
present three different reward strategies, total reward, partial
reward and fuzzy reward, respectively.

In each CI cycle, a series of test cases are used to test the
commits newly submitted. We first introduce the total reward
strategy, which is defined in Definition 3.1. In this strategy, each
test case in the cycle is treated fairly, i.e., each test case will be
rewarded with a reward value to evaluate its contribution in the
current cycle.

Definition 3.1 (Total Reward Strategy).
Gyo.o, tn}, every t; in T; will be rewarded.

For T; = {t;,tp,...,

However, for the test cases with the same reward value, which
have different execution results currently, in total reward strat-
egy, they will be rewarded with the equal reward value. The
test case failed currently is more important than the test case
passed. We further put forward the partial reward strategy. With
the consideration of current execution results, only the failed test
cases are rewarded. The partial strategy is defined as follows:

Definition 3.2 (Partial Reward Strategy). For T; = {t1,t3,...,
i, ..., ta}, tj will be rewarded only if ¢; fails; others will not be
rewarded.

With the partial reward strategy, the more frequently a test
case fails, the better its fault-detection capability is.

The above two reward strategies are implemented based on
the current execution results of test cases. In the total reward
strategy, all test cases are rewarded but may have different re-
ward values. In the partial reward strategy, we emphasize the
distinction between the failed test case and the passed test case,
where only failed test cases are rewarded. Both reward strategies
use the current execution information to determine whether to
reward a test case. In the feature of the CI, in each cycle, every
incoming test case is related to a submitted commit for the
current cycle, which meets the test requirements (Campos et al.,
2014). Thus, the more test requirements a test case meets, the
more frequency it occurs. It can be seen that the factor of test
case’s frequency is not considered in the reward strategies based
on the current execution information. A fuzzy reward strategy
is further proposed to improve the incentives for passed test
cases with the consideration of the frequency, where besides of
the failed test cases, some passed test cases could be rewarded
with fuzzy rules. For example, if a test case is related to the
commits often, it appears in many cycles but rarely fails. In the
partial reward strategy, the reward value is usually O as the test
case passes, which keeps lowering the discount expectation in
RL for CI, and results in a low ranking priority. But considering
its frequent appearance, the test case, which greatly conforms
to the requirements of the test (Campos et al., 2014), should be
rewarded, which will increase its priority appropriately.

The fuzzy rule is defined according to the environment of CI,
in which the proportion of failed frequency of a test case t is
calculated as follows:

Ny
Pi(t) = ——

N[otal

Where, i is the current cycle number, nf is the number of
failure count in historical execution, Ny is the total number of
historical execution count. Again, i is not equal to N, because a
test case may not appear in every cycle.

A lower value of the P usually means that the test case is
often associated with some commits, but rarely failed. For such
test case, even if it does not fail, it would be better to reward
it for improving its ordering, owing to its high frequency, which
can be regarded as a vital point to the CI system. The strategy for
determining some passed test cases to be rewarded, is defined as
the fuzzy reward strategy, which is defined as follows:

(6)
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Table 1
An example of three test cases in twelve CI cycles.
Test case ¢  C1p Cp C € € € € € € €
t 1 - 0 - 0 0 0 1 1 -
t; 1 0 0 0 0 1 - 0 0o o0 0 -
ts 0 0 0 0 1 0 0 0 0 0 0
Table 2
The comparison of five reward functions for the example presented in Table 1.
Test case TF HFC APHF HFC'w3 APHF'w>
t 1 4 17/36 2 1/2
t 1 2 7/10 1 9/10
ts 0 2 1/3 1 1/10

Definition 3.3 (Fuzzy Reward Strategy). For T; = {t1,t3,...,
&, .‘.,tn}, if t; is failed, t; will be rewarded; if ¢; is passed and
Pi(t) meets the threshold, t; will be rewarded; others will not be
rewarded.

The expression can be described by the following formula (7).

RewardValue r=1
Reward!"™(t) = 0 r=0 A Pt)>m (7)
RewardValue r=0 A P(t)<m

where, 1 is the execution result of the test case t in current cycle,
1 means the test case is failed currently and 0 is passed; m is the
threshold value in P, which is defined by the CI environment. In
fuzzy reward way, two types of test cases are rewarded, currently
failed and currently passed but often appears and occasionally
failed in history.

3.5. An example to illustrate the different rewards

In the previous section, three reward functions and three
reward strategies based on historical information are introduced.
In this section, an example is further presented to illustrate
the difference between reward functions based on the current
information and historical information.

Table 1 presents three test cases with twelve executions in
CI cycles, c¢; to cip respectively. 1 is failed, 0 is passed and ‘-
’ is not committed in current cycle. Five reward functions are
used in the comparison, including TF reward function proposed
by Spieker et al. (2017) based on current information, HFC and
APHF proposed in this paper based on historical information,
HFC'™> and APHF'“> which are further improved with time-
window approach. The corresponding results are presented in
Table 2.

With TF reward, it can be seen that both t; and t, are better
than t3, but there is no difference between t; and t;, i.e., the
TF reward cannot distinguish t; and t,, since it is only based
on current execution. Further inspecting the results by all other
reward functions that based on historical executions, the results
are different.

With HFC and HFC'™ reward, t; is better than both t, and
t3, but t; and t3 are severally equal, that means they have the
same fault detection capability of the test cases throughout the
historical execution so far, even if it behaves differently in the CI
cycle.

Both APHF and APHF™> rewards can distinctly distinguish the
test cases’ fault-detection ability as different reward values are
presented in Table 2 for all three test cases. Compared with APHF
and APHF'">, the ranking of the test cases is same, which are
t-t1-t3, showing a same trend of evaluation based on the cal-
culation of historical information. Since the time-window based

reward APHF'"> uses small amounts of historical information, the
computation cost will be lower than APHF.

The history-based reward functions proposed in this paper
have three advantages: (1) HFC contains historical execution re-
sults of test cases, rather than the current execution. In the
history-based TCP, we believe that if a test case detects a fault in
the past, it is more likely to cover the defective code in the next
test. And the related research of defect prediction shows that code
with faults in the past is likely to have another defect, especially
when this part of the code is modified (Noor and Hemmati, 2015;
Zimmermann et al., 2007). Therefore, it is necessary to consider
the complete historical execution result rather than just the re-
sult of the current execution. (2) APHF measures the historical
failure distribution of the test case, reflecting its timeliness, that
is, recently failed test cases will obtain a greater measurement,
which is more in line with the sequential decision characteristics
of RL. Besides the consideration of the execution results of test
cases, we should pay more attention to the failure distribution
information, recently failed test cases are more contributive to
the next fault detection. (3) The reward value based on the time
window of historical information, get the similar reward trend to
that with whole historical information, by reducing the amount
of information, and the reward value, considering the most recent
and frequently failed information, extends the reward value to
a certain extent, which will improve its sort position in the
sequence.

4. Experiments

In order to verify the validity of the history-based reward func-
tions proposed in this paper, four large-scale industrial datasets,
such as Paint Control, IOF/ROL, GSDTSR and Rails, are used as
experimental subjects, in which the first three subjects are used
in the literature Spieker et al. (2017), and the last two are used
in the literature Liang et al. (2018).

CI testing has a strict time limit, so not all the test cases can
be executed during the test. In the experiments, according to the
research of Spieker et al. (2017), the time threshold is set to be
half of the total execution time of all test cases, that is, the test
cases will be executed in descending order of their priority until
the threshold is reached. We repeat the experiments 60 times
to eliminate the effect of random factors on the experimental
results. On the one hand, we used the source program provided
by the author to carry out repeated experiments of the original
method, and on the basis of the source program, we used the
reward functions and reward strategies designed by us to conduct
the experiments. This section is organized as follows: firstly,
we introduce the evaluation metric used in the experiments
(Section 4.1) and then the experimental setup with the subjects
(Section 4.2), next, Section 4.3 introduces the research questions
and Section 4.4 analyzes the experimental results.

4.1. Evaluation metric

To simulate the rapid feedback mechanism of continuous in-
tegration, the half of the total execution time is allowed (Spieker
et al.,, 2017), thus only the test cases implemented in the first half
time are used in the experimental evaluation. In this paper, four
evaluation metrics, NAPFD, TTF, Recall and Time Consumption,
are used to compare the effect of different rewards on TCP of CI
testing under the RL framework.

NAPFD (Normalized Average Percentage of Faults Detected)
(Qu et al., 2007) is adopted as the evaluation metric, which is
defined as follows:

Zﬂs{uu rank(j) . p
2 % [TS|

NAPFD(TS;) = p (8)

’TS{“” x ||
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fail
15!
With p = Ts)“"x‘”f“” rank(j) represents the position of the j

failed test case in the test sequence TS;, TS{a" indicates the total

number of test cases failed in TS;, |TS;| indicates the total number
of test cases in TS;, and ‘Tsmtal’f“”‘ indicates the total number of

1
test cases failed in the TS.

Rothermel et al. (2000) firstly proposed Average Percentage
of Faults Detected (APFD) to evaluate the effectiveness of TCP
techniques. APFD evaluates a test sequence based on the index
of test cases failed in the test sequence. However, with the com-
bination of TCP and test case selection, where not all test cases are
executed, not all faults can be detected. But APFD assumes that all
faults are detected, which is only fit for the situation where there
is no test case selection. NAPFD (Qu et al., 2007) is an extension
of APFD, which reflects the proportion of faults detected by the
test case to all faults, and is suitable for the existence of test case
selection. If all faults are detected, NAPFD is the same as APFD (p
= 1). When calculating the NAPFD value in this experiment, we
assume that the fault corresponding to each failure is different.

The goal of TCP is to get the test cases that can detect faults
as far ahead as possible, so the earlier the faults are detected, the
better the prioritization. Based on this, we use Test to Fail(TTF) as
another evaluation index, and TTF is the first location where the
fault is found. The earlier the fault is found, the better the sort,
and the smaller the TTF value.

In order to evaluate the sorting effect, Recall is introduced
to evaluate the proportion of faults detected in each cycle. It
calculates the proportion of faults found in the first half execution
time to total faults in each cycle.

Time Consumption represents the average time cost of
RETECS. It includes time spent calculating reward function, sort-
ing test cases, and reinforcement learning.

4.2. Experimental setup

Four subjects are used in the experiments, in which Paint
Control and IOF/ROL are from ABB Robotics Norway for testing
sophisticated industrial robots, GSDTST and Rails are open source
datasets shared by researchers. The test case is a unique identifier,
which will be used to test different commits in different cycles.
These datasets contain historical information such as test case
execution results in more than 300 integration cycles.

Table 3 lists the statistics of the four datasets, including the
size of the test cases, the number of integration cycles, etc.
‘Results’ is the number of execution results in the table, which
refers to the total number of executions of all test cases during
the entire integration process, the 'Failure Rate’ represents the
proportion of failures in the total number of execution results,
and the ‘Frequency’ is the frequency of each test case in each
cycle. It can be seen that Paint Control dataset is small-scale, the
test case failure rate is nearly 20%, and each test case appears at
the highest frequency of 0.82 per cycle. The IOF/ROL dataset is of
medium size but has the highest failure rate in the four datasets
with the lowest frequency. As for Google Open Source Dataset
GSDTSR, it is the largest, but the failure rate is only 0.25%. For
the open source Rails, even though its test case size is medium,
its CI cycles are maximum. The failure rate in Rails is only 0.62%.
CI test prioritization is complicated when only a small number of
test cases failed in a large dataset.

In CI, a test case is often used in different cycles according
to the commit, and the execution results may be different for
different cycles. We analyze the frequency of fault detection of
a test case, that is how often the test case will detect a fault. The
statistical results are shown in Table 4, in which the count num-
ber of test cases between the continuous failure intervals of (0, 5],

Table 3

The statistics of the four datasets.
Dataset Test cases CI cycles Results Failure rate Frequency
Paint Control 89 352 25,594  19.36% 0.82
I0F/ROL 1941 320 32,260 28.79% 0.05
GSDTSR 5555 336 1,260,618 0.25% 0.68
Rails 2010 3263 781,273  0.62% 0.12

Table 4

The interval statistics of the continuous failure distribution.

Paint Control IOF/ROL GSDTSR Rails
Interval Count Interval Count Interval Count Interval Count
(0, 5] 4030 (0, 5] 2408 (0, 5] 2409 (0, 5] 4363
(5, 10] 276 (5, 10] 340 (5, 10] 283 (5, 10] 97
(10, 106] 737 (10, 17] 237 (10, 929] 1047 (10, 2494] 492

(5, 10] and (10, maximum] are listed. For all the subjects, more
than 60% of the test cases are continuously failed in the interval
of (0, 5]. Thus, in the time-window based reward functions, the
size of window is set to 5.

We further analyze the historical fault detection efficiency,
which is defined in Eq. (6). The detailed data is shown in Table 5.
The failure rate is 0, which means the test case has not found
a fault in historical execution. The low failure rate means a test
case frequently occurs during the CI cycle but seldom finds a fault.
In the datasets of GSDTSR and Rails, for the low failure rate test
cases, there is a considerable proportion, which is larger than
that with the failure rate of other test cases. For the datasets of
Paint Control and IOF/ROL, most of the failure rates are below
to 0.5. In the four experimental subjects, there are test cases
with relatively high frequency and low fault detection rate. Test
cases are meant to test the submitted commits, and the higher
the frequency, the more critical the test case is related to the
trunk. The importance of the test case is obtained by analyzing all
historical execution information, especially for the low failure test
case. For large failure test case, the adjacent failure information
is a good measure of its importance.

4.3. Research questions

In this section, the proposed three reward functions and three
reward strategies are empirically compared. We conduct exper-
iments and analysis based on the following four research ques-
tions.

RQ1: Is the history-based reward functions more effective to
prioritize test cases than the existing reward function?

RQ2: Does the time-window based reward function has further
improvements in CI testing?

RQ3: Does the total reward strategy perform better than the
partial reward strategy?

RQ4: Does the fuzzy reward strategy is better than the other
reward strategies?

The first two RQs are related with the proposed reward func-
tions. RQ1 is set to verify the validity of the reward functions that
consider the whole historical execution information of test cases.
In this paper, we propose two history-based reward functions,
namely HFC reward and APHF reward. HFC reward is based on the
failure count of the test case in the historical execution process,
APHF further considers the distribution of failures. Therefore,
to answer the RQ1, NAPFD, TTF, Recall and Time Consumption
are used to compare the proposed two history-based reward
functions with the existing TF reward function. RQ2 is set to
verify the impact of the time-window based reward function, in
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Table 5
Historical fault detection efficiency.

. Paint Control IOF/ROL GSDTSR Rails
Failure rate
Count Percentage Count Percentage Count Percentage Count Percentage

1 132 0.51% 2511 7.22% 198 0.02% 439 0.06%
[0.5, 1) 440 1.71% 6558 18.86% 1425 0.11% 2985 0.38%
[0.1, 0.5) 2025 78.54% 13257 38.13% 4299 0.34% 7933 1.02%
[0.05, 0.1) 2941 11.43% 2802 8.06% 5211 0.41% 6248 0.80%
[0.01, 0.05) 935 3.63% 206 0.59% 26850 2.13% 18340 2.35%
[0.005, 0.01) 16 0.06% 0 0.00% 17665 1.40% 7783 0.99%
[0.001,0.005) 0 0.00% 0 0.00% 9 0.00% 16170 2.07%
[0.00001.0.001) 0 0.00% 0 0.00% 40597 3.22% 33839 4.33%
0 1056 4.10% 9436 27.14% 1164561 92.34% 687974 88.01%
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Fig. 4. The NAPFD results of TF reward.

terms of the effectiveness of the test case sequence and the time
cost. RQ3 studies the effect of different reward mechanisms on
prioritization results by comparing total reward strategy (reward
all test cases in the current cycle) and partial reward strategy
(only reward the failed test cases in the current cycle). RQ4 is
set to verify the effectiveness of the fuzzy reward strategy.

We reproduce Test Case Failure (TF) Reward following the
steps from the literature Spieker et al. (2017) for comparison,
and implement the RL algorithm based on HFC reward and APHF
reward proposed in this paper. And then, we conduct the ex-
periments of the time-window based the reward functions and
the three different reward strategies respectively, total reward
strategy, partial reward strategy, and fuzzy reward strategy. The
network-based agent is used to represent states and actions con-
sistently.

4.4. Experimental results

In this section, the experimental results are presented to an-
swer each research question, respectively.

4.4.1. Analysis of RQ1
To answer RQ1, we compare fault detection ability of test se-
quences generated by the history-based reward functions and TF

reward function, where NAPFD, TTF, Recall and Time Consump-
tion are used in the evaluation. Since the TF reward function only
rewards the failed test case, which is a partial reward strategy in
our definition, only results of partial reward strategy are used for
comparison.

The NAPFD results of three reward functions are shown in
Figs. 4-6, respectively. The horizontal axis is the number of inte-
gration cycles, and the vertical axis is the corresponding NAPFD
value of the test sequence. The higher the NAPFD value, the
stronger the ability of the test sequence to detect faults. The red
curve in the figure is the average of NAPFD value of the test
sequence generated by RL method for each integration, and the
black line is an unary linear regression fitting line calculated by
the standard algorithm, which can reflect the learning trend of RL
with different reward functions.

Fig. 4 presents the result of the TF reward function as the
baseline of the comparison, and Figs. 5 and 6 present the results
of the HFC-Partial and the APHF-Partial reward function with the
partial reward strategy, respectively. It can be seen that for Paint
Control dataset, the learning trend of the NAPFD value of the
test sequence obtained with the APHF-Partial reward is roughly
equal to that with TF reward, which has the similar starting
and ending values. In ending values, the learning trend of the
NAPFD value of the test sequence using HFC-Partial reward is
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Fig. 6. The NAPFD results of APHF-partial reward.

less than 0.7, which is slightly lower than that with the APHF-
Partial reward and the TF reward (more than 0.8). Besides, there
are higher starting values in TF and APHF-Partial. For the IOF/ROL
dataset, in the ending values, the NAPFD value trend of the test
sequence obtained with the APHF-Partial reward is greater than
0.5, the NAPFD values of HFC-Partial reward and TF rewards
are all around 0.3, but with the slope, the APHF-Partial rewards
are significantly better than the other two. In GSDTSR and Rails
datasets, the history-based reward function is obviously better
than TF reward function. As for GSDTSR dataset, in the ending

values, the NAPFD value trend in the APHF-Partial reward and
HFC-Partial reward are about 0.6 and 0.3 respectively, and the
NAPFD value in the TF reward is less than 0.2. In Rails, the NAPFD
value trend in ending values increases from 0.2(in TF reward) to
about 0.8(in both history-based reward functions). Therefore, the
learning trend of the history-based reward function is better, in
other words, with continuous integration, historical information
based reward functions tend to rank better than then TF in the
later stages of CI.
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Fig. 8. Boxplot of NAPFD produced by different reward functions.
Table 6
Average NAPFD for different reward functions with different reward strategies.
Partial Total Fuzzy
TF HFC APHF APHF!™> HFC APHF APHF'™> APHF
Paint Control 60.15% 50.16% 65.31% 67.09% 25.13% 64.82% 69.08% 66.14%
IOF/ROL 25.22% 32.99% 42.02% 42.00% 24.80% 42.30% 40.01% 42.30%
GSDTSR 13.80% 29.72% 40.22% 54.85% 44.11% 68.29% 75.30% 71.92%
Rails 58.64% 84.34% 86.21% 87.10% 22.25% 78.01% 88.17% 76.95%
Average 40.70% 49.30% 58.44% 62.76% 29.07% 63.35% 68.14% 64.33%
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Table 7
Average TTF for different reward functions with different reward strategies.
Partial Total Fuzzy
TF HFC APHF APHF!> HFC APHF APHF'"> APHF
Paint Control 3.74 6.74 4.18 3.66 7.07 4.25 3.25 3.81
IOF/ROL 6.62 4.02 1.39 133 7.28 1.31 1.80 1.27
GSDTSR 492.47 393.60 284.12 178.55 151.64 61.63 30.01 48.04
Rails 14.12 6.14 4.94 441 7.45 11.52 4.05 11.87
Average 129.24 102.63 73.66 46.99 43.36 19.68 9.78 16.25
Table 8
Average Recall of different reward functions with different strategies.
Partial Total Fuzzy
TF HFC APHF APHF!%> HFC APHF APHF'w> APHF
Paint Control 76.18% 62.27% 77.21% 78.59% 33.67% 77.16% 80.20% 78.15%
IOF/ROL 34.71% 42.98% 51.58% 51.56% 33.57% 51.99% 49.51% 51.86%
GSDTSR 18.10% 34.84% 45.35% 59.67% 48.87% 73.84% 79.57% 76.44%
Rails 64.80% 88.82% 90.19% 90.89% 28.33% 83.43% 91.69% 82.40%
Average 48.45% 57.23% 66.08% 70.18% 36.11% 71.35% 75.21% 72.21%

Fig. 7 further illustrates the difference of NAPFD between
TF with HFC-Partial and with AFPH-Partial, respectively. If HFC-
Partial or AFPH-Partial is better than TF, the NAPFD value is
positive, otherwise is negative. In the datasets of IOF/ROL, GS-
DTSR, and Rails, HFC-Partial reward and APHF-Partial reward
are significantly better than TF reward, which is consistent with
the previous analysis. But in Paint Control, in the early and late
stage, the performance of APHF-Partial is superior, but there is no
obvious advantage in the intermediate process, especially HFC-
Partial has obvious disadvantage in the intermediate process.
Further considering the difference for the four datasets, where
Paint Control is the only program with both high failure and
high frequency based on the data presented in Table 3, which
makes it not only to strengthen its sorting effect, but also due
to the historical experience playback of reinforcement learning
framework itself, enlarge its own fault detection ability, which
causes false priority. Although IOF/ROL has a high failure, its low
frequency would not lead to the negative impact on the learning
progress.

The boxplots in Fig. 8 present the distribution of NAPFD values
produced by various reward functions with different strategies,
while the average values of NAPFD are listed in Table 6. It can
be seen that the same conclusion as previous is drawn that the
history-based reward functions are significantly superior to the
TF reward function without using history information of test
cases.

TTF, which indicates the first location of the fault, is further
analyzed and the average TTF for different reward functions with
different strategies are presented in Table 7. Since the smaller
TTF value means the earlier detection of the fault, it can be seen
that except for Paint Control, the TTF with history-based reward
functions is significantly improved.

Table 8 lists the average Recall of different reward functions.
Again, in the columns of Partial, with the exception of Paint
Control, the history-based reward functions perform significantly
superior to TF method, especially the APHF methods.

Since the history-based reward functions are on the cost of the
calculation of the historical information, which makes the result
not worse than that with TF reward function, we compare the
time cost of our proposed method in Table 9. The increased time
is in seconds, which is an acceptable range.

Above all, the APHF-Partial reward outperforms TF reward in
most datasets; for HFC-Partial reward, the performance of the
HFC-Partial reward is better than TF reward except for Paint
Control dataset; the APHF-Partial method is obviously superior

Table 9
Average Time Consumption (seconds) for different reward functions with
different reward strategies.

Partial Total Fuzzy

TF  HFC APHF APHF*™> HFC APHF APHF'™> APHF
Paint Control 0.01 0.39 021 0.04 048 0.36 0.02 0.33
IOF/ROL 0.01 0.23 037 0.05 029 036 0.02 0.68
GSDTSR 148 165 1.65 181 177 176 1.68 3.34
Rails 0.04 0.11 0.07 0.05 042 0.11 0.06 0.14
Average 039 0.60 0.58 049 0.74 0.65 045 1.12

to HFC-Partial method. In general, the reward function with his-
torical information is better than the reward function with cur-
rent information, especially for the large-scale GSDTSR and Rails
datasets.

4.4.2. Analysis of RQ2

According to the analysis of RQ1, the history-based reward
functions are better than the reward function TF, especially the
APHF methods. To some extent, the history-based reward func-
tions increase the rate of fault detection at the expense of Time
Consumption. The time-window based reward function only con-
siders the most recent history. With different size of the time
window, the reward value of the reward function is different.
We analyze the impact of average NAPFD and Time Consumption
under different size of time window in Figs. 10 and 9. The X-
coordinate is the size of the time window. When the time window
is 1, the reward function is TF. When the time window is oo,
the reward function is the original APHF reward function with
the whole historical information. In Fig. 9, the Y-coordinate is the
Time Consumption for the time window based reward function
in different size. The ordinate is the specific value under the
window. The solid line is the value line, and the dotted line is the
trend line. In Fig. 10, the Y-coordinate is the average NAPFD of the
history-based reward function in different size of time window.

In Fig. 9, although the Time Consumption fluctuates with the
increase of the time window, the over trend is evident, where
time increases with the rise of the size of the time window. With
the use of the time window method, the Time Consumption will
decrease by reducing the calculation of historical information.

In Fig. 10, the average NAPFD also changes with the increasing
of the size of the time window. In addition to Paint Control,
the average NAPFD reaches a certain threshold with the increase
of time window, and the region becomes stable or fluctuates
slightly. For the datasets with low failure rate, it tends to be
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Fig. 10. The average NAPFD in different time window.

stable after the threshold value. For the datasets with high failure
rate, the fluctuation is obvious after the threshold. Especially
in Paint Control, it has an obvious downward trend with the
increase of the time window. Further analysis reveals that the
frequency of Paint Control is 0.82, namely the possibility that
a test case appears in each cycle is 0.82. Combined with the
dense continuous failure distribution of the test cases, in the
reward function based on historical information, a large number
of failed historical information have a great negative impact on
the learning efficiency of reinforcement learning. This is because
reinforcement learning techniques tend to look for a strategy to
maximize long-term future rewards. Even if the rewards with a

large number of historical information decline gradually with the
cycles, their historical effects are hard to ignore, leading to the
prediction of the estimation of the current cycle’s fault detection
capacity. The more cycles, the greater the impact. Similarly, for
high-failure data IOF/ROL, the frequency is only 0.05, i.e., the
frequency of each test case in each cycle is very low. However,
because of its low continuous failure density, the later fluctuation
is not stable.

According to the analysis of RQ1, the history-based reward
function, especially the distribution-based reward function APHF,
is more effective. Therefore, we use the reward function of APHF
to carry out experimental verification on four datasets with the
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Fig. 12. The NAPFD results of APHF-total reward.

reward function of time window in the size of 5, which is a
universal appropriate size time window. Based on the internal
comparison of column Partial and column Total in Tables 6, 7, and
8 respectively, under the same reward strategy, on the whole, the
reward function based on the time window gets better sorting
effect.

In conclusion, with the overall trend presented in Figs. 9
and 10, a properly sized time window can effectively maximize
sorting effect and reduce time overhead. With the use of APHF'™>,
the average NAPFD can improve about 4.55%.

4.4.3. Analysis of RQ3

From the analysis of RQ1, the history-based reward function
is superior to the TF reward function, and APHF-Partial reward
function is better in most cases. In RQ3, we further verify which
reward strategy(total or partial reward strategy) is better for
both reward functions. As the time window-based reward func-
tion, with different window sizes, performances different on the
datasets, it is not further discussed in terms of relevant strategy
discussion.

Figs. 11 and 12 are the experimental results of HFC reward
and APHF reward with total reward strategy, i.e., HFC-Total and
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Table 10 Table 11
Comparison of the cycle ratio between the reward strategies of APHF-Total and The comparison of average loss rate for different strategies.
APHF-Partial. Dataset TF APHF-Total ~ APHF-Partial  APHF-Fuzzy
Paint Control IOF/ROL GSDTSR Rails Paint Control 3.89% 272% 2.33% 2.72%
Equal 7.00% 25.09% 7.04% 26.38% IOF/ROL 20.29% 20.29% 20.29% 20.29%
Partial 55.64% 33.21% 4.23% 54.37% GSDTSR 15.49% 0.70% 1.76% 0.70%
Total 37.35% 41.70% 95.07% 19.25% Rails 7.23% 3.62% 3.27% 3.62%
Average 11.72% 6.83% 6.91% 6.83%

APHF-Total. There is an obvious downward trend along the CI
cycles (indicated by the black straight line) with the HFC-Total
in all datasets, while there is a upward trend for APHF-Total.
Thus, the APHF-Total is far superior to the HFC-Total. Similarly,
we can see that APHF-Partial is greater than that of HFC-Partial
based on the results presented in Figs. 5 and 6. Since APHF reward
function is better than HFC reward function with both strategies,
the following discussion is based on the APHF reward function to
distinguish the total and partial reward strategies.

The results of different reward strategies in APHF reward
function are shown in Figs. 6 and 12. From the trend of learning,
in Paint Control and IOF/ROL, there are similar trend line, with the
same start point and end point. While in GSDTSR, the total reward
strategy is distinctly better than the partial reward strategy from
the start point and the end point. While in Rails, the partial
reward strategy is distinctly better than the total reward strategy
from the start point and the end point. For the datasets with a
low frequency, the total reward strategy cannot tell the difference
among the test cases very well.

Table 10 presents the comparison for each cycle between
APHF-Total and APHF-Partial for all datasets, using the statistic
of the ratio of the number of CI cycles (cycle ratio). In Table 10,
‘Equal’ means the cycle ratio where APHF-Total and APHF-Partial
have the same NAPFD value, ‘Partial’ means the cycle ratio where
APHF-Partial has a higher NAPFD value than APHF-Total and ‘To-
tal’ means the cycle ratio where APHF-Total has a higher NAPFD
value than APHF-Partial. For subjects of Pain Control and IOF/ROL,
although the learning curve is approximate from Figs. 6 and 12,
there is a better percentage of the partial reward in Paint Control
and there is a better percentage of the total reward in IOF/ROL.
For GSDTSR, although the comparison results are the same, the
total score is much higher than the partial score, reaching 95.07%,
which is due to GSDTSR’s high frequency, where the test cases
occur frequently. For Rails, the percentage of the partial reward
is higher than that of the total reward, which is same as the
conclusion from Figs. 6 and 12.

We further analyzed the first failure location, that is, the size
of TTF. From Table 7, with the columns comparison of APHF
in Partial and APHF in Total, there are the same phenomenon
with the comparison results. For small datasets, the TTF are very
similar, and for large datasets, especially GSDTSR, the total reward
strategy improves 222.49 than the partial reward strategy, with a
high frequency. For Rails, with a low frequency, the partial reward
strategy performs better. From the Table 8, with the comparison
of APHF-Partial and APHF-Total, we can see that in small datasets,
the Recalls are very close. In GSDTSR, the total reward strategy is
superior to the partial reward strategy. In Rails, the Recall with
the partial reward is much higher, reaching 90.19%

Based on the above analysis, for small applications, the ad-
vantages of the two strategies are not obvious. For large-scale
programs, if the reuse rate of test cases is high (a high fre-
quency), it is more appropriate to use total reward strategy, and
for the subject with low reuse rate (a low frequency), it is more
appropriate to use partial reward strategies.

4.4.4. Analysis of RQ4

In RQ3, we analyze the advantages and disadvantages of the
two different reward strategies. Different reward strategies re-
ward the various objects for enlarging the reward values gap of
the test cases to sort. In total reward strategy, every test case will
be rewarded with reward function. In partial reward strategy, we
widen the gap by not rewarding passed test cases, ignoring the
contribution of the test case in history. However, the test cases
that passed, based on their historical usage frequency, have some
fault detection capability of their own. So we introduce fuzzy
reward strategy to increase the reward of the passed test case,
which is often used but rarely fails. In this part, we make the
experimental comparison of the fuzzy reward strategy and other
two reward strategies.

The threshold value of each experimental object is set 0.01,
0.05, 0.0005 and 0.0005, respectively. We compare the average
NAPFD for different reward functions in columns of Partial, Total
and Fuzzy with APHF in Table 6. With the comparison of the
columns in Partial and Fuzzy, except for Rails, the average NAPFD
of APHF-Fuzzy is higher than that of APHF-Partial. With the
comparison of the columns in Total and Fuzzy, in Paint Control
and GSDTSR, the value of the average NAPFD also has increased,
with high frequency. For I0F/ROL, the NAPFD of APHF-Fuzzy is
between that of APHF-Partial and APHF-Total, where there is not
a big difference. But for Rails, there is a decrease of 1.06% in APHF-
Fuzzy, with a low failure rate. With the comparison of TTF in
columns of Partial, Total and Fuzzy in Table 7, in addition to Rails,
the TTF in reward strategy is higher than that in APHF-Partial and
APHF-Total. That is because we do not consider the effect of the
recently failed test cases. Besides, for the boxplot in Fig. 8, the
fuzzy reward function is always the top three award. That means
the fuzzy reward strategy is more effective.

We further analyze whether the rate of omission by improving
the reward value of the low failure rate test cases. Loss rate
means the proportion of cycles with undetected faults to the total
number of cycles with faults. With the comparison of the columns
in Table 11, with fuzzy strategy, the loss rate of APHF-Partial is
improved to be equal to the value in APHF-Total. Only in GSDTSR,
the loss rate of APHF-Fuzzy is reduced, due to its high frequency
and low failure rate.

In general, the fuzzy reward strategy can improve the partial
reward strategy to some extent, without reducing the average
NAPFD.

The TCP tries to put the test case that can detect faults as
far as possible to the front, and the reward function evaluates
the fault detection ability of the test case with the reward value.
From the evaluation metric NAPFD, which is used to evaluate
the prioritized test cases, we analyze the sorting performance of
different reward functions.

For CI systems that fail frequently, history-based rewards are
not always superior to the reward that only considers current
information. For the frequent failure system, the test cases, which
execute failed frequently, lead to a large number of historical
failure information. Compared with the continuous failure infor-
mation and the current failure information, the current failure
could be more timely response the test case fault detection abil-
ity. In other words, too much history information of test case
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will reduce the fault detection capability of test case, which
can be seen redundant, and the influence of the recent failure
information make more help for the test cases.

For the low failure system, which in the CI testing cycles often
performs passed, its history information of the test case execution
result is usually through state. The reward function only based on
the current information, which will usually be 0, because the TCP
is unable to provide effective information, namely its effective
fault detection ability cannot be measured. But based on the
history evaluation methods, through the introduction of historical
failure situation, we can effectively measure the fault detection
ability of test case, and the test case prioritization can be better.

Combining rewards based on current information and histor-
ical information, the time-window based reward function, con-
sider the historical information of the recent few executions.
Through the influence of recent failure information on test cases,
this avoids the inadaptability of system characteristics that the
current information cannot provide effective information and too
long historical information brings redundancy.

In general, the history-based reward function proposed in this
paper is more suitable for low-failure systems, which is more in
line with the actual situation of software development. The re-
ward function with current information is more applicable when
software development often fails early on. For the system mal-
adjustment, the time-window based reward function combines
the advantages of both reward functions and achieves the best
experimental results in all datasets.

4.4.5. Threats to validity

In the context, validity threats are classified into three dis-
tinct categories, including internal validity, external validity and
construct validity.

Internal. The primary threat is agent stochastic decision-
making, especially the stochastic approach used in the initial
exploration phase of reinforcement learning. To avoid this threat,
we repeated the experiment 60 times and reported the results on
average.

In the study of machine learning, its parameters are sensitive
to different environments, that is, different parameter configu-
rations are required for different environments. In our exper-
iments, no parameter adjustments are made to compare the
results with those of Spieker et al. (2017). In the actual oper-
ating environment, the parameters are adjusted for the specific
environment.

For the evaluation index, APFD is based on the assumption that
all faults are found, and NAPFD is based on actual detected faults.
For a finite time simulation of CI testing, we selected only the
test cases that ranked in the first 50% of the order. In fact, these
test cases did not contain all the faults, so using NAPFD is more
effective.

External. The four datasets we used are provided by the
researchers. Not only are the three datasets provided by Spieker
et al. (2017) repeated, but the corresponding dataset ‘Rails’ are
constructed based on the CI testing logs shared online? (Liang
et al., 2018). If further datasets are obtained, additional experi-
ments are needed to verify the impact of test case’s frequency
and failure rate in the TCP of CI testing.

Construct. A threats to construct validity is the assumption,
that the more the test cases fail, the better their fault detection
ability will be. But that is not always true. Therefore, different re-
ward strategies are introduced to distinguish the fault-detecting
ability of test cases.

2 http://gihub.com/elbum/CI-Datasets.git.

5. Conclusion and future work

This paper focuses on RL in CI test prioritization and studies
the reward mechanism of RL from two aspects: reward function
design and reward strategy design. The key contribution is that
the historical execution information of test cases is considered
in the reward function design for RL used in TCP of CI. Two
reward functions are proposed, i.e., HFC reward function based
on historical failure count and APHF reward function based on
historical failure distribution of a test case. A time-window based
reward function is further proposed to reduce the amount of
credit information and Time Consumption. With the aspect of re-
ward strategy, total reward strategy, partial reward strategy, and
fuzzy reward strategy are introduced, respectively. Experiments
are conducted on four large industrial datasets and the results
indicate that: (1) the fault detection ability of test sequence
using reward functions with historical execution information has
a significant improvement; (2) historical failure distribution in-
formation helps to prioritize test cases with potential to detect
faults; (3)the time-window based reward function can not only
save the Time Consumption, but also improve the average NAPFD;
(4) the results of total reward strategy and partial reward strategy
are influenced by the characteristics of the program under test,
while the fuzzy reward function not only improve the partial
reward strategy, but also get better sorting results than that with
the total reward strategy.

For future work, we consider: (1) multi-objective test case pri-
oritization based on RL; (2) using more information of test cases,
such as coverage information, modification information, similar-
ity information, etc.; (3) combining large-scale neural network
and deep learning to optimize the agent of RL.
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